nus - ma1505 (2012) - chapter 7

Upload: gilbert-sebastiano

Post on 02-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    1/42

    Chapter 7. Functions of Several Variables

    7.1 Introduction

    In elementary calculus, we encountered scalar func-

    tions of one variable, e.g. f = f(x). However,

    many physical quantities in engineering and science

    are described in terms of scalar functions of several

    variables. For example,

    (i) Mass density of a lamina can be described by

    (x, y), where (x, y) are the coordinates of a point

    on the lamina.

    (ii) Pressure in the atmosphere can be described by

    P(x,y,z) where (x,y,z) are the coordinates of a

    point in the atmosphere.

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    2/42

    2 MA1505 Chapter 7. Functions of Several Variables

    (iii) Temperature distribution of a heated metal ball

    can be described by T(x , y , z , t) where (x,y,z)

    are the coordinates of a point in the ball and tis

    the time.

    7.1.1 Functions of Two Variables

    A functionfoftwo variablesis a rule that assigns

    to each ordered pair of real numbers (x, y) a real

    number denoted by f(x, y).

    We usually write z = f(x, y) to indicate that z is

    a function ofx and y. Moreover, x, y are called the

    independent variables and z is called the dependent

    variable. The set of all ordered pairs (x, y) such that

    f(x, y) can be defined is called the domainoff.

    2

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    3/42

    3 MA1505 Chapter 7. Functions of Several Variables

    7.1.2 Example

    (a) f(x, y) =x2y3.

    This is a function of two variables which is defined

    for any xandy. So the domain offis the set of

    all (x, y) with x, y R.

    (b) f(x, y) =

    1 x2 y2.

    This function is only defined when 1x2y2 0,

    or equivalently x2 +y2 1.

    So the domain off is the set

    D= {(x, y) :x2 +y2 1}.

    Note that D represents all the points in the xy

    plane lying within (and on) the unit circle.

    3

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    4/42

    4 MA1505 Chapter 7. Functions of Several Variables

    (c) We can also define fin pieces as a compound

    function. For example

    f(x, y) =

    x y ifx > y,y x ifx < y,

    1 ifx=y .

    7.1.3 Functions of Three or More Variables

    We can define functions ofthree variablesf(x,y,z),

    fourvariables f(x , y , z , w), etc in a similar way.

    7.2 Geometric Representation

    7.2.1 Graphs of functions of two variables

    The graph of a function f(x) of one variable is a curve

    in the xy-plane, which can be regarded as the set of

    all points (x, y) in the xy-plane such that y=f(x).

    By analogy, we have the graphof a functionf(x, y)

    4

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    5/42

    5 MA1505 Chapter 7. Functions of Several Variables

    of two variables is the set of all points (x,y,z) in the

    three dimensional xyz-space such that z=f(x, y).

    This set represents a surface in the xyz-space.

    7.2.2 Example

    The graph off(x, y) = 5 3x 2yis the plane with

    equationz= 5 3x 2y (or 3x+ 2y+z= 5).

    7.2.3 Example

    The graph ofg(x, y) = 8x2 + 2y2 is the paraboloid

    (see diagram below) with equation z= 8x2 + 2y2.

    ...............................................................................................................................................................................

    ................ y

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..z

    ............

    .............

    ..............

    .............

    ..............

    .............

    ..............

    .............

    ..............

    ........................

    ................

    x

    ..............

    ........

    ....

    ...

    ..

    ..

    ..

    ..

    ..

    .

    ..

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    ..

    .

    ............................................................

    ...............................................................................................................................................................................................................

    .........................

    ...............................................................................................................................................................

    ...........

    ................

    .........................

    ...........

    ........................................................................................................................................................................

    .......

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    ..

    ....................................................................................

    ............

    ......................................................... .

    .

    .

    .

    .

    .

    ..

    ..

    ..

    ......

    ......

    ......

    ......

    ....................................

