numerical methods rafał zdunek underdetermined problems ... · bibliography [1] a. bjorck,...

24
Numerical Numerical Methods Methods Rafał Zdunek Rafał Zdunek Underdetermined Underdetermined problems problems (2h.) (2h.) (FOCUSS, M (FOCUSS, M - - FOCUSS, FOCUSS, Applications Applications ) )

Upload: others

Post on 19-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

NumericalNumerical

MethodsMethods

Rafał ZdunekRafał Zdunek

UnderdeterminedUnderdetermined

problemsproblems

(2h.)(2h.)

(FOCUSS, M(FOCUSS, M--FOCUSS, FOCUSS, ApplicationsApplications))

Page 2: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Introduction

• Solutions to underdetermined linear systems,

• Morphological constraints,• FOCUSS algorithm,• M-FOCUSS algorithm.

Page 3: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Bibliography[1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C. F. Van Loan, Matrix Computations, The John Hopkins

University Press,

(Third Edition), 1996, [3] I. F. Gorodnitsky

and B. D. Rao, “Sparse signal reconstructions from limited

data using

FOCUSS: A re-weighted minimum norm algorithm,”

IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997

,

[4] B. D. Rao

and K. Kreutz-Delgado, “Deriving algorithms for computing sparse solutions to linear inverse problems,”

in Proc. 31st Asilomar Conf. Signals Syst. Comput., CA,

Nov. 2–5, 1997, vol. 1, pp. 955–959

,[5] B. D. Rao, K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado, “Subset selection

in noise based on diversity measure minimization,”

IEEE Trans. Signal Process., vol. 51, no. 3, pp. 760–770, Mar. 2003

,

[6] S. F. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to linear inverse problems with multiple measurement vectors,”

IEEE Trans. Signal Process.,

vol. 53, no. 7, pp. 2477–2488, Jul. 2005

,

Page 4: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Solutions to linear systemsA system of linear equations can be expressed in the following matrix form:

bAx = , (1)

where [ ] NMija ×ℑ∈=A is a coefficient matrix, [ ] M

ib ℑ∈=b is a data vector, and

[ ] Njx ℑ∈=x is a solution to be estimated. Let [ ] )1( +×ℑ== NMbAB be the augmented

matrix to the system (1). The system of linear equations may behave in any one of three possible ways:

A The system has no solution if ( ) ( )BA rankrank < .

B The system has a single unique solution if ( ) ( ) Nrankrank == BA .

C The system has infinitely many solutions if ( ) ( ) Nrankrank <= BA .

Page 5: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Solutions to linear systems

The case C occurs for rank-deficient problems or under-determined

problems. In spite of infinitely many solutions, a good approximation to

a true solution can be obtained if some a priori knowledge about the

nature of the true solution is accessible. The additional constraints are

usually concerned with a degree of sparsity or smoothness of the true

solution.

Page 6: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

RREFBasic variables

Free variables

Page 7: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

ExampleLet: 1 2 3

1 2 3

1 2 3

32

3 7

x x x ax x x bx x x c

+ + =⎧⎪− − + =⎨⎪ + − =⎩

[ ]Gauss-Jordan

1 3 1 1 0 5 2 3| 1 2 1 0 1 2

3 7 1 0 0 0 2

a a bb b ac c a b

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥= − − → +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦

A b

(Basic variables) (Free variable)

The system is consistent (it has solutions) if 2 0c a b− + = ⇒ 2c a b= −

2 32 ,x a b x= + −Solution: 3 free variable,x = 1 32 3 5 .x a b x= − − +

Page 8: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

ExampleLet:

1 2 3 4

1 2 3 4

1 2 3 4

2 2 3 42 4 3 53 6 4 7

x x x xx x x xx x x x

+ + + =⎧⎪ + + + =⎨⎪ + + + =⎩

[ ]Gauss-Jordan

1 2 2 3 4 1 2 0 1 2| 2 4 1 3 5 0 0 1 1 1

3 6 1 4 7 0 0 0 0 0

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= →⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A bConsistent

Solution: 1 2 42 2 ,x x x= − + 2 free variable,x =

3 41 ,x x= − 4 free variable.x =

Page 9: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

ExampleThus:

1 2 4

2 22 4

3 4

4 4

2 2 2 2 10 1 0

1 1 0 10 0 1

x x xx x

x xx xx x

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Particular solution Homogenous solution ∈

N(A)General solution

general particular homogeneous= +x x x

The homogeneous solution is a solution to the system Ax = 0.

Problem: How to choose free variables? Remark: Replacing free variables with zero-values is not always a good solution!

Page 10: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

• Regularized least-squares problem:

• Lp diversity measure (Gorodnitsky, Rao, 1997):

Sparseness constraints

( ){ }2 ( )2

min pEγ− +x

Ax b x

( ) ( )∑=

=N

j

p

jp xpE

1

)( sgnx 1.p ≤

Page 11: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

FOCUSS algorithm( )2 ( )

2( ) pJ Eγ= − +x Ax b xLet

Stationary point:

( )2* * * *( ) 2 2 2 0T TJ λ −∇ = − + =

xx A Ax A b W x x

( ) { }1 /2

* diag ,p

jx−

=W x γλ2p

=

Hence: ( ) ( )( ) 12 2* * * .T T

Mλ−

= +x W x A AW x A I b

Iterative updates:( ) ( )( ) 12 2

1 .T Tk k k Mλ

+ = +x W x A AW x A I b

Page 12: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

FOCUSS algorithm

[ ]1,0∈p , 0>λ Randomly initialize )0(x , For …,2,1,0=k until convergence do

{ }1 /2( )diag pk

k jx−

=W ,

( ) 1( 1) 2 2k T Tk k Mλ

−+ = +x W A AW A I b ,

Page 13: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Wiener filtered FOCUSS algorithm

[ ]1,0∈p , 0>λ

Random ly initialize )0(x , For …,2,1,0=k until convergence do

{ }1 / 2( )diag pk

k jx−

=W ,

( ) 1( 1) 2 2k T Tk k Mλ

−+ = +x W A AW A I b ,

( ))1()1( ++ ← kk F xx

R. Zdunek, Z. He, A. Cichocki, Proc. IEEE ISBI, 2008

Page 14: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Wiener filtered FOCUSS algorithm

- local mean around j-th pixel

⎪⎭

⎪⎬

⎪⎩

⎪⎨

+++−++−

+−−−−=

1,,1,1,1

,1,,1

hjhjhjjj

hjhjhjN j

First and second-order interactions

∑∈

+

−=

jNn

knj x

L)1(

11μ

( )∑∈

+ −−

=jNn

jk

nj xL

22)1(2

11 μσ

- local variance

9=L

Markov Random Field (MRF)

Page 15: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Wiener filtered FOCUSS algorithm

• Update rule

• Mean noise variance

( )jkj

j

jj

kj xx μ

σνσ

μ −−

+← ++ )1(2

22)1(

∑=

=N

jjN 1

22 1 σν

Page 16: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Limited-view tomographic imaging

(2 2)

1 1 0 00 0

0 00 0 1 1

α αα α×

⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

A 52

α =

[ ]{ }(2 2)( ) 1,1, 1,1 ,TN span× = − −A( )(2 2) 3rank × =A( ) { }min!:;

2=−ℜ∈= bAxxbA NLSS

(Rank-deficient)

( ) )(; AxbA NLSS LS += where ( ) exactRrLS TP xxx A==

Page 17: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Tomographic imaging example

Phantom image Minimal l2 norm least squares solution:(LS algorithms: ART, SIRT)

Page 18: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Tomographic imaging (noise-free data)

FOCUSS algorithm (p = 1, k = 15, )810−=λ

Wiener filtered FOCUSS algorithm (p = 1, k = 15, )810−=λ

Page 19: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Tomographic imaging (noisy data SNR = 30 dB)

FOCUSS algorithm(p = 1, k = 15, )

Wiener filtered FOCUSS algorithm(p = 1, k = 15, )40=λ 40=λ

Page 20: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Tomographic imaging (Normalized RMSE, noise-free)

Page 21: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

Tomographic imaging (Normalized RMSE, p = 1, noisy data)

Page 22: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

M-FOCUSSLet + =AX N B where ,M N×∈ℜA [ ]1, , ,N T

T×= ∈ℜX x x… ,M T×∈ℜB

( )rank ,M=A,M N≤ (under-determined) ,T N> [ ]1, , .M TT

×= ∈ℜN n n…

(additive noise)If M < N, the nullspace of A is non-trivial, thus additional constraints are necessary to select the right solution. The M-FOCUSS assumes sparse solutions.

Theorem: The sparse solution to the consistent system AX = B is unique, if with any M columns of A are linearly independent (unique representation property (URP) condition), and for each t: xt has at most

nonzero entries, where is a ceil function.

( )rank ,T=B ,T M≤

( ) / 2 1M T⎡ ⎤+ −⎢ ⎥⋅⎡ ⎤⎢ ⎥

(Cotter, Rao, Engan, Kreutz-Delgado, 2005)

Page 23: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

M-FOCUSSThe M-FOCUSS algorithm iteratively solves the following equality constrained problem:

( )( )min ,pJX

X s.t. ,=AX B

where ( )/2

( ) 2

21 1 1

.pN N Tpp T

j jtj j t

J x= = =

⎛ ⎞= = ⎜ ⎟

⎝ ⎠∑ ∑ ∑X x - lp diversity measure for sparsity

0 ≤ p ≤ 2 – degree of sparsity Tjx - the j-th row of X

(l0 norm solution – NP-hard problem)

(LS solution with minimal l2 -norm)

Page 24: Numerical Methods Rafał Zdunek Underdetermined problems ... · Bibliography [1] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996, [2] G. Golub, C

M-FOCUSSFor inconsistent data, i.e. B ∉

R(A), Cotter at al. developped the regularized

M-FOCUSS algorithm that solves the Tikhonov regularized least-squares problem in a single iterative step:

( )( ) ( 1)arg min | ,k k−= ΨX

X X X where ( ) 22( 1) 1| ,kF F

λ− −Ψ = − +X X B AX W X

( )1 /2diag ,pjw −=W with ( ) ( )

1/22 ( 1)( 1)

21.

T kk Tj jt j

tw x

−−

=

⎛ ⎞= =⎜ ⎟⎝ ⎠∑ x

Regularized M-FOCUSS:For k = 1, 2, ...

( 1) ( ) ,k k+ =A AW

( ) ( )( ) 1( 1) ( ) ( ) ( ) ( ) .

T Tk k k k kMλ

−+ = +X W A A A I B

λ

> 0 – regularization parameter