nus - ma1505 (2012) - chapter 5

Upload: gilbert-sebastiano

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    1/42

    Chapter 5. Three Dimensional Space

    5.1 The Coordinate System of the 3D Space

    For three dimensional space, we first fix a coordinate

    system by choosing a point called the origin, and

    three lines, called the coordinate axes, so that each

    line is perpendicular to the other two. These lines

    are called thex-. y- andz-axes.

    Associated with a pointPin three dimensional space

    is an ordered triple (a,b,c) wherea,bandcare the

    projections ofPon thex-,y- andz-axes respectively.

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    2/42

    2 MA1505 Chapter 5. Three Dimensional Space

    This is the Cartesian coordinate system for

    three dimensional space. We also call this space the

    xyz-space.

    By convention, we use the right-handed coordi-

    nate system. A right-handed coordinate system

    fix the orientation of the axes as follow:

    If we rotate the x-axis counterclockwise toward the

    y-axis, then a right-handed screw will move in the

    positivezdirection.

    2

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    3/42

    3 MA1505 Chapter 5. Three Dimensional Space

    5.2 Vectors in xyz-Space

    A vector is measurable quantity with a magnitude

    and a direction. It is geometrically represented by

    an arrow in thexyz-space with an initial point and a

    terminal point. The direction of the arrow gives the

    direction of the vector; and the length of the arrow

    gives the magnitude of the vector.

    5.2.1 Terminologies and notations

    (1) LetPandQbe points in thexyz-space with co-

    ordinates (x1, y1, z1) and (x2, y2, z2) respectively.

    Then the vectorP Qis algebraically given by

    P Q=

    x2 x1y2

    y1

    z2 z1 .

    3

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    4/42

    4 MA1505 Chapter 5. Three Dimensional Space

    The vectorOP = x1y1z1

    is called the positionvector ofP.

    (2) The zero vector in thexyz-space is O=

    00

    0

    .

    (3) The sum ofv1=

    x1y1

    z1

    and v2=

    x2y2

    z2

    is

    v1+ v2= x1+x2

    y1+y2z1+z2

    .

    [Note that v1+ O=O + v1=v1.]

    (4) The negative ofv1=

    x1y1

    z1

    is v1=

    x1y1z1

    .

    [Note that v1 v1= v1+ v1=O.]

    (5) The differencev1 v2is

    v1v2

    =v1

    +(v2

    ) = x1

    y1

    z1

    + x2y2z2 =

    x1 x2y1 y2z1 z2

    .

    4

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    5/42

    5 MA1505 Chapter 5. Three Dimensional Space

    (6) Ifcis a real number, the scalarcv1ofv1bycis

    cv1=

    cx1cy1

    cz1

    .

    Ifc >0, thencv1 is in the same direction as v1.

    Ifd

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    6/42

    6 MA1505 Chapter 5. Three Dimensional Space

    5.2.2 Example

    Let P1,P2,Q1and Q2be the points (3, 2, 1), (0, 0, 0),

    (5, 5, 4) and (2, 3, 5) respectively.

    P1Q1 = 5 35 24 (1)

    = 235

    P2Q2 =

    2 03 05

    0

    =

    235

    .

    Hence

    P1Q1=

    P2Q2.

    The magnitude ofP1Q1 is

    ||P1Q1|| =

    (2)2 + (3)2 + (5)2 =

    38.

    So the magnitude of 5P1Q1 is

    5||P1Q1|| = 538.6

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    7/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    8/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    9/42

    9 MA1505 Chapter 5. Three Dimensional Space

    5.2.5 Example

    Ifv1=

    24

    5

    and v2=

    12

    3

    , then

    v1 v2= (2)(1) + (4)(2) + (5)(3) = 21.

    Also

    ||v1|| =

    22 + 42 + 52 =

    45,

    ||v2

    ||= (

    1)2 + 22 + 32 =

    14.

    Hence

    cos = 21

    45

    14=

    7

    10.

    Thus is approximately 3313.

    The vectors w1=

    25

    1

    and w2=

    42

    2

    are per-

    pendicular since their dot product

    v1 v2= (2)(4) + (5)(2) + (1)(2) = 0.9

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    10/42

    10 MA1505 Chapter 5. Three Dimensional Space

    5.2.6 Properties of scalar product

    Ifv1, v2 and v3 are vectors in xyz-space and c is a

    real number, then

    (a)v1 v1= ||v1||2 0.

    (b)v1 v2=v2 v1.

    (c) (v1+ v2)

    v3=v1

    v3+ v2

    v3.

    (d) (cv1) v2=v1 (cv2) =c(v1 v2).

    5.2.7 Unit vector

    A unit vector inxyz-space is a vector of magnitude

    or length 1. The vectors

    i=

    10

    0

    , j=

    01

    0

    , k=

    00

    1

    10

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    11/42

    11 MA1505 Chapter 5. Three Dimensional Space

    are unit vectors along the positive x-, y- andz-axes

    respectively.

    Notice that every vector

    xy

    z

    can be written as

    xyz

    =xi +yj +zk.For example,

    w= 4

    5

    22= 4i 5j + 22k.

    The unit vector with the same direction as wis

    1

    ||w||w= 1

    42 + 52 + 222(4i 5j + 22k)

    =

    4

    525i 5

    525j + 22

    525k.

    5.2.8 Projection

    The projection of a vector b onto a vector a, de-

    noted by projabis illustrated below.

    11

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    12/42

    12 MA1505 Chapter 5. Three Dimensional Space

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    000000

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    000000000111111111

    b

    proj

    ab

    a

    From the definition of the scalar product, we have

    a b= ||a||||b|| cos .

    Therefore the length of the projection ofbonto ais

    ||projab|| = ||b|| cos =(a b)

    ||a|| .

    So

    projab= (||projab||) (unit vector along a)

    =(a b)

    ||a||

    a

    ||a||

    =(a b)||a||2 a.

    12

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    13/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    14/42

    14 MA1505 Chapter 5. Three Dimensional Space

    5.3 Vector Product

    Ifv1=

    x1y1

    z1

    and v2=

    x2y2

    z2

    ,

    then their vector product or cross product is

    the vector

    v1 v2=

    i j k

    x1 y1 z1x2 y2 z2

    = (y1z2 y2z1)i (x1z2 x2z1)j + (x1y2 x2y1)k.

    For example, if v1 =

    212

    and v2 = 31

    3

    ,then their vector product is the vector

    v1

    v2= i j k

    2 1 2313

    = i + 12j 5k.

    14

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    15/42

    15 MA1505 Chapter 5. Three Dimensional Space

    5.3.1 Properties of vector product

    Let v1, v2and v3be vectors inxyz-space, and let c

    be a real number. Then

    (a) v1 v2= v2 v1.

    (b) v1 (v2+ v3) =v1 v2+ v1 v3.

    (c) (v1+ v2)

    v3=v1

    v3+ v2

    v3.

    (d) c (v1 v2) = (cv1) v2=v1 (cv2) .

    (e) v1 v1=O.

    (f) O v1=v1 O=O.

    15

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    16/42

    16 MA1505 Chapter 5. Three Dimensional Space

    5.3.2 Direction of v1

    v2

    Let v1 and v2 be two (non-parallel) vectors which

    determine a plane . i.e. is the plane that contains

    both v1and v2.

    Using the definition of vector product, we can check

    that

    (v1 v2) v1= 0 and (v1 v2) v2= 0

    i.e. v1 v2 is perpendicular to v1and v2.

    Hencev1 v2 is perpendicular to the plane .

    ..................................................................................................................................................................

    ................

    v1

    ........................................................................................................................................................ ................

    v2...................................................................................................................................................................................

    ................

    v1 v2

    .........................................................

    ...

    16

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    17/42

    17 MA1505 Chapter 5. Three Dimensional Space

    5.3.3 Magnitude of v1

    v2

    Let be the angle between v1and v2.

    We have

    ||v1 v2|| = ||v1||||v2|| sin .5.4 Lines in 3D Space

    5.4.1 Vector equation of a line

    LetLbe a line passing through a point P0 with po-

    sition vector r0 = x0i+y0j+z0k and parallel to a

    vectorv=ai + bj + ck. Then any pointP onLhas

    position vector

    OP =r=r0+tv

    = (x0i +y0j +z0k) +t(ai +bj +ck) (3)

    for somet R.17

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    18/42

    18 MA1505 Chapter 5. Three Dimensional Space

    (3) is called a vector equationof the lineL.

    ............................................................................................................................................................................................

    ................

    P0

    ...........................

    ............................

    ...........................

    ...........................

    ...........................

    ............................

    ...........................

    ...........................

    ...........................

    ............................

    ...........................

    ...........................

    ...........................

    ...........................

    ............................

    .................... ................

    P................................................................................................................................................................................... ........

    ........v

    rr0

    ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    0

    L

    5.4.2 Parametric equation of a line

    Writing

    r=xi +yj +zk

    the vector equation (3) becomes

    xi +yj +zk= (x0i +y0j +z0k) +t(ai +bj +ck).

    Equating the three components, we get

    x=x0+at, y=y0+bt, z =z0+ct.

    These are called theparametric equationsof the

    lineLdue to the parametertin the equations.

    18

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    19/42

    19 MA1505 Chapter 5. Three Dimensional Space

    5.4.3 Example

    The pointsAandB have position vectors

    3i + 2j 3k and i j + 4k

    respectively. Write down the parametric equations of

    the line passing throughAandB.

    Solution: The position vectors ofAandB are

    OA = 3i + 2j 3k, OB =i j + 4k

    respectively. So the line is parallel to the vector

    AB = (i j + 4k) (3i + 2j 3k) = 4i 3j + 7k.

    If we use the position vector ofA as r0, the vector

    equation is given by

    r= (3i + 2j 3k) +t(4i 3j + 7k). (4)19

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    20/42

    20 MA1505 Chapter 5. Three Dimensional Space

    Alternatively, if we use the position vector ofB as

    r0, the vector equation is given by

    r= (i j + 4k) +s(4i 3j + 7k). (5)

    To get the parametric equations of the line, let

    r=xi +yj +zk,

    and substitute in the LHS of equation (4) or (5).

    xi + yj + zk= (3 + 4t)i + (2 3t)j + (3 + 7t)k.

    Hence

    x= 3 + 4t, y= 2 3t, z= 3 + 7t.5.4.4 Example.

    Given the following lines whose vector equations are

    L1: r=i +t1(i + 2j + 3k),

    20

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    21/42

    21 MA1505 Chapter 5. Three Dimensional Space

    L2: r= (2i +j) +t2 3i + 92j + 92kandL3: r= (2i +j) +t3(3i +j).

    (a) Find the position vector of the point of intersec-

    tion ofL1andL2.

    (b) Show thatL1andL3are skew, i.e. do not inter-

    sect each other.

    Solution:

    (a) Eliminating r from the vector equations ofL1

    andL2, we get

    i +t1(i + 2j + 3k) = (2i +j) +t2

    3i +

    9

    2j +

    9

    2k

    .

    Hence it follows that

    t1= 1 + 3t2, 2t1= 1 +9

    2t2, 3t1=9

    2t2

    21

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    22/42

    22 MA1505 Chapter 5. Three Dimensional Space

    from which we obtain

    t1= 1, t2= 2/3.

    Putting t1 =1 into the vector equation ofL1, we

    obtain

    r=i + (1)(i + 2j + 3k) = 2j 3k.

    So the position vector of the point of intersectionP

    of the two lines:

    OP = 2j 3k.

    (b) Eliminating r from the vector equations ofL1

    andL3, we get

    i +t1(i + 2j + 3k) = (2i +j) +t3(3i +j).

    22

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    23/42

    23 MA1505 Chapter 5. Three Dimensional Space

    Hence it follows that

    t1= 1 + 3t3, 2t1= 1 +t3, 3t1= 0

    Solving the first two equations above gives t1 = 2/5

    but the last equation says t1 = 0, thus there is a

    contradiction. So there is no solution to the equations

    and we conclude that L1andL3do not intersect.

    5.4.5 Example

    Find the shortest distance from the point A with

    position vector 4i+ 5j to the line L whose vector

    equation is

    r= (3i +j) +t(i + 2j).

    Solution: Lpasses through the pointP(3, 1, 0)23

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    24/42

    24 MA1505 Chapter 5. Three Dimensional Space

    and is parallel to the vector a=i + 2j. Letbbe the

    vector

    P A=

    OA OP = (4i + 5j) (3i +j) = 7i + 4j.

    (4,5,0)

    P(3,1,0)

    L

    b = 7i + 4j

    Q a = i + 2j

    From Section ??, the length of the projection of b

    ontoais

    |P Q| = a b||a|| =(i + 2j) (7i + 4j)

    12 + 22= 15

    5.

    Now the shortest distance from A to L is given by

    |AQ|.

    Applying Pythagoras theorem on the right triangle

    24

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    25/42

    25 MA1505 Chapter 5. Three Dimensional Space

    AP Q,

    |AP|2 = |P Q|2 + |AQ|2,

    we get

    |AQ| = ||b||2 1552

    =

    72 + 42 15

    2

    5

    = 2

    5.

    5.5 Planes in 3D Space

    Suppose we wish to find the vector equation of a

    plane passing through a given point R with posi-

    tion vectorr0 relative to the originO and such that

    has n as a normal vector to it. Let P be a gen-

    eral point in the plane with position vector r. Then

    25

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    26/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    27/42

    27 MA1505 Chapter 5. Three Dimensional Space

    and

    n=ai +bj +ck,

    so that

    r r0= (x x0)i + (y y0)j + (z z0)kand

    (r r0) n=a(x x0) +b(y y0) +c(z z0).

    Therefore, the vector equation of the plane can be

    written in the form

    ax+by+cz=d, whered=ax0+by0+cz0.

    The Cartesian equation of a plane passing through a

    point (x0, y0, z0) and with normal vectorai + bj + ck

    is

    ax+by+cz=ax0+by0+cz0.

    27

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    28/42

    28 MA1505 Chapter 5. Three Dimensional Space

    5.5.2 Example

    Find the equation of the plane passing through the

    point (0, 2, 1) normal to the vector 3i + 2j k.

    Solution: The required equation is

    3x+ 2y z= 3(0) + 2(2) (1), or

    3x+ 2y z= 5.

    5.5.3 Example

    Find the vector equation of the plane passing through

    the pointsA(0, 0, 1),B(2, 0, 0) andC(0, 3, 0).

    Solution: The following vector is perpendicular to

    the plane:

    AB AC= i j k

    2 010 31 = 3i + 2j + 6k.

    28

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    29/42

    29 MA1505 Chapter 5. Three Dimensional Space

    The plane passes through (0, 0, 1). So an equation of

    the plane is

    3x+ 2y+ 6z= 3(0) + 2(0) + 6(1),

    or

    3x+ 2y+ 6z= 6.

    The plane also passes through (2, 0, 0), so we will get

    the same equation

    3x+ 2y+ 6z= 3(2) + 2(0) + 6(0) = 6.

    29

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    30/42

    30 MA1505 Chapter 5. Three Dimensional Space

    5.5.4 Distance from a point to a plane

    The shortest distance from a point S(x0, y0, z0) to

    a plane : ax+by+cz=d,is given by

    |ax0+by0+cz0

    d

    |a2 +b2 +c2 (6)

    Indeed for any point P(x1, y1, z1) on the plane ,

    the length of the projection ofP S onto a normal

    vectornof the plane gives the distance fromSto .

    SinceP(x1, y1, z1) lies on , soax1+ by1+ cz1=d.

    Now

    P S=

    OSOP = (x0x1)i+(y0y1)j+(z0z1)k.

    30

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    31/42

    31 MA1505 Chapter 5. Three Dimensional Space

    A normal vector to the plane is n=ai +bj +ck.

    Hence the distance from S(x0, y0, z0) to is

    Projn

    P S

    =|P S

    n

    |||n|| (Section ??)=

    |[(x0 x1)i + (y0 y1)j + (z0 z1)k] (ai +bj +ck)|a2 +b2 +c2

    =|a(x0 x1) +b(y0 y1) +c(z0 z1)|

    a2 +b2 +c2

    =|ax0+by0+cz0 d|a2 +b2 +c2

    sinceax1+by1+cz1=d.

    5.5.5 Example

    Find the distance of the point (2, 3, 4) to the plane

    x+ 2y+ 3z= 13.

    31

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    32/42

    32 MA1505 Chapter 5. Three Dimensional Space

    Solution: Using (6), we have (x0, y0, z0) =

    (2, 3, 4) anda= 1, b= 2, c= 3.

    So the distance is

    |1(2) + 2(

    3) + 3(4)

    13

    |12 + 22 + 32 = 5

    14

    5.6 Vector Functions of One Variable

    Let f(t),g(t) and h(t) be real-valued functions of a

    real variablet. A vector function

    r(t) =

    f(t)g(t)

    h(t)

    =f(t)i +g(t)j +h(t)k

    is a function such that the images (output) are vec-

    tors (instead of scalars). The three functions f(t),

    g(t) andh(t) are called the component functions

    ofr(t).

    32

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    33/42

    33 MA1505 Chapter 5. Three Dimensional Space

    5.6.1 Example

    Consider the vector function

    r(t) =ti + (t2 + 1)j + (2 7t)k.

    Then

    r(2) = 2i + 5j 12k.

    5.6.2 Derivatives of vector functions

    The derivativeof a vector function

    r(t) =f(t)i +g(t)j +h(t)k,

    wheref,g andhare differentiable functions, is

    (r)(t) =f(t)i +g(t)j +h(t)k. (7)

    33

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    34/42

    34 MA1505 Chapter 5. Three Dimensional Space

    5.6.3 Example

    Consider the vector function

    r(t) =ti + (t2 + 1)j + (2 7t)k.

    Then by (7), since

    d

    dt(t) = 1,

    d

    dt(t2 + 1) = 2t,

    d

    dt(2 7t) = 7,

    we have

    r(t) =i + (2t)j 7k.

    5.6.4 Definite integral of a vector function

    The definite integral of a continuous vector function

    r(t) =f(t)i +g(t)j +h(t)k

    on the interval [a, b] is

    ba

    r(t) dt= b

    af(t) dt i+

    ba

    g(t) dtj+ b

    ah(t) dt k.

    34

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    35/42

    35 MA1505 Chapter 5. Three Dimensional Space

    For example,

    2

    0

    (2ti + 3t2j)dt=

    t2t=2

    t=0i +

    t3t=2

    t=0j= 4i + 8j.

    5.7 Space curves

    A curve in xyz-space can be represented by some

    continuous function

    r(t) =f(t)i +g(t)j +h(t)k

    such that a point P lies on the curve if its position

    vectorOP is the image of the vector function, i.e.,

    OP =r(t0) for somet0 R.

    We call

    r(t) =f(t)i +g(t)j +h(t)k

    35

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    36/42

    36 MA1505 Chapter 5. Three Dimensional Space

    the vector equationof the curve and

    x=f(t), y=g(t), z=h(t)

    the parametric equationof the curve.

    5.7.1 Example

    The vector equation

    r(t) = (1 +t)i + (2 +t)j + (3 +t)k

    represents the straight line in the xyz-space that

    passes through the point (1, 2, 3) and is parallel to

    the vector i +j + k.

    5.7.2 Smooth curves

    A vector function r(t) represents a smooth curve

    on an intervalIifr(t) is continuous and r(t) is never

    36

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    37/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    38/42

    38 MA1505 Chapter 5. Three Dimensional Space

    5.7.4 Example

    The following vector function represents a piecewise

    smooth curve:

    r(t) =

    ti +t2

    j +t3

    k if 0 t 1(2t 1)i +t2j + (t2 +t 1)k if 1< t 2.

    5.7.5 Tangent vector and tangent line to a

    curve

    The tangent line to a curve r(t) at a point P

    whose position vector isr(t0) is defined to be the line

    throughPparallel to the tangent vector r(t0) (here

    it is assumed that r(t0)= 0). The unit tangent

    vector to the curve att=t0is

    r(t0)

    ||r(t

    0

    )||.

    38

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    39/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    40/42

    40 MA1505 Chapter 5. Three Dimensional Space

    Thus

    r(

    2) = (1)i + (0)j + (1)k= i + k

    is the tangent vector to the circular helix at (0, 1,2

    ),

    the point on the helix corresponding to t = 2 . The

    unit tangent vector to the curve at (0, 1,2

    ) is

    12

    (i + k).

    The tangent lineto the helix at (0, 1,2

    ) is parallel

    to

    r(

    2

    ) = (

    1)i + (0)j + (1)k.

    Therefore the parametric equations of the tangent

    line at the point (0, 1,2

    ), are

    x= t, y= 1, z=

    2+t.

    40

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    41/42

    41 MA1505 Chapter 5. Three Dimensional Space

    5.7.7 Arc length of a space curve

    Suppose that a curve has the vector equation

    r(t) =f(t)i +g(t)j +h(t)k,

    or alternatively, parametric equations

    x=f(t), y=g(t), z=h(t),

    wheref(t),g(t) andh(t) are continuous functions.

    If this curve is traversed exactly once as t

    increases fromatob, then its arc length is

    L= b

    a

    (f(t))2 + (g(t))2 + (h(t))2 dt

    =

    ba

    dx

    dt

    2+

    dy

    dt

    2+

    dz

    dt

    2dt.

    41

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 5

    42/42

    42 MA1505 Chapter 5. Three Dimensional Space

    A more compact formula of both arc length formulas

    is

    L=

    ba

    ||r(t)|| dt.

    5.7.8 Example

    Recall the circular helix of Example ??:

    r(t) = (cos t)i + (sin t)j +tk,

    r(t) = ( sin t)i + (cos t)j + k.

    Hence we can find the arc length fromt= 0 tot= 2

    as follows:

    ||r(t)|| =

    ( sin t)2 + (cos t)2 + 12 =

    2,

    L= 2

    0

    ||r(t)|| dt= 2

    0

    2dt= 2

    2.