    ............

    ......

    ..

    ....

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    5

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    6/42

    6 MA1505 Chapter 7. Functions of Several Variables

    7.3 Partial Derivatives

    Letf=f(x, y) be a function of two variables. Either

    a change ofxor a change ofycan cause a change of

    f. In order to measure the rate of change off with

    respect to the variable x, we need to fix the variable

    y, and vice versa. Note that when we fix one of the

    variables off(x, y), then it becomes a function of one

    variable.

    7.3.1 Example

    Let f(x, y) = x2 2xy+ 3y3. If we fix y = 2, say,

    then

    f(x, 2) =x2 4x+ 24

    is a function in xalone.

    6

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    7/42

    7 MA1505 Chapter 7. Functions of Several Variables

    Similarly, if we fix x=

    1, then

    f(1, y) = 1 + 2y+ 3y3

    is a function in y alone.

    7.3.2 First order partial derivatives

    Let f(x, y) be a function of two variables. Then the

    (first order) partial derivative of f with re-

    spect to xat the point (a, b) is

    d

    dxf(x, b)

    x=a

    = limh0

    f(a+h, b) f(a, b)h

    We say that the partial derivative does not exist at

    (a, b) if the limit on the RHS above does not exist.

    When the above partial derivative exists, we denote

    it by f

    x(a,b)

    or fx(a, b).

    7

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    8/42

    8 MA1505 Chapter 7. Functions of Several Variables

    Similarly, the (first order) partial derivative of

    f with respect to y (instead of x) at the point

    (a, b) is:

    d

    dyf(a, y)

    y=b = limh0f(a, b+h)

    f(a, b)

    h

    and is denoted by

    f

    y (a,b)

    or fy(a, b).

    If we let z=f(x, y), we also write

    fx=z

    x, and fy=

    z

    y.

    In practice, when we compute fx(a, b) (resp. fy(a, b)),

    we simply treat they(resp. x) variable off(x, y) as

    constant and differentiate f with respect to x (re-

    spectivelyy) before substituting x=aand y=b.

    8

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    9/42

    9 MA1505 Chapter 7. Functions of Several Variables

    7.3.3 Example

    Let f(x, y) = (x3 +y)cos(y2).

    Find fx(2, 0), and fy(2, 0).

    Solution: Treat y as a constant and compute

    fx = d

    dxf(x, y) =

    d

    dx(x3 +y)cos(y2)

    = 3x2 cos(y2)

    Then fx(2, 0) = 3(2)2 cos(02) = 12.

    Treatxas a constant and compute

    fy = d

    dyf(x, y) =

    d

    dy(x3 +y)cos(y2)

    = cos(y2) (x3 +y)sin(y2) 2y.

    Thenfy(2, 0) = cos (02) (23 +0)sin(02) 2(0) = 1.

    9

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    10/42

    10 MA1505 Chapter 7. Functions of Several Variables

    7.3.4 Geometric interpretation

    Geometrically, fx(a, b) measures the rate of change

    offin the direction of vector iat the point (a, b). If

    we consider the liney =bon thexy-plane parallel to

    the x-axis and passing through the point (a, b), the

    image of this line underfis a curveC1on the surface

    z=f(x, y). Thenfx(a, b) is just the gradient of the

    tangent line to C1at (a, b).

    ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ................ y

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    ..z

    ...........

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    .

    ..................................

    ..............

    ......................

    ................

    x

    ..............................................................................................

    ......................

    .....................................

    .........................................................................................................................................................................................................................................................................................

    ....................

    ..................

    .................

    .................

    .................

    .................

    ....................

    .........................

    ...........................................................................................................................................................

    ...............

    ........................................................................................................

    ...................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    f(a, b)C1

    (a, b)

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..

    .

    .

    ..

    ..

    ..

    .

    ..

    ..

    the tangent line to thecurve C1 has gradient

    fx(a, b)

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    ..

    ..

    .

    ..

    ..

    ..

    .

    ..

    .

    ..

    ..

    .

    .................................

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    .

    ...

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    ..

    ..

    .

    .

    ..

    ..

    .....................................

    ...............................................................

    the line y= b

    z= f(x, y)

    10

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    11/42

    11 MA1505 Chapter 7. Functions of Several Variables

    ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ................ y

    ..............

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    z

    ...........

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    ..............

    .............................

    ................

    x

    ..............................................................................................

    ......................

    ......................................

    ........................................................................................................................................................................................................................................................................................

    ....................

    ..................

    .................

    .................

    .................

    .................

    ....................

    .........................

    ...................................................................................................................................................................

    ...............................................................................................................

    ...................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..........

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    f(a, b)C2

    (a, b)

    ..

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .........................

    ..

    ..............

    the tangent line to thecurve C2 has gradientfy(a, b)

    ...................................................................................................

    ...........................................................................................

    ..............................................................................................

    Similarly,fy(a, b) is just the gradient of the tangent

    line at (a, b) of the curveC2traced out as the image

    of the line x=aunder f.

    7.3.5 Higher order partial derivatives

    We have seen that the partial derivativesfxandfyof

    a function of two variablesfare also functions of two

    variables. Hence, we can study the partial derivatives

    offxand fy.

    11

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    12/42

    12 MA1505 Chapter 7. Functions of Several Variables

    Thesecond order partial derivativesoffare:

    fxx= (fx)x=2f

    x2 fxy= (fx)y=

    2f

    yx

    fyx = (fy)x= 2f

    xy fyy = (fy)y =

    2f

    y2.

    Ifz=f(x, y), we also have the following notation:

    fxx=2z

    x2 fxy=

    2z

    yx fyx =

    2z

    xy fyy =

    2z

    y2.

    7.3.6 Example

    Find the second partial derivatives of

    f(x, y) = 4x3 +x2y3 6y2.

    Solution: We have fx= 12x2

    + 2xy3

    , so

    fxx= 24x+ 2y3, fxy = 6xy

    2.

    We have fy = 3x2y2 12y, so

    fyx = 6xy2, fyy = 6x

    2y 12.12

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    13/42

    13 MA1505 Chapter 7. Functions of Several Variables

    7.3.7 Mixed Derivatives

    For most functions in practice, we have

    fxy(a, b) =fyx(a, b). (1)

    7.3.8 Example

    Let f(x, y) =xy + ey

    y2 + 1. Find fyx.

    Solution: The notationfyx means differentiating

    first with respect to y and then with respect to x.

    This is the same as fxy, i.e. we can postpone the

    differentiation with respect toyand differentiate first

    with respect to x:

    fx=y = fxy= (fx)y = 1.

    This is much easier than to first differentiate with

    respect to y!

    13

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    14/42

    14 MA1505 Chapter 7. Functions of Several Variables

    7.3.9 Functions of Three or More Variables

    For functions of three or more variables, we have sim-

    ilar definitions and notations for partial derivatives.

    For example, for functions of three variables f(x,y,z),

    we fix two of the variables and differentiate with re-

    spect to the third one.

    fx, fy, fz, or fx

    , fy

    , fz

    .

    7.4 Chain Rule

    Suppose the length, widthwand heighthof a box

    change with time. At time t0, the dimensions of the

    box are = 2 m,w= 3 m,h = 4 m, andand ware

    increasing at a rate of 5 ms1 while h is decreasing

    14

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    15/42

    15 MA1505 Chapter 7. Functions of Several Variables

    at a rate of 6 ms1. What is the rate of change of

    the volume of the box at time t0?

    In the above problem, the volume Vof the box is a

    function of three variables in , w, h:

    V =V(,w,h)

    while these three variables are in turn functions of

    time t: = (t), w = w(t), h= h(t).Clearly, a

    change oftwill cause a change ofV.

    We say thatV is acompositefunction oft and write

    V(t) =V((t), w(t), h(t)).

    The rate of change ofV is given bydV

    dt.

    Can we expressdV

    dt in terms of

    d

    dt,

    dw

    dt, and

    dh

    dt?

    The answer is given by Chain rule.

    15

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    16/42

    16 MA1505 Chapter 7. Functions of Several Variables

    7.4.1 Chain rule for one independent vari-

    able on f(x, y)

    Supposez=f(x, y) is a function of two variables x

    and y, and x= x(t), y = y(t) are both functions of

    t. Then z is a function of t: z(t) = f(x(t), y(t))

    and

    dz

    dt =

    f

    x

    dx

    dt+

    f

    y

    dy

    dt.

    7.4.2 Example

    Let z = 3xy2 +x4y, where x = sin2t, y = cos t.

    Finddz

    dt .

    Solution:

    dz

    dt =

    z

    x

    dx

    dt+

    z

    y

    dy

    dt

    = (3y2 + 4x3y)(2cos2t) + (6xy+x4)( sin t).16

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    17/42

    17 MA1505 Chapter 7. Functions of Several Variables

    7.4.3 Chain rule for two independent vari-

    ables on f(x, y)

    Supposez=f(x, y) is a function of two variables x

    and y, and x = x(s, t), y = y(s, t) are both func-

    tions of two variables s and t. Then z is a function

    ofsand t: z(s, t) =f(x(s, t), y(s, t)) and

    z

    s

    =f

    x

    x

    s

    +f

    y

    y

    s

    and z

    t

    =f

    x

    x

    t

    +f

    y

    y

    t

    7.4.4 Example

    Let z=e2x cos3y, wherex=st2, y=s2t.

    zs = zx xs +zy ys

    = (2e2x cos3y)t2 + (3e2x sin3y)(2st).z

    t =

    z

    x

    x

    t+

    z

    y

    y

    t

    = (2e2x cos3y)(2st) + (3e2x sin3y)(s2).17

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    18/42

    18 MA1505 Chapter 7. Functions of Several Variables

    7.4.5 Chain rule for one independent vari-

    able on f(x,y,z)

    Chain rules can be extended in a similar way for func-

    tions of three or more variables.

    For example, supposew=f(x,y,z) is a function of

    three variables x, y and z, and x = x(t), y = y(t),

    z= z(t) are functions oft. Then w is a function of

    t: w(t) =f(x(t), y(t), z(t)) and we have

    dw

    dt =

    f

    x

    dx

    dt+

    f

    y

    dy

    dt+

    f

    z

    dz

    dt.

    7.4.6 Example

    Back to the problem at the beginning of this section.

    The volume

    V(,w,h) = w h.18

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    19/42

    19 MA1505 Chapter 7. Functions of Several Variables

    Hence

    V

    =wh,

    V

    w=h,

    V

    h =w.

    By chain rule,

    dVdt

    = V

    ddt

    +Vw

    dwdt

    +Vh

    dhdt

    = whd

    dt+h

    dw

    dt +w

    dh

    dt

    We are given, at time t0,

    = 2 m, w= 3 m, h= 4 m,

    whiled

    dt= 5 ms1,

    dw

    dt= 5 ms1 and

    dh

    dt = 6 ms1.

    Hence

    dV

    dt = (3)(4)(5)+(2)(4)(5)+(2)(3)(6) = 64 m3s1.

    19

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    20/42

    20 MA1505 Chapter 7. Functions of Several Variables

    7.4.7 Chain rule for two independent vari-

    ables on f(x,y,z)

    Now suppose w = f(x,y,z) is a function of three

    variables x, y and z, and x = x(s, t), y = y(s, t),

    z = z(s, t) are functions of two variables s and t.

    Then wis a function ofsand t:

    w(s, t) =f(x(s, t), y(s, t), z(s, t)) and we have

    w

    s =

    f

    x

    x

    s+

    f

    y

    y

    s+

    f

    z

    z

    s

    w

    t =

    f

    x

    x

    t+

    f

    y

    y

    t+

    f

    z

    z

    t

    7.5 Directional Derivatives

    7.5.1 Extension of Partial Derivatives

    We have seen earlier that, given a function f(x, y),

    the partial derivatives give the rates of change off

    20

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    21/42

    21 MA1505 Chapter 7. Functions of Several Variables

    with respect to x and y, i.e. along the directions of

    x- and y-axes.

    A natural question to ask is, what is the rate of

    change offalong an arbitrary direction? This gives

    rise to the notion of directional derivatives.

    Let fbe a function ofxand y.

    The directional derivative off at (a, b) in the

    direction of a unit vector u=u1 i +u2 jis

    Duf(a, b) = limh0

    f(a+hu1, b+hu2) f(a, b)h

    if this limit exists.

    Note that Dif(a, b) =fx(a, b) and Djf(a, b) =fy(a, b),

    whereiandjare the standard unit vectors of thexy-

    plane.

    21

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    22/42

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    23/42

    23 MA1505 Chapter 7. Functions of Several Variables

    7.5.3 A formula

    Since Duf(a, b) is also the rate of change off(x, y)

    at (a, b) in the direction ofu, and the coordinates x

    and y refer to points on the line L:

    x=a+u1t, y=b+u2t, z= 0,

    it follows that the chain rule can be used, as follows:

    df

    dt =

    f

    x dx

    dt +

    f

    y dy

    dt .

    Thus,

    Duf(a, b) = fx

    (a, b)

    u1

    + fy(a, b)

    u2.

    7.5.4 Example

    Letf(x, y) =x23xy2+2y3. FindDuf(2, 1), where

    u= 32

    i +12j.

    23

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    24/42

    24 MA1505 Chapter 7. Functions of Several Variables

    Solution: First,fx= 2x

    3y2,fy=

    6xy + 6y2.

    Thusfx(2, 1) = 1 and fy(2, 1) = 6.

    Therefore,

    Duf(2, 1) = (1)(

    3

    2 ) + (6)(1

    2) =

    3

    6

    2 .

    24

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    25/42

    25 MA1505 Chapter 7. Functions of Several Variables

    Gradient Vector

    In view of the expression of the directional derivative

    in terms of partial derivatives, it is convenient and

    useful to introduce the notion of a gradient vector.

    The gradientoff(x, y) is the vector (function)

    f = fx i + fyj.

    For a given unit vector u = u1i +u2j, we obtain

    f(a, b) u

    = (fx(a, b) i + fy(a, b)j) (u1i +u2j)

    = fx(a, b) u1 + fy(a, b) u2

    = Duf(a, b).

    Thus,

    Duf(a, b) = f(a, b) u.25

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    26/42

    26 MA1505 Chapter 7. Functions of Several Variables

    Noting that

    f(a, b) and uare vectors, let be the

    angle (0 ) between them. Then

    Duf(a, b) = f(a, b) u = ||f(a, b)|| cos .

    Since 1 cos 1, we obtain some useful prop-

    erties of the above formula when f(a, b) =0:

    Facts.

    (1) The function f increases most rapidly in the di-

    rection f(a, b).

    (2) The function fdecreases most rapidly in the di-

    rection f(a, b).

    26

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    27/42

    27 MA1505 Chapter 7. Functions of Several Variables

    Example. Let f(x, y) = 9 x2 y2. Find thelargest possible value ofDuf(2, 1).

    Solution. The surface z = f(x, y) is the upper

    hemisphere of the sphere of radius 3 and centred at

    (0, 0, 0). First compute

    fx = x

    9 x2

    y2

    , fy = y

    9 x2

    y2

    .

    The largest possible value of Duf(2, 1) is obtained

    when uis in the direction of

    f(2, 1) = fx(2, 1)i + fy(2, 1)j

    = i 12j.

    Now,

    ||f(2, 1)|| = (1)2 + 122

    = 52 .27

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    28/42

    28 MA1505 Chapter 7. Functions of Several Variables

    Let

    u = f(2, 1)||f(2, 1)|| =

    25

    i 15j.

    Thus, the largest possible value ofDuf(2, 1) is

    f(2, 1) u

    = (1) 2

    5

    +

    1

    2

    1

    5

    =

    5

    2

    .

    7.5.5 Physical meaning

    As we mentioned at the beginning of this section, the

    directional derivativeDuf(a, b) measures the change

    in the valuedfof a functionfwhen we move a small

    distance dt from the point (a, b) in the direction of

    28

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    29/42

    29 MA1505 Chapter 7. Functions of Several Variables

    the vector u:

    df=Duf(a, b) dt.

    7.5.6 Example

    Let f(x, y) =x2y3 + 1.

    Estimate how much the value of f will change if a

    point Qmoves 0.1 unit from (2, 1) towards (3, 0).

    Solution: Q moves in the direction (3 i+ 0 j)

    (2 i + j) =i j.

    The unit vectorualong this direction is 1

    2i 1

    2j.

    Nowfx= 2xy3, fy = 3x

    2y2.

    Thusfx(2, 1) = 4 and fy(2, 1) = 12.

    29

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    30/42

    30 MA1505 Chapter 7. Functions of Several Variables

    Therefore,

    Duf(2, 1) = (4)( 1

    2) + (12)( 1

    2) = 8

    2.

    So

    df=Duf(2, 1) dt= ( 82

    )(0.1) 0.57.

    So the value of f decreases by approximately 0.57

    unit.

    7.5.7 Functions of Three Variables

    We can also define directional derivatives for func-

    tions of three variables.

    Let fbe a function ofx, y and z. The directional

    derivative off at (a,b,c) in the direction of a unit

    30

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    31/42

    31 MA1505 Chapter 7. Functions of Several Variables

    vector u=u1 i +u2 j +u3 kin the xyzspace is

    Duf(a,b,c)

    = limh0

    f(a+hu1, b+hu2, c+hu3) f(a,b,c)h

    if this limit exists.

    Similarly, we have the formula

    Duf(a,b,c) =fx(a,b,c)u1+fy(a,b,c)u2+fz(a,b,c)u3

    7.6 Maximum and Minimum Values

    7.6.1 Local maximum and minimum

    (1)f(x, y) has a local maximumat (a, b) if

    f(x, y) f(a, b) for all points (x, y) near (a, b).

    The numberf(a, b) is called alocal maximum

    value.

    31

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    32/42

    32 MA1505 Chapter 7. Functions of Several Variables

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ...................

    ...................................................................................................................................................................................

    ............

    .................................................................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ................

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ................

    .

    .

    .

    .

    ..

    ..

    ..

    .........................................

    .............

    ..................

    .................................................................................................................................................

    ..

    ..

    .

    .

    .

    ..

    .

    ..

    ....................................................................................................................................................

    ..............................................................................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ......................................................................................

    ...........

    ...............

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ............

    .

    .

    .

    .

    ..

    ..

    .

    ..

    .

    .

    ..

    ..

    .

    ..

    ....

    ............

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ............

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    .

    ..

    ..

    .

    ..

    ..

    ..

    ......

    .

    ..

    ...

    ......

    ............

    ..........................................

    ....

    (2)f(x, y) has a local minimumat (a, b) if

    f(x, y) f(a, b) for all points (x, y) near (a, b).

    The numberf(a, b) is called alocal minimum

    value.

    .

    ..............................................................................................................................................................................

    ..................................................................................................................................................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    ..

    .

    .

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..................................

    .

    .

    ..

    .

    ..

    ..

    ......................................

    ...........

    ...............

    ............................

    .....................................................................................................................................

    ...........................................................................................................................................................

    ...........................................................................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ................

    .

    ..

    ....................................................................................

    ............

    ...............

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ........

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    ..

    ..

    ......

    ......

    .

    ..

    ...

    ......

    ............

    ..........................................

    ....

    7.6.2 Critical Points

    A functionfmay have a local maximum or minimum

    at (a, b) if

    (i)fx(a, b) = 0 and fy(a, b) = 0; or

    (ii) fx(a, b) or fy(a, b) does not exist.

    32

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    33/42

    33 MA1505 Chapter 7. Functions of Several Variables

    A point offthat satisfies (i) or (ii) above is called a

    critical point.

    7.6.3 Example

    Letf(x, y) =x2 + y2 + 4x 8y+ 24. Find the localmaxima and local minima off, if any.

    Solution: The partial derivatives exist for any

    point.

    So we solve fx(x, y) = 0 and fy(x, y) = 0.

    fx= 2x+ 4 = 0 x= 2

    fy= 2y 8 = 0 y= 4.

    This gives a solution (x, y) = (2, 4).

    Is this point a local maximum, a local minimum, or

    none?

    33

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    34/42

    34 MA1505 Chapter 7. Functions of Several Variables

    By completing squares, we have

    f(x, y) = 4 + (x+ 2)2 + (y 4)2 4.

    Therefore, we conclude that (2, 4) is a local mini-

    mum offwith minimum value 4.

    7.6.4 Example

    The following diagram shows the graph of a function

    f(x, y) which has a local maximum at a point (a, b)

    but fx(a, b) and fy(a, b) does not exist.

    .

    .

    .

    .

    ..

    .

    ..

    ..

    ............................................................

    ....................................................................................................

    ...........

    .....................................................................................................................................

    .

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    ..

    ..

    ...............................................

    .........

    ............................................................................................................................................................................................................................................................................................

    ....................................................................................................................................................

    .

    .

    .

    .

    .

    .

    ..

    ..

    ..

    ......

    ......

    ......

    ......

    ......

    ............

    ......................................................

    ............

    ............

    ......

    ......

    .

    .

    7.6.5 Saddle points

    Let (a, b) be a point of f with fx(a, b) = 0 and

    fy(a, b) = 0. We say (a, b) is a saddle point of

    34

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    35/42

    35 MA1505 Chapter 7. Functions of Several Variables

    f if there are some directions along which f has a

    local maximum at (a, b) and some directions along

    which fhas a local minimum at (a, b).

    7.6.6 Example

    Find the local maximum or local minimum off(x, y) =

    2y2 3x2, if any.

    Solution: As before, we solve

    fx= 6x= 0 and fy = 4y= 0.

    The only solution is (x, y) = (0, 0). So this is the

    only critical point off.

    However, this point (0, 0) is neither a local maximum

    nor a local minimum off.

    To see this, consider the function falong the x-axis

    35

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    36/42

    36 MA1505 Chapter 7. Functions of Several Variables

    which has equationy = 0. Substituting this equation

    intof(x, y), we have

    f(x, 0) = 3x2 0.

    So along x-axis, fhas a local maximum at (0, 0).

    On the other hand, if we consider falong they-axis

    which has equation x= 0, we have

    f(0, y) = 2y2 >0.

    So along y-axis, fhas a local minimum at (0, 0).

    Thereforefhas a saddle point at (0, 0).

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    ..

    .

    z

    .........................................................................................................................................................................................................................................

    ................ y................................

    ..............

    ...............

    ..............

    ..............

    ..............

    ...............

    ..............

    ..............

    ........................

    .

    ...............

    x

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    ..

    .

    ..

    .

    ..

    ..

    ..

    ................................................................................................

    .......................................................................................................................................

    ............................................................................................................................................... ................................................................................................................................................................

    ....................................................................................................................

    ....................

    .....................................................................................................................................................................................................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    ..

    .

    ..

    ..

    ..

    ..

    .

    .

    .

    .

    .

    .

    ............

    ............

    ........................................................................

    .................

    .............

    ............

    ............

    ............

    ...............

    ..

    ..

    .

    .

    ..

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    ..

    .

    ..

    ..

    .

    ..

    .

    ..

    .

    ..............................

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    z= 2y2 3x2

    36

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    37/42

    37 MA1505 Chapter 7. Functions of Several Variables

    7.6.7 Second Derivative Test

    When the partial derivatives exist, we can determine

    the type of critical point using the following system-

    atic approach:

    Let fx(a, b) = 0 and fy(a, b) = 0.

    D=fxx(a, b)fyy(a, b) fxy(a, b)2.

    (a) IfD > 0 and fxx(a, b) > 0, then fhas a local

    minimum at (a, b).

    (b) IfD > 0 and fxx(a, b) < 0, then fhas a local

    maximum at (a, b).

    (c) IfD

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    38/42

    38 MA1505 Chapter 7. Functions of Several Variables

    7.6.8 Example

    Find the local maximum, local minimum and saddle

    points (if any) off(x, y) =x3 + y3 + 3x2 3y2 8.

    Solution: First, we solve fx= 3x2 + 6x= 0 and

    fy = 3y2 6y= 0.

    On solving, we obtain x= 0 or 2 and y= 0 or 2.

    Therefore, the critical points are (0, 0), (0, 2), (2, 0)and (2, 2).

    To apply the second derivative test, we compute the

    second order partial derivatives.

    fxx= 6x+ 6, fyy = 6y 6, fxy = 0.

    ThusD(x, y) =fxxfyyf2xy = 36xy36x+36y36.

    At (0, 0), D(0, 0) = 36

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    39/42

    39 MA1505 Chapter 7. Functions of Several Variables

    Hence,fhas a saddle point at (0, 0).

    At (0, 2), D(0, 2) = 36 > 0 and fxx(0, 2) = 6 > 0.

    Hencefhas a local minimum at (0, 2).

    At (

    2, 0), D(

    2, 0) = 36 > 0 and fxx(

    2, 0) =

    6

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    40/42

    40 MA1505 Chapter 7. Functions of Several Variables

    7.6.9 Lagrange Multipliers

    Many optimization models are subject to certain con-

    straints. For example, production levels depend on

    labour input and capital expenditure. With a given

    budget (constraint), a manufacturer aims to maxi-

    mize production. The method of Lagrange mul-

    tipliersis illustrated below.

    7.6.10 Example

    Find relative extrema of

    z = f(x, y) = 1 2x 16y+ 50

    subject to the constraint x2 +y2 = 25.

    40

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    41/42

    41 MA1505 Chapter 7. Functions of Several Variables

    Solution. The constraint is written as

    g(x, y) = x2 +y2 25.

    The following function is constructed:

    F(x,y,) = f(x, y) g(x, y)

    = 12x 16y+ 50 (x2 +y2 25).

    Then set Fx= 0, Fy = 0, F= 0 to get respectively

    12 2x = 0

    16 2y = 0

    x2 y2 + 25 = 0

    Writing the first two equations as x = 6

    , y =

    8

    41

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 7

    42/42

    42 MA1505 Chapter 7. Functions of Several Variables

    and substituting into the third equation, we obtain

    362 64

    2 + 2 5 = 0

    2 = 100

    25 = 4

    = 2

    If= 2, then x=6

    2= 3, y=

    82

    = 4 and

    z = f(3,4) = 12(3) 16(4) + 50 = 150.

    If= 2, then x= 62= 3, y=82= 4 and

    z = f(3, 4) = 12(3) 16(4) + 50 = 50.

    Thus, subject to the constraint x2 +y2 = 25, the

    function z = f(x, y) = 1 2x 16y+ 50 attains:

    (1) a local maximum ofz=f(3,4) = 150; and