numerical aspects of a poroelastic time domain boundary element formulation

Upload: apooladi

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    1/35

    Institute of Applied Mechanics, TU Braunschweighttp://www.infam.tu-braunschweig.de

    Numerical Aspects of a Poroelastic Time Domain

    Boundary Element Formulation

    Martin Schanz, Dobromil Pryl, Lars Kielhorn

    Adaptive Fast Boundary Element Methods in Industrial Applications

    Sollerhaus, 29.9.-2.10.2004

    amin Institut fr Angewandte Mechanik

    Technische Universitt Braunschweig

    http://www.infam.tu-braunschweig.de/
  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    2/35

    amin

    2/25Content

    Governing equations

    Biots theory Differential equation

    Poroelastic Boundary Element Method

    Boundary integral equation

    Spatial shape functions

    Convolution Quadrature Method

    Numerical results

    Dimensionless variables

    Mixed shape functions

    Rock foundation in a soil half-space

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    3/35

    amin

    3/25Biots theory of poroelastic continua

    constitutive equationi j=Si j+

    Fi j

    i j= G (ui,j+ uj,i) +

    K2

    3G

    uk,kpi j=uk,k+

    2

    Rp

    equilibrium=s(1) + f

    i j,j+ Fi=2

    t2ui+ f

    t

    wi

    Darcys law

    qi=

    p,i+ f

    2

    t2

    ui+a+ f

    t

    wi

    continuity equation

    t + qi,i=a

    pressure gradient

    Flux

    Nomenclature

    i j total stress qi specific flux ui solid displacement fluid strain

    Biots stress coefficient p pore pressure wi seepage velocity Fi bulk body force

    G,K shear, bulk modulus porosity a apparent mass density bulk density

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    4/35

    amin

    4/25Governing equations

    representation in Laplace domain (L{f(t)}= f)

    Gui,j j+

    K+

    1

    3G

    uj,i j () p,i s2

    (f) ui=

    Fi

    fsp,ii

    2s

    Rp () sui,i=a

    Bui

    p

    =Fia

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    5/35

    amin

    4/25Governing equations

    representation in Laplace domain (L{f(t)}= f)

    Gui,j j+

    K+

    1

    3G

    uj,i j () p,i s2

    (f) ui=

    Fi

    fsp,ii

    2s

    Rp () sui,i=a

    Bui

    p

    =Fia

    weaksingular fundamental solutions

    USi j= 1

    +8E(1)

    r,ir,j+ i j(34) 1

    r+O

    r0

    PF = fs4

    1

    r+O

    r0

    TFi =fs

    2

    8

    121

    () r,ir,n+ ni

    +

    1

    12

    1

    r+O

    r0

    QSj= 1+

    8

    E(1

    ) (1

    2) (r,nr,j

    nj)

    2 (1

    ) (r,nr,j+ nj)

    1

    r

    +Or0

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    6/35

    amin

    4/25Governing equations

    representation in Laplace domain (L{f(t)}= f)

    Gui,j j+

    K+

    1

    3G

    uj,i j () p,i s

    2

    (f)ui=

    Fi

    fsp,ii

    2s

    Rp () sui,i=a

    Bui

    p

    =Fia

    weaksingular fundamental solutions

    USi j= 1

    +8E(1)

    r,ir,j+ i j(34) 1r +Or0 PF =

    f

    s

    4

    1

    r +O

    r0

    TFi =fs

    2

    8

    121

    () r,ir,n+ ni

    +

    1

    12

    1

    r+O

    r0

    QSj= 1+

    8E(1

    ) (12) (r,nr,jnj)2 (1) (r,nr,j+ nj)1

    r+Or

    0

    strongsingular fundamental solutions

    TSi j= [(12) i j+3r,ir,j] r,n+ (12) (r,jni r,inj)

    8 (1) r2 +O

    r0

    QF = 14

    r,n

    r2+O

    r0

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    7/35

    amin

    5/25Content

    Governing equations

    Biots theory

    Differential equation

    Poroelastic Boundary Element Method

    Boundary integral equation

    Spatial shape functions

    Convolution Quadrature Method

    Numerical results

    Dimensionless variables

    Mixed shape functions

    Rock foundation in a soil half-space

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    8/35

    amin

    6/25Boundary integral equation

    x1x2

    x3

    Fd t

    n

    t

    u=u+ t

    weighted residuals

    GTBui(x,s)

    p (x,s)

    d= 0

    with G =

    USi j(x,y,s) U

    Fi (x,y,s)

    PSj(x,y,s) PF (x,y,s)

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    9/35

    amin

    6/25Boundary integral equation

    x1x2

    x3

    Fd t

    n

    t

    u=u+ t

    weighted residuals

    GTBui(x,s)

    p (x,s)

    d= 0

    with G =

    USi j(x,y,s) U

    Fi (x,y,s)

    PSj(x,y,s) PF (x,y,s)

    two partial integrations singular behavior transformation to time domain

    t

    0

    USi j(t

    ,y,x)

    PSj(t

    ,y,x)

    UFi (t ,y,x) PF (t ,y,x)ti(,x)

    q (,x)d

    d

    =

    t

    0

    C

    TSi j(t,y,x) QSj(t ,y,x)

    TFi (t ,y,x) QF (t ,y,x)

    ui(,x)

    p (,x)

    dd +

    ci j(y) 0

    0 c (y)

    ui(t,y)

    p (t,y)

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    10/35

    amin

    7/25Spatial discretization

    spatial discretization

    ui(x,t) =E

    e=1

    F

    f=1

    Nfe (x) ue fi (t)

    ti(x,t) =E

    e=1

    F

    f=1

    Nfe (x) te fi (t)

    p (x,t) =E

    e=1

    F

    f=1

    Nfe (x)pe f(t)

    q (x,t) =E

    e=1

    F

    f=1

    Nfe (x) qe f(t)

    e.g. linear ansatz function

    N1

    e(,) =

    1

    4 (1) (1)N2e(,) =

    1

    4(1) (1+ )

    N3e(,) =1

    4(1+ ) (1+ )

    N4

    e(,) =1

    4 (1+ ) (1)

    S i l di i i

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    11/35

    amin

    7/25Spatial discretization

    spatial discretization

    ui(x,t) =E

    e=1

    F

    f=1

    Nfe (x) ue fi (t)

    ti(x,t) =E

    e=1

    F

    f=1

    Nfe (x) te fi (t)

    p (x,t) =E

    e=1

    F

    f=1

    Nfe (x)pe f(t)

    q (x,t) =E

    e=1

    F

    f=1

    Nfe (x) qe f(t)

    e.g. linear ansatz function

    N1

    e(,) =

    1

    4 (1) (1)N2e(,) =

    1

    4(1) (1+ )

    N3e(,) =1

    4(1+ ) (1+ )

    N4

    e(,) =1

    4 (1+ ) (1)

    discretized integral equation

    ci j(y) ui(y,t)c (y)p (y,t)

    =E

    e=1

    F

    f=1

    t0

    USi j(x,y, t) PS

    j(x,y, t

    )UFi (x,y, t) PF (x,y,t )

    Nfe (x)dte f

    i (

    )qe f ()

    d

    t

    0

    C

    TSi j(x,y,t ) QSj(x,y,t)

    TFi (x,y,t) QF (x,y,t )

    Nfe (x)d

    ue fi ()

    pe f ()

    d

    Mi d h f i

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    12/35

    amin

    8/25Mixed shape functions

    Isoparametric elements - shape functions identical for all quantities and geometry

    Mixed elements using different shape functions for different quantities

    (common for finite elements), e.g. Nfe (x)linear foru,tand constant for p,q

    1 0 1

    1

    ko-2D1 0 1

    1

    li-2D1 0 1

    1

    lk-2D

    lk-dr

    Shape functions in 2-d and 3-d

    Element uNfe,

    tNfe

    pNfe,

    qNfe

    ko-2D, ko-dr constant constant

    li-2D, li-dr linear linear

    lk-2D, lk-dr linear constant

    amC l ti Q d t M th d

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    13/35

    amin

    9/25Convolution Quadrature Method

    quadrature rule forn= 0,1, . . . ,Ntime steps:

    y (t) = f(t)g (t) =t

    0

    f(t ) g ()d y (nt) =n

    k=0nk f,tg (kt)

    Lubich, C. (1988): Convolution Quadrature and Discretized Operational Calculus. I., Numerische Mathematik, Vol.

    52, 129145

    amC l ti Q d t M th d

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    14/35

    amin

    9/25Convolution Quadrature Method

    quadrature rule forn= 0,1, . . . ,Ntime steps:

    y (t) = f(t)g (t) =t

    0

    f(t ) g ()d y (nt) =n

    k=0nk f,tg (kt)

    integration weight:

    n

    f,t

    =

    1

    2i

    |z|=R

    f(z)

    t

    zn

    1d

    zR

    n

    L

    L1

    =0

    fRe

    i 2L

    t

    e

    in 2L

    (z)A-stable multi step method, e.g. BDF 2: (z) = 322z + 1

    2z2

    ttime step size of equal duration

    L=Neffective choice for determiningn (FFT) RN =with1010

    Lubich, C. (1988): Convolution Quadrature and Discretized Operational Calculus. I., Numerische Mathematik, Vol.

    52, 129145

    amTemporal discretization

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    15/35

    amin

    10/25Temporal discretization

    temporal discretizationwith Convolution Quadrature Method yields for n= 0,1, . . . ,N

    ci j(y) ui(nt)c (y)p (nt)

    =

    E

    e=1

    F

    f=1

    n

    k=0

    e fn

    kUSi j,y,t

    e fn

    kPSj,y,t

    e fnk

    UFi ,y,t e fnkPF,y,t

    te fi (kt)

    qe f (kt)

    e fnk

    TSi j ,y,t

    e fnkQSj ,y,t

    e fnk

    TFi ,y,t

    e fnkQF,y,t

    ue fi (kt)

    pe f (kt)

    with integration weights, e.g.

    e fnk

    Ui j,y,t

    =Rkn

    L

    L1=0

    Ui j

    x,y,

    Rei

    2L

    t

    Nfe (x)d ei(nk) 2L

    amTemporal discretization

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    16/35

    amin

    10/25Temporal discretization

    temporal discretizationwith Convolution Quadrature Method yields for n= 0,1, . . . ,N

    ci j(y) ui(nt)c (y)p (nt)

    =

    E

    e=1

    F

    f=1

    n

    k=0

    e fn

    kUSi j,y,t

    e fn

    kPSj,y,t

    e fnk

    UFi ,y,t e fnkPF,y,t

    te fi (kt)

    qe f (kt)

    e fnk

    TSi j ,y,t

    e fnkQSj ,y,t

    e fnk

    TFi ,y,t

    e fnkQF,y,t

    ue fi (kt)

    pe f (kt)

    with integration weights, e.g.

    e fnk

    Ui j,y,t

    =Rkn

    L

    L1=0

    Ui j

    x,y,

    Rei

    2L

    t

    Nfe (x)d ei(nk) 2L

    quadrature formula regular integrals: Gauss formula weak singular integrals: Regularization with polar coordinate transformation strong singular integrals: Formula by G UIGGIANIand GIGANTE

    amTime stepping procedure

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    17/35

    amin

    11/25Time stepping procedure

    solution with point collocation, i.e. movingy in every node and solving the system in each time

    step (U,T,u, tare generalized variables here)

    0(T)u(t) =0(U) t(t)

    1(T)u(t) + 0(T)u(2t) =1(U) t(t) + 0(U) t(2t)

    2(T)u(t) + 1(T)u(2t) + 0(T)u(3t) =2(U) t(t) + 1(U) t(2t) + 0(U) t(t)

    ...

    amTime stepping procedure

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    18/35

    ain

    11/25Time stepping procedure

    solution with point collocation, i.e. movingy in every node and solving the system in each time

    step (U,T,u, tare generalized variables here)

    0(T)u(t) =0(U) t(t)

    1(T)u(t) + 0(T)u(2t) =1(U) t(t) + 0(U) t(2t)

    2(T)u(t) + 1(T)u(2t) + 0(T)u(3t) =2(U) t(t) + 1(U) t(2t) + 0(U) t(t)

    ...

    finalrecursion formula

    0(C)dn =0(D) d

    n +n

    m=1

    m(U) t

    nm m(T)unm

    n= 1,2, . . . ,N

    with the vector of unknown boundary data dn

    and the known boundary data dn

    in each time step

    amContent

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    19/35

    in12/25

    Content

    Governing equations

    Biots theory

    Differential equation

    Poroelastic Boundary Element Method

    Boundary integral equation

    Spatial shape functions

    Convolution Quadrature Method

    Numerical results

    Dimensionless variables

    Mixed shape functions

    Rock foundation in a soil half-space

    amiColumn: Problem description

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    20/35

    in13/25

    Column: Problem description

    ty=1 Nm2H(t),permeable

    free,impermeable

    fixed, impermeable

    3m

    x

    y

    K[ Nm2 ] G[ Nm2 ] [kgm3 ] R[ Nm2 ] f [kgm3 ] [ m4

    Ns ]

    rock 8 109 6 109 2458 0.19 4.7108 1000 0.867 1.91010soil 2.1 108 9.8107 1884 0.48 1.2109 1000 0.981 3.55109

    324 elements on 188 nodes

    amiDimensionless variables

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    21/35

    in14/25

    Dimensionless variables

    Dimensionless variables

    x= x

    A

    t= t

    B

    K=K

    C

    G=G

    C

    = A2

    B2

    C

    =BC

    A2

    Fall 1, 2, 3all material data O()

    A=2

    C B=

    2 C=

    1

    K+

    4

    3G +

    2

    2R

    = 1,103,103

    aminDimensionless variables

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    22/35

    in14/25

    Dimensionless variables

    Dimensionless variables

    x= x

    A

    t= t

    B

    K=K

    C

    G=G

    C

    = A2

    B2

    C

    =BC

    A2

    Fall 1, 2, 3all material data O()

    A=2

    C B=

    2 C=

    1

    K+

    4

    3G +

    2

    2R

    = 1,103,103

    Fall 4, 5

    only normalization of modules

    A= 1 B= 1 C=E= 9KG

    6K+ G= 1,10

    aminDimensionless variables

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    23/35

    in14/25

    Dimensionless variables

    Dimensionless variables

    x= x

    A

    t= t

    B

    K=K

    C

    G=G

    C

    = A2

    B2

    C

    =BC

    A2

    Fall 1, 2, 3all material data O()

    A=2

    C B=

    2 C=

    1

    K+

    4

    3G +

    2

    2R

    = 1,103,103

    Fall 4, 5

    only normalization of modules

    A= 1 B= 1 C=E= 9KG

    6K+ G= 1,10

    Fall 6scaling of Youngs modules to the permeability

    A= 1 B= 1 C=

    E

    aminDimensionless variables

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    24/35

    in14/25

    Dimensionless variables

    Dimensionless variables

    x= x

    A

    t= t

    B

    K=K

    C

    G=G

    C

    = A2

    B2

    C

    =BC

    A2

    Fall 1, 2, 3all material data O()

    A=2

    C B=

    2 C=

    1

    K+

    4

    3G +

    2

    2R

    = 1,103,103

    Fall 4, 5

    only normalization of modules

    A= 1 B= 1 C=E= 9KG

    6K+ G= 1,10

    Fall 6scaling of Youngs modules to the permeability

    A= 1 B= 1 C=

    E

    Fall 7simple normalizationA=rmaxmaximum radius B= temaximum time C=E

    aminCondition number in frequency domain

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    25/35

    in15/25

    Condition number in frequency domain

    0 1000 2000 3000 4000 5000 6000

    10E6

    10E11

    10E16

    10E21

    10E26

    10E6

    10E11

    10E16

    10E21

    10E26

    Fall 7

    Fall 6

    Fall 5

    Fall 4

    Fall 3

    Fall 2

    Fall 1

    Frequency [1/s]

    Cond

    itionnumber

    aminCondition number in time domain

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    26/35

    in16/25

    0 0.005 0.01 0.015 0.02 0.025

    10E8

    10E14

    10E20

    10E26

    10E32

    10E8

    10E14

    10E20

    10E26

    10E32

    Fall 7

    Fall 6

    Fall 5

    Fall 4

    Fall 3

    Fall 2

    Fall 1

    Time t [s]

    Conditionnumber

    amin

    1 /2Condition number: Different parameters

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    27/35

    17/25p

    0 0.005 0.01 0.015 0.02 0.025

    10E9

    10E15

    10E21

    10E27

    10E33

    10E9

    10E15

    10E21

    10E27

    10E33

    Fall 4

    Fall 3

    Fall 2

    Fall 1

    Time t [s]

    Conditionnumber

    Fall 1= A=rmax B= 1 C= 1 Fall 2

    = A= 1 B= tmax C= 1

    Fall 3= A=rmax B= tmax C= 1 Fall 4

    = A= 1 B= 1 C=E

    amin

    18/25Mixed Elements in 2-d

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    28/35

    18/25

    0.0 0.005 0.01 0.015 0.02

    time t [s]

    -1.6*10-9

    -1.4*10-9

    -1.2*10-9

    -1.0*10-9

    -8.0*10-10

    -6.0*10-10

    -4.0*10-10

    -2.0*10-10

    0.0*100

    displacementuy

    [m]

    l i-2D, t=0.00012s li-2D 128, t=0.00005s

    lk-2D, t=0.00012s lk-2D 128, t=0.00005s

    ko-2D, t=0.0004s ko-2D 128, t=0.00005s

    analytic 1-d

    0.0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.0

    time t [s]

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    porepressurep[N/m2]

    l i-2D, t=0.00012s li-2D 128, t=0.00005slk-2D, t=0.00012s lk-2D 128, t=0.00005s

    ko-2D, t=0.0004s ko-2D 128, t=0.00005s

    analytic 1-d

    amin

    19/25Mixed Elements in 3-d: Fixed surfaces

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    29/35

    19/25

    0.0 0.005 0.01 0.015 0.02

    time t [s]

    -1.5*10-9

    -1.0*10-9

    -5.0*10-10

    0.0*100

    displacementu

    y[m

    ]

    li-dr, t=0.0002s

    lk-dr, t=0.0002s

    ko-dr, t=0.0002s

    analytic 1-d

    00.25

    0.50.75

    1

    0

    1

    2

    3

    0

    0.25

    0.5

    0.75

    1

    00.25

    0.5

    1

    2

    700 elementson 392 nodes

    0.0 0.005 0.01 0.015 0.

    time t [s]

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    por

    epressurep[N/m2]

    li-dr, t=0.0002slk-dr, t=0.0002s

    ko-dr, t=0.0002s

    analytic 1-d

    amin

    20/25Mixed Elements in 3-d: Free surfaces

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    30/35

    20/25

    0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

    time t [s]

    0.0*100

    5.0*10-9

    1.0*10-8

    1.5*10-8

    displacementu

    y[m

    ]

    li-dr, t=0.0005s

    lk-dr, t=0.0005s

    ko-dr, t=0.0005s

    0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

    time t [s]

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    por

    epressurep[N/m2]

    li-dr, t=0.0005s

    lk-dr, t=0.0005s

    ko-dr, t=0.0005s

    amin

    21/25Half space: Problem description

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    31/35

    21/25

    2m

    3m

    2m

    1m

    2m

    5m

    p(t)

    p(t)

    p(t)

    p(t)

    0,02s

    p(t)

    t

    1,25MN

    Rock foundation embedded in a soil half-space

    Foundation: 124 elements on 68 nodesHalf space: 334 elements on 192 nodes

    load

    amin

    22/25Half space: Condition number

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    32/35

    22/25

    0 0.02 0.04 0.06 0.08 0.1 0.12

    10E18

    10E20

    10E22

    10E24

    10E26

    10E18

    10E20

    10E22

    10E24

    10E26

    Fall 2

    Fall 1

    Time t [s]

    Cond

    itionnumber

    Fall 1=old dimensionless variables Fall 2

    =new more simpler suggestion

    amin

    23/25Half space: Numerical results

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    33/35

    23/25

    amin

    24/25Summary

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    34/35

    /

    Poroelastic BEM

    Biots theory

    Based on Convolution Quadrature Method

    Only Laplace transformed fundamental solutions are required

    Dimensionless variables

    Normalization w.r.t. time, space, and Youngs modulus

    Largest influence due to the normalization to Youngs modulus

    Mixed shape functions

    Only sometimes improvement of stability and accuracy

    Very CPU-time consuming

    No justification for numerical effort

    I tit t f A li d M h i TU B h i

  • 8/13/2019 Numerical Aspects of a Poroelastic Time Domain Boundary Element Formulation

    35/35

    Institute of Applied Mechanics, TU Braunschweighttp://www.infam.tu-braunschweig.de

    Numerical Aspects of a Poroelastic Time Domain

    Boundary Element Formulation

    Martin Schanz, Dobromil Pryl, Lars Kielhorn

    Adaptive Fast Boundary Element Methods in Industrial Applications

    Sollerhaus, 29.9.-2.10.2004

    amin Institut fr Angewandte Mechanik

    Technische Universitt Braunschweig

    http://www.infam.tu-braunschweig.de/