nuclear structure (i) single-particle models

36
NSDD Workshop, Trieste, April-May 2008 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France

Upload: fayre

Post on 06-Jan-2016

70 views

Category:

Documents


1 download

DESCRIPTION

Nuclear Structure (I) Single-particle models. P. Van Isacker, GANIL, France. Overview of nuclear models. Ab initio methods: Description of nuclei starting from the bare nn & nnn interactions. Nuclear shell model: Nuclear average potential + (residual) interaction between nucleons. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Nuclear Structure(I) Single-particle models

P. Van Isacker, GANIL, France

Page 2: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Overview of nuclear models• Ab initio methods: Description of nuclei

starting from the bare nn & nnn interactions.• Nuclear shell model: Nuclear average potential

+ (residual) interaction between nucleons.• Mean-field methods: Nuclear average potential

with global parametrisation (+ correlations).• Phenomenological models: Specific nuclei or

properties with local parametrisation.

Page 3: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Nuclear shell model

• Many-body quantum mechanical problem:

• Independent-particle assumption. Choose V and neglect residual interaction:

ˆ H =pk

2

2mkk=1

A

∑ + ˆ V 2 rk,rl( )k<l

A

=pk

2

2mk

+ ˆ V rk( ) ⎡

⎣ ⎢

⎦ ⎥

k=1

A

∑mean field

1 2 4 4 3 4 4

+ ˆ V 2 rk,rl( )k<l

A

∑ − V rk( )k=1

A

∑ ⎡

⎣ ⎢

⎦ ⎥

residual interaction1 2 4 4 4 3 4 4 4

ˆ H ≈ ˆ H IP =pk

2

2mk

+ ˆ V rk( ) ⎡

⎣ ⎢

⎦ ⎥

k=1

A

Page 4: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Independent-particle shell model

• Solution for one particle:

• Solution for many particles:

p2

2m+ ˆ V r( )

⎣ ⎢

⎦ ⎥φi r( ) = E iφi r( )

Φi1i2K iAr1,r2,K ,rA( ) = φik

rk( )k=1

A

ˆ H IPΦ i1i2K iAr1,r2,K ,rA( ) = E ik

k=1

A

∑ ⎛

⎝ ⎜

⎠ ⎟Φ i1i2K iA

r1,r2,K ,rA( )

Page 5: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Independent-particle shell model

• Anti-symmetric solution for many particles (Slater determinant):

• Example for A=2 particles:

Ψi1i2K iAr1,r2,K ,rA( ) =

1

A!

φi1r1( ) φi1

r2( ) K φi1rA( )

φi2r1( ) φi2

r2( ) K φi2rA( )

M M O M

φiAr1( ) φiA

r2( ) K φiArA( )

Ψi1i2r1,r2( ) =

1

2φi1

r1( )φi2r2( ) − φi1

r2( )φi2r1( )[ ]

Page 6: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Hartree-Fock approximation

• Vary i (ie V) to minize the expectation value of H in a Slater determinant:

• Application requires choice of H. Many global parametrizations (Skyrme, Gogny,…) have been developed.

δΨi1i2K iA

* r1,r2,K ,rA( ) ˆ H Ψi1i2K iAr1,r2,K ,rA( )dr1dr2K drA∫

Ψi1i2K iA

* r1,r2,K ,rA( )Ψi1i2K iAr1,r2,K ,rA( )dr1dr2K drA∫

= 0

Page 7: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Poor man’s Hartree-Fock

• Choose a simple, analytically solvable V that approximates the microscopic HF potential:

• Contains– Harmonic oscillator potential with constant .– Spin-orbit term with strength .– Orbit-orbit term with strength .

• Adjust , and to best reproduce HF.

ˆ H IP =pk

2

2m+

mω2

2rk

2 −ζ lk ⋅sk −κ lk2

⎣ ⎢

⎦ ⎥

k=1

A

Page 8: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Harmonic oscillator solution

• Energy eigenvalues of the harmonic oscillator:

Enlj = N + 3

2( )hω −κ h2l l +1( ) + ζ h2 − 1

2l j = l + 1

21

2l +1( ) j = l − 1

2

⎧ ⎨ ⎩

N = 2n + l = 0,1,2,K : oscillator quantum number

n = 0,1,2,K : radial quantum number

l = N,N − 2,K ,1or 0 : orbital angular momentum

j = l ± 1

2: total angular momentum

m j = − j,− j +1,K ,+ j : z projection of j

Page 9: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Energy levels of harmonic oscillator• Typical parameter

values:

• ‘Magic’ numbers at 2, 8, 20, 28, 50, 82, 126, 184,…

h ≈41 A−1/ 3 MeV

ζ h2 ≈ 20 A−2 / 3 MeV

κ h2 ≈ 0.1 MeV

∴ b ≈1.0 A1/ 6 fm

Page 10: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Why an orbit-orbit term?• Nuclear mean field is

close to Woods-Saxon:

• 2n+l=N degeneracy is lifted El < El-2 <

ˆ V WS r( ) =V0

1+ expr − R0

a

Page 11: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Why a spin-orbit term?

• Relativistic origin (ie Dirac equation).

• From general invariance principles:

• Spin-orbit term is surface peaked diminishes for diffuse potentials.€

ˆ V SO = ζ r( ) l ⋅s, ζ r( ) =r0

2

r

∂V

∂r= ζ in HO[ ]

Page 12: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Evidence for shell structure

• Evidence for nuclear shell structure from– 2+ in even-even nuclei [Ex, B(E2)].

– Nucleon-separation energies & nuclear masses.– Nuclear level densities.– Reaction cross sections.

• Is nuclear shell structure modified away from the line of stability?

Page 13: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Ionisation potential in atoms

Page 14: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Neutron separation energies

Page 15: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Proton separation energies

Page 16: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Liquid-drop mass formula

• Binding energy of an atomic nucleus:

• For 2149 nuclei (N,Z ≥ 8) in AME03:

av16, as18, ac0.71, a's23, ap6

rms2.93 MeV.€

B N,Z( ) = av A − asA2 / 3 − ac

Z Z −1( )A1/ 3

− ′ a sN − Z( )

2

A

+ ap

Δ N,Z( )A1/ 3

C.F. von Weizsäcker, Z. Phys. 96 (1935) 431H.A. Bethe & R.F. Bacher, Rev. Mod. Phys. 8 (1936) 82

Page 17: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

The nuclear mass surface

Page 18: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

The ‘unfolding’ of the mass surface

Page 19: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Modified liquid-drop formula

• Add surface, Wigner and ‘shell’ corrections:

• For 2149 nuclei (N,Z ≥ 8) in AME03:

av16, as18, ac0.71, Sv35, ys2.9, ap5.5, af0.85, aff0.016

rms1.16 MeV.

B N,Z( ) = av A − asA2 / 3 − ac

Z Z −1( )A1/ 3

+ ap

Δ N,Z( )A1/ 3

−Sv

1+ ysA−1/ 3

4T T +1( )A

− af nν + nπ( ) + aff nν + nπ( )2

Page 20: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Shell-corrected LDM

Page 21: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Shell structure from Ex(21)

Page 22: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Evidence for IP shell model• Ground-state spins and

parities of nuclei:

j inφnljmj ⇒ J

l inφnljmj ⇒ −( )l =π⎫ ⎬ ⎭

⇒ J π

Page 23: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Validity of SM wave functions• Example: Elastic

electron scattering on 206Pb and 205Tl, differing by a 3s proton.

• Measured ratio agrees with shell-model prediction for 3s orbit.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978

Page 24: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Variable shell structure

Page 25: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Beyond Hartree-Fock

• Hartree-Fock-Bogoliubov (HFB): Includes pairing correlations in mean-field treatment.

• Tamm-Dancoff approximation (TDA):– Ground state: closed-shell HF configuration– Excited states: mixed 1p-1h configurations

• Random-phase approximation (RPA): Cor-relations in the ground state by treating it on the same footing as 1p-1h excitations.

Page 26: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Nuclear shell model

• The full shell-model hamiltonian:

• Valence nucleons: Neutrons or protons that are in excess of the last, completely filled shell.

• Usual approximation: Consider the residual interaction VRI among valence nucleons only.

• Sometimes: Include selected core excitations (‘intruder’ states).

ˆ H =pk

2

2m+ ˆ V rk( )

⎣ ⎢

⎦ ⎥

k=1

A

∑ + ˆ V RI rk,rl( )k<l

A

Page 27: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Residual shell-model interaction

• Four approaches:– Effective: Derive from free nn interaction taking

account of the nuclear medium.– Empirical: Adjust matrix elements of residual

interaction to data. Examples: p, sd and pf shells.– Effective-empirical: Effective interaction with

some adjusted (monopole) matrix elements.– Schematic: Assume a simple spatial form and

calculate its matrix elements in a harmonic-oscillator basis. Example: δ interaction.

Page 28: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Schematic short-range interaction

• Delta interaction in harmonic-oscillator basis:

• Example of 42Sc21 (1 neutron + 1 proton):

Page 29: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Large-scale shell model• Large Hilbert spaces:

– Diagonalisation : ~109.

– Monte Carlo : ~1015.

• Example : 8n + 8p in pfg9/2 (56Ni).

M. Honma et al., Phys. Rev. C 69 (2004) 034335

Ψi'1 i'2K i'Aˆ V RI rk,rl( )

k<l

n

∑ Ψi1i2K iA

Page 30: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

The three faces of the shell model

Page 31: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Racah’s SU(2) pairing model

• Assume pairing interaction in a single-j shell:

• Spectrum 210Pb:

j 2JMJˆ V pairing r1,r2( ) j 2JMJ =

− 1

22 j +1( )g0, J = 0

0, J ≠ 0

⎧ ⎨ ⎩

Page 32: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Solution of the pairing hamiltonian

• Analytic solution of pairing hamiltonian for identical nucleons in a single-j shell:

• Seniority (number of nucleons not in pairs coupled to J=0) is a good quantum number.

• Correlated ground-state solution (cf. BCS). €

j nυ J ˆ V pairing rk,rl( )1≤k<l

n

∑ j nυJ = −g01

4n −υ( ) 2 j − n −υ + 3( )

G. Racah, Phys. Rev. 63 (1943) 367

Page 33: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Nuclear superfluidity

• Ground states of pairing hamiltonian have the following correlated character:– Even-even nucleus (=0):– Odd-mass nucleus (=1):

• Nuclear superfluidity leads to– Constant energy of first 2+ in even-even nuclei.– Odd-even staggering in masses.– Smooth variation of two-nucleon separation

energies with nucleon number.– Two-particle (2n or 2p) transfer enhancement.

ˆ S +( )n / 2

o , ˆ S + = ˆ a m↓+ ˆ a ̇ ̇ ̇ m ↑

+

m

ˆ a mb+ ˆ S +( )

n / 2o

Page 34: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Two-nucleon separation energies• Two-nucleon separation

energies S2n:

(a) Shell splitting dominates over interaction.

(b) Interaction dominates over shell splitting.

(c) S2n in tin isotopes.

Page 35: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Pairing gap in semi-magic nuclei• Even-even nuclei:

– Ground state: =0.

– First-excited state: =2.

– Pairing produces constant energy gap:

• Example of Sn isotopes:

Ex 21+

( ) = 1

22 j +1( )G

Page 36: Nuclear Structure (I) Single-particle models

NSDD Workshop, Trieste, April-May 2008

Elliott’s SU(3) model of rotation

• Harmonic oscillator mean field (no spin-orbit) with residual interaction of quadrupole type:

ˆ H =pk

2

2m+

1

2mω2rk

2 ⎡

⎣ ⎢

⎦ ⎥

k=1

A

∑ − g2ˆ Q ⋅ ˆ Q ,

ˆ Q μ ∝ rk2Y2μ

ˆ r k( )k=1

A

+ pk2Y2μ

ˆ p k( )k=1

A

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562