nuclear reactions at high energiesindico.ictp.it/event/a0149/material/1/5.pdf · 2014. 5. 5. ·...

36
»*-»*« abdus salam educational, scientific and cultural the i international centre for theoretical physics international atomic energy agency SMR/1325-7 Workshop on Nuclear Data for Science fii Technology: Accelerator Driven Waste Incineration 10-21 September 2001 Miramare - Trieste, Italy Nuclear Reactions at High Energies Sylvie Leray DAPNIA/SPhN CEA/ Saclay France strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

Upload: others

Post on 29-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • »*-»*« abdus salameducational, scientificand cultural

    theiinternational centre for theoretical physics

    international atomicenergy agency SMR/1325-7

    Workshop on

    Nuclear Data for Science fii Technology: AcceleratorDriven Waste Incineration

    10-21 September 2001

    Miramare - Trieste, Italy

    Nuclear Reactions at High Energies

    Sylvie LerayDAPNIA/SPhN CEA/ Saclay

    France

    strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

  • Nuclear Reactions at High Energies

    Nuclear Reactions at High

    EnergiesSylvie LERAY

    DAPNIA/SPhN CEA/Saclay

    Design of spallation targets for ADShas raised needs for reliablenumerical simulation codesoImprovement of high energy nuclear

    reaction models (above 150-200 MeV)

    o Validation on the bulk of newlyavailable high energy data

    Other applications:• spallation neutron sources

    • radioactive beams• radiation damage in space+ astrophysics

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Outline

    1. Importance of spallation reactions forapplications- Definition of spallation

    - Data needed for Accelerator-Driven Systems

    - Other applications

    2. High energy nuclear models- Models and codes for high energies

    - Intra-nuclear cascade models

    - The Liege INC model

    3. Comparison of models to available highenergy data- Neutrons

    - Charged particles

    - Residues

    - Coincidence measurements

    4. Conclusions

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Spallation reactions

    p(lGeV)

    Intra-Nuclear Cascad Excited nucleusEyappration

    a, JJ, y decay

    Definition:interaction of a high energy (> 100 MeV) lightparticle with a nucleus leading to emission oflight particles and leaving a heavy residue.

    History:*> observation of particle cascades in cosmic

    rays interactions (G.Rossi, ZP82 (1933) 151)

    ^ first accelerators: many nucleons emitted bythe target nucleus ( Cunningham, PR72 (1947) 739)

    **TWO Step mechanism (Serber, PR72 (1947) 1114)

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Data required for the design ofspallation targets

    Accelerator

    Protons 1 GeV10-100 m A

    Sub-critical reactor JfL

    • • * ^^^ • • *

    \ \ t / I \ / .0 Spa llation target

    ^

    •-̂ (R

    / v \neutrons * *

    \

    transmutation

    Neutron production4 number -• power of the system / needed

    accelerator intensityenergy, spatial distribution -4 targetoptimisation, damage in window and structureshigh energy neutrons -4 shielding

    Charged particle production+ gas (H2, He) production -» embrittlement,

    swelling• energy ^ DPA, energy deposition

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Shape optimisation of a spallation target

    p + Pb, E = L2 GeV, L = 80 cm

    Ea>20MeV

    • cylindrical surface• Back surface* Front surface

    Total

    100 190 200 150Diameter (Cm)

    Number of low and high energy neutrons emitted through the different faces of a

    cylindrical lead target as a function of the target diameter.

    500 1000 1500 2000 2500 3000 3500 4000E(MeV)

    Number of low energy neutrons emitted from the lateral face of a cylindrical lead

    target for fixed or an optimised geometry.

    From F. Lavaud. stage DEA. CEA/SPhN (1998)

  • Nuclear Reactions at High Energies

    Data required for the design ofspallation targets

    Accelerator

    Protons 1 GeV10-100 rn A

    Sub-critical reactor

    N

    "^hr * *

    /

    neutrons

    yH fission

    Vw# Spa llation target

    *

    V \

    " transmutat

    /

    ton

    Residual nuclide production+ element distribution -• corrosion, change in

    metallurgical properties+ isotope distribution -> activity (short lived

    isotopes), radiotoxicity (short livedisotopes), decay heat

    • recoil energies -* DPA in window andstructures, energy deposition

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Pb target (50x100)Proton energv 0.8 GeVI = 30 mAOne year irradiation

    10 "4 10 "a 10 "2 10 "*2 1 0 * 10 4 10 5 1 0 * 10 7 10of cool ing (day)

    1 0 * 10

    Fig. 4. Total and partial activiiiiaits; rflead target as a function of cooling time.

    Pb-Bi target (50x100)Proton energy 0.8 GeVI = 30 mAOne year irradiation

    7io " " J O * " i 6 * i o s i o ' 10 T i o * JO • i oof cooling (day)

    Fig. 5. The same assinIFig- 3 for lead-bismuth target.

    Analysis of the Contributions ofiheJvwton avid Neutron Spectral Components to theAcxMirruktting Activity

  • p + Pb not 1 GeV, R = 25cm, L=100cm01/06/18 18.37

    -

    --

    II

    II

    IH

    I11

    i i

    i IH

    IIIII

    i

    -

    JI

    i i it

    Ere

    r

    , , , ,

    ac-30

    i

    r1

    -

    0-60Q

    r•

    if....

    \ t

    MeV

    d1"

    r

    1E

    UlT

    , , , ,

    DIntriesdeanRMS-

    r

    ....

    jMJ

    11 i97008 ;197.6 I

    = ^ ] |

    . . . . i

    10'

    10'

    10'

    10

    -110

    120 130 140 150 160 170 180 190 200 210

    A residu

    10

    -110

    1 1

    1

    1 1

    Ml

    1

    1

    1

    1 1 II

    I1

    1 1

    1 III

    1

    1

    1 I

    ! f

    ill

    1

    1

    1

    1 1 M

    l

    I l l l i . . , .

    E--

    . . . .

    reac = 3

    i , • , ,

    00-60C

    * * ^

    L i l l l

    i i

    )MeV

    m

    fJhi

    IDEntriesMean

    -RMS—

    J

    J

    1

    i i

    r

    i i

    r

    m

    •+•

    I 1 ! I 1

    <ss

    r,83

    14;0081).27j824f

    , j45 50 55 60 65

    Z residu

    70 75 80 85

  • p + Pb not 1 GeV, R=25cm, L=100cm01/06/18 18.37

    10'

    101

    10'

    10

    10

    4

    3

    2

    -

    1 •

    '

    Un

    til

    iin

    i

    i i i i

    1 J

    f

    if

    i . . . .

    10 |I1Entries 55333Meon 204.8RMS 2.803

    / ^

    I I 1 1

    190 200 210

    A residu (Z=82)10 111Entries 22*5IMon 184.0RMS 2.885

    180 190 200

    A residu (Z = 78)

    10'

    10'

    10

    - 110

    -

    Ill 1 1 1

    1

    1III

    11

    1

    1

    1III

    1 1 1

    1

    1

    • i

    Jm

    P

    • M i

    1 1

    10EntriesMeonRMS

    r-

    115889194.74.339

    Inn

    fed1

    f1

    180 190 200

    A residu (Z=80)

    10'

    10'

    10'

    10

    - 110

    Total10EntriesMeanSMS--

    111452179.7

    Ereac=300-6"0"OMe\

    i170 180 190

    A residu (Z=76)

    a

  • Nuclear Reactions at High Energies

    Astrophysics

    10c

    o l(fo

    10

    10"

    10'

    -2

    - 1 1 1 I J I I 1 1 I I I ' 1

    - • - Satellite Measurements- 3 - Solar System abundances

    i • • { ' •

    o 10 15 20 25 30N u c l e a r C h a r g e

    • Secondary reactions of cosmic rays ininterstellar medium (90% of hydrogen)*> explanation of abundance of isotopes

    t» decide among models for galacticnucleosynthesis

    *» origin of cosmic rays

    • Composition of meteorites

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

    \o

  • Nuclear Reactions at KBgJi Energies

    Spallation reactions in space instruments

    10

    Cosmic ray bombardment of thespacecraft and instruments*• Noise due to secondary gammas, neutrons

    and spallation residues

    t» ex: spectrometer of the INTEGRAL missiondevoted to high resolution y - ray astronomy

    determination of the flux of secondaryparticlesbackground due to radioactive residues

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Rare isotope production

    • Direct methods*• ISOL p (1 GeV) + A =*> low energy RIB

    t* fragmentation of GeV/A heavy ions -> highenergy RIB

    • Converter methodst» use of moderated spailation neutrons to

    induce fission

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Spaiiation neutron sources

    Shielding

    Moderation of spaiiation neutrons in(heavy) water

    Reflectors to direct escaping neutronsinto beam tubes*> pulsed sources: well-defined time structure,

    high peak flux o tof experiments*» continuous sources: high neutron flux in a

    large volume o irradiation experiments

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Spallation target modelling

    p (1 GeV)

    Internuclear cascade

    Fission OR Evