numerical methods for derivative pricing in non-bs markets · introduction lévy models stochastic...

35
Numerical Methods for Derivative Pricing in Non-BS Markets N. Hilber, N. Reich, C. Schwab, C. Winter ETH Zurich, Seminar for Applied Mathematics 2nd General AMaMeF Conference, Bedlewo, 2007

Upload: others

Post on 31-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Numerical Methods for Derivative Pricing inNon-BS Markets

N. Hilber, N. Reich, C. Schwab, C. WinterETH Zurich, Seminar for Applied Mathematics

2nd General AMaMeF Conference, Bedlewo, 2007

Page 2: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Outline

Basic Lévy models

Stochastic volatility models

Lévy copula models

Wrap-up

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 2

Page 3: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Goal: Unified methodology for pricing &hedging for all market models and contractsX = log S ∈ R

d , strong Markov process .

Find arbitrage-free price u of contract on X ,

u(t , x) = E[g(XT ) | Xt = x ].

Solve generalized BS-equation,

ut + Au = 0, u|t=T = g,

where A is the infinitesimal generator of X .

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 3

Page 4: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Numerical pricing: MCM, FFT, FDM, FEMFEM ⇒ Find a solution u(t , ·) ∈ V such that

〈∂u∂t, v〉 + 〈Au, v〉︸ ︷︷ ︸

E(u,v)

= 0 for all v ∈ V ⊂ Domain(E).

Finite dimensional subspace1V L ⊂ V ⇒ Matrix Problem:

MU ′L(t) + AUL(t) = 0, t ∈ (0,T ) ,

UL(0) = U0 .

This setting applies to any underlyingmodelled by strong Markov process.

1L indicates number of refinement steps or Level.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 4

Page 5: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

American style contractsOptimal stopping, free boundary problem

u(t , x) = supt≤τ≤T

E[g(Xτ ) | Xt = x ].

Solve generalized BS-inequality (in viscosity sense),

ut + Au ≤ 0,

u(t , ·) ≥ g,

(u − g)(ut + Au) = 0.

Variational inequality:

Find u(t , ·) ∈ Kg := {v ∈ V | v ≥ g a.e.} such that

〈∂u∂t, v − u〉 + 〈Au, v − u〉 ≤ 0 for all v ∈ Kg.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 5

Page 6: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Quadratic Hedging and GreeksCalculate derivative price u.

Solve same PIDE for hedging 2 error h or sensitivitys = ∂ηu to a model parameter η, e.g. vega (∂σu)

∂th(t , x) −Ah(t , x) =

(Γ(u,u) − Γ(u, id)2

Γ(id, id)

)(t , x).

∂ts(t , x) −As(t , x) = −∂ηA[u](t , x) .

Remaining Greeks, e.g. delta, theta, gamma,... can beobtained directly via postprocessing

2cf. Föllmer, Sondermann, 1986; Kallsen, Vesenmayer, 2007;Γ = carré-du-champ operator.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 6

Page 7: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Lévy processes characterized by (γ,Q, ν)

X ∈ Rd Lévy. Characteristic function:

ΦX (ξ) = exp(tψX (ξ)) = E[ei〈ξ,Xt〉], ξ ∈ Rd , t > 0.

Lévy-Khinchin representation:

ψX (ξ) = i〈γ, ξ〉−12〈ξ,Qξ〉+

Rd

(ei〈ξ,x〉 − 1 − i〈ξ, x〉1|x |≤1

)ν(dx) .

γ ∈ Rd Drift vector.

Q ∈ Rd×d Volatility correlation matrix.

ν(dz) Lévy measure,∫

Rd (1 ∧ |z|2)ν(dz) <∞.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 7

Page 8: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

FEM pricing under Lévy is based on PIDEsExample: d=1, spot price St = S0eXt . Solve

ut + Au = 0, u(0) = g(x) ,

with generator A = Aγ + AQ + Aν ,

Aγ(u)(x) = γ∂u∂x

(x), AQ(x) = −Q2∂2u∂x2 (x),

Aν(u)(x) = −∫

R

(u(x + z) − u(x) − z u′(x)1|z|≤1

)ν(dz).

Dirichlet form E(u, v) = Eγ,Q(u, v) + E symν (u, v) + E asym

ν (u, v)

Eγ,Q(u, v) = 〈γ∇u, v〉 +12〈Q∇u,∇v〉 ,

E symν (u, v) =

Rd

Rd

(u(x + z) − u(x)

)(v(x + z) − v(x)

)ν(dz) dx .

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 8

Page 9: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Implementation in three steps1. Localization: Truncation to bounded log price domain

2. Space discretization: Matrix problem

MU ′L(t) + A(t)UL(t) = 0, t ∈ (0,T ) ,

UL(0) = U0 .

3. Time discretization: Backward Euler 3

(M + ∆tA(tm)) U(tm) = MU(tm−1) , 1 ≤ m ≤ T/∆t ,

U(0) = U0 .

Not restricted to Lévy processes; e.g. additive processes

3Other schemes: Crank-Nicolson, hp discontinuous Galerkin.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 9

Page 10: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

American contracts ⇒ Sequence of matrix LCPsFind U(tm) ∈ K such that for all v ∈ K

(v − U(tm)

)>(M + ∆tA)U(tm) ≥

(v − U(tm)

)>MU(tm−1),

U(0) = U0,

with K := {v ∈ Rdim V L | v ≥ g}.

Equivalent

U(tm) ≥ g,

(M + ∆tA)U(tm) ≥ MU(tm−1),

(U(tm) − g)>((M + ∆tA)U(tm) − MU(tm−1)

)= 0.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 10

Page 11: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Why wavelet basis for space discretization?

Preconditioning

Multiscale compression of jump measure of X

Break curse of dimension

Wavelets allow for efficient treatmentof (moderate) multidimensional problems.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 11

Page 12: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Wavelet basis reduces Lévy to BS complexityDensity pattern for FEM matrix A for L = 8 refinement steps(512 mesh points).

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Left: Matrix for Black-Scholes processRight: Matrix for tempered stable process

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 12

Page 13: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Curse of dimension ...

PSfrag replacements

log S

log S1

log S2

h

h

d = 1 d = 2

-1-0.5

00.5

11.5

20

0.51

1.52

PSfrag replacements

h

hh

log S1log S2

log S3d = 3

-101

-101

-101

N = O(h−1) N = O(h−2) N = O(h−3)

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 13

Page 14: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

... overcome by sparse gridd = 2 d = 3

N = O(h−1| log h|) N = O(h−1| log h|2)

Sparse grid preserves stability and convergence rates.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 14

Page 15: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Results: European and American option, CGMY 4

Let C = 1, G = 12, M = 14, Y = 1 and refinement level L = 8.

0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stock Price

Opt

ion

Pric

e

AmericanEuropeanPayoff

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to maturity

Exe

rcis

e bo

unda

ry

r=1e−10r=1e−08r=1e−06r=0.01

Left: European and American option price for r = 0.2.Right: Free boundary for r → 0.

4Matache, Nitsche, Schwab, 2005

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 15

Page 16: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

American swing option in BS market 5

u(t , s) := supτ∈Tt

E

[ p∑

i=1

e−r(τi−t)g(τi ,Sτi ) | St = s

]

with refraction period δ, p exercise rights and stopping times

Tt := {τ = (τ1, . . . , τp) | τi+1 − τi ≥ δ}.

0 20 40 60 80 100 120 140 160 1800

50

100

150

200

250

300

350

400

450

500

spot price

swin

g op

tion

pric

e

p = 1p = 2p = 3p = 4p = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 165

70

75

80

85

90

95

100

time to maturity

spot

pric

e

p = 1p = 2p = 3p = 4p = 5

Left: Swing option price. Right: free boundary.5Wilhelm, Winter, 2006

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 16

Page 17: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Stochastic Volatility: Pure diffusion model 6

Mean reverting OU process:dSt = µStdt + σtStdWt

σt = f (Yt)

dYt = α(m − Yt )dt + βdWt ,

where

Wt , Wt are Brownian motions,

Wt = ρWt +√

1 − ρ2Wt , ρ ∈ [−1,1].

f : R → R+ (Stein-Stein: f (y) = |y | for ρ = 0).

α > 0, m > 0, β, µ ∈ R.6Fouque, Papanicolaou, Sircar, 2000

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 17

Page 18: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Infinitesimal generator splits into two partsNeed to solve ut + Au = 0. Under risk-neutral measure,

A = Aγ + AQ,

where7

Aγ(u)(S, y) = β(S, y)∇u(S, y),

β(S, y) =

(rS

α(m − y) − β(ρµ−r

f (y) + δ(S, y)√

1 − ρ2)),

AQ(u)(S, y) = −12Q(S, y) : D2u(S, y),

Q(S, y) =

(f 2(y)S2 βρSβρS β2

).

7δ(S, y) represents the risk premium factor.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 18

Page 19: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Stochastic Volatility: Jump modelsThe BNS model8:

dXt = (µ+ βσ2t )dt + σtdWt + ρ dZλt

dσ2t = −λσ2

t dt + dZλt , σ20 > 0,

where

Wt a Brownian motion.

Zt a subordinator.

W and Z are independent.

β, µ, ρ, λ ∈ R, λ > 0, ρ ≤ 0.

8Barndorff-Nielsen and Shepard ’01

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 19

Page 20: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Infinitesimal generator splits into three partsGenerator of Markov process (X , σ2), under risk-neutralmeasure:

A = Aγ + AQ + Aν ,

where

Aγ(u)(x , y) = β(x , y)∇u(x , y), β(x , y) =

( 12y + λκ− r

λy

),

AQ(u)(x , y) = −12Q(x , y) : D2u(x , y), Q(x , y) =

(y 00 0

),

Aν(u)(x , y) = −λ∫

R+

[u(x + ρz, y + z) − u(x , y)

]ν(dz).

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 20

Page 21: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Stochastic Volatility: CoGARCH(p,q)Brockwell et al. (2005). For 1 ≤ p ≤ q:

dXt =√σt−dLt

σt = α0 + α>Yt−

dYt = BYt−dt + eσt−d[L,L](d)t ,

where

L a R-valued Lévy process.

α0 > 0, α> ∈ Rq with αp 6= 0, αp+1 = . . . = αq = 0.

e ∈ Rq the q-th standard basis vector

Rq×q 3 B =

(0 I

−βq −β>), βq 6= 0, β> ∈ R

q−1.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 21

Page 22: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Infinitesimal generator of CoGARCH 10

A = Aγ + AQ + Aν ,

where (assume∫

Rz2νL(dz) <∞) 9

Aγ(u)(x) = β(x)∇u(x),

β(x) =(γL√

x2, α>Bx , (Bx)3, . . . , (Bx)q+1, (Bx)q

)>,

AQ(u)(x) = −12Q(x) : D2u(x), Q =

(σ2

Lx2 00 0

),

Aν(u)(x) = −∫

R

[u(x + δ(x , z)

)− u(x) −

√x2z

∂u∂x1

(x)]νL(dz),

δ(x , z) =(√

x2z, αqx2z2,0, . . . ,0, x2z2).9(γL, σL, νL) characteristic triplet of L, x ∈ R

q+2, ex = (x3, . . . , xq+2)>∈ R

q.10Kallsen, Vesenmayer 2005; Hilber 2006

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 22

Page 23: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Sparse tensor product spaces reduce complexity

V L = span{ψ`1

j1(x1) · · ·ψ`d

jd(xd ) | 1 ≤ ji ≤ M`i ,0 ≤ `i ≤ L

},

V L = span{ψ`1

j1(x1) · · ·ψ`d

jd(xd ) | 1 ≤ ji ≤ M`i , `1 + · · · + `d ≤ L

}.

Left: V L. Right: V L.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 23

Page 24: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Sparse tensor product spaces reduce complexity

2 4 6 8 10 1210

0

102

104

106

108

V L

V L

L

N

1 2 3 4 5 6 7 8 910

−6

10−5

10−4

10−3

10−2

10−1

V L

V L

L

‖u−uL‖L2

Left: Dimension of V L, V L

Right: Convergence (from mean-reverting OU SV model)

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 24

Page 25: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Results: Stylized facts can be recoveredExample: American put option in the mean-reverting OU model

−1−0.5

00.5

1

0.8

0.9

1

1.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

correlationmoneyness

impl

ied

vola

tility

−1−0.5

00.5

1

0.8

0.9

1

1.1

1.2

−0.4

−0.2

0

0.2

0.4

correlationmoneyness

Pric

eBs−

Pric

eSV

Left: Implied volatility as function of moneyness S/K andcorrelation factor ρ.Right: Price difference PBS − PSV .

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 25

Page 26: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Results: European put in the BNS modelT = 0.5, K = 1, r = 0, λ = 2.5, IG(γ, δ)-Lévy kernel

k(z) =δ

2√

2πz− 3

2 (1 + γz)e− 12 γz , γ = 2, δ = 0.0872.

Left: Price for ρ = −4.Right: Difference of prices for ρ = −0.01 and ρ = −4.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 26

Page 27: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Contracts on baskets ⇒ multivariate underlyingsModelling issue:

Parametrization of dependence

Diffusion part ⇒ covariance matrix,

Pure jump part ⇒ Lévy copula.

Drift part deterministic ⇒ no dependence,

Implementation issues:

Integro-differential equation (wavelet “compression”),Multi-dimensionality (sparse tensorization).

Model sensitivity: FEM with Wavelets allows for extensionto other underlyings by simply changing the generator A.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 27

Page 28: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Lévy copulas model dependence structure of jumpsA function F : R

d → R is called Lévy copula11 if

F (u1, . . . ,ud) 6= ∞ for (u1, . . . ,ud) 6= (∞, . . . ,∞),

F (u1, . . . ,ud) = 0 if ui = 0 for at least one i ∈ {1, . . . ,d},

F is d -increasing,

F {i}(u) = u for any i ∈ {1, . . . ,d}, u ∈ R.

The tail integral U : Rd\{0} → R

U(x1, . . . , x2) =d∏

i=1

sgn(xj)ν

d∏

j=1

{(xj ,∞) for xj > 0(−∞, xj ] for xj < 0

} .

11Kallsen and Tankov ’06

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 28

Page 29: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Sklar’s theorem: (Kallsen & Tankov ’06)For any Lévy process X ∈ R

d exists a Lévy copula F such thatthe tail integrals of X satisfy

U I ((xi )i∈I) = F I ((Ui(xi))i∈I) ,

for any nonempty I ⊂ {1, . . . ,d} and any (xi )i∈I ∈ R|I|\{0}. The

Lévy copula F is unique on∏d

i=1 RanUi .

Lévy density k with marginal Lévy densities k1, . . . , kd ,

k(x1, . . . , xd ) = ∂1 . . . ∂d F |ξ1=U1(x1),...,ξd=Ud (xd )k1(x1) . . . kd (xd ) .

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 29

Page 30: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Clayton Lévy copulas parametrizecomplete dependence ↔ independence of tails

In two dimensions (d=2)

F (u, v) =(|u|−θ + |v |−θ

)− 1θ(η1{uv≥0} − (1 − η)1{uv≤0}

),

(α1, α2)-stable marginal densities

k(x1, x2) = (1 + θ)αθ+11 αθ+1

2 |x1|α1θ−1 |x2|α2θ−1

·(αθ

1 |x1|α1θ + αθ2 |x2|α2θ

)− 1θ−2 (

η1{x1x2≥0} + (1 − η)1{x1x2<0}).

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 30

Page 31: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Implementation ⇒ Integration w.r.t. jump kernel kNeed to find u ∈ V L such that

⟨∂uL

∂t , v⟩

+⟨AuL, v

⟩= 0, with

Aν(u)(x) = −∫

Rd

(u(x + z) − u(x) −

d∑

i=1

zi1{|z|<1}∂u∂xi

(x)

)ν(dz) .

−10 −5 0 5 10−10

−8

−6

−4

−2

0

2

4

6

8

10

Left: Kernel k , weak dependence θ = 0.5.Right: Quadrature points, N = 6 refinement levels.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 31

Page 32: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Number of matrix entries needs to be reduced

Issue 1: “Curse of dimension” ⇒ O(h−2d

)matrix entries12.

Issue 2: Non-local generator A ⇒ matrix not sparse.

Remedies:

Sparse Grids: O(h−2| log h|−2(d−1)

)entries,

Wavelet compression : O(h−d

)entries.

Combination13: Asymptotically optimal complexity,

O(h−1) non-zero matrix entries.

12Meshwidth h = 2−L.13Provided mixed Sobolev smoothness of u.

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 32

Page 33: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Numerical compression of jump measure 14

50 100 150 200 250 300

50

100

150

200

250

300

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 71353

Left: Actual stiffness matrix of A for L = 5, Clayton Lévy copulawith CGMY marginsRight: Prediction by the compression scheme.

14Reich, Diss ETH

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 33

Page 34: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Results: Time value for basket options 15

Let T = 1.0, r = 0 and payoff g =(1

2(S1 + S2) − 1)+

.

0.5

1

1.5 0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S2S1

theta = 0.01theta = 0.5theta = 10

0.5

1

1.5 0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S2S1

rho = 0rho = 0.25rho = 0.5

Left: Lévy model with Clayton copula, Y = (0.5,1.5) and η = 1.Right: Black-Scholes model with same correlation ρ.

15Winter, Diss ETH

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 34

Page 35: Numerical Methods for Derivative Pricing in Non-BS Markets · Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up Results: European and American option,

Introduction Lévy models Stochastic volatility models Lévy copula models Wrap-up

Wrap upUnified numerics beyond Lévy (additive, affine processes, ...):

Derivative pricing

Quadratic hedging and Greeks

Exotic contracts (Asians, Bermudans,...)

Rough payoffs (digitals, binaries,...)

Multi period contracts (of swing type)

Local & stochastic volatility, local jump intensity

Baskets using sparse (log) price space

Well conditioned matrices, singularity-free computation

Discretization & modelling error control, adaptivity, ...

C. Schwab 2nd General AMaMeF Conference, Bedlewo, 2007 p. 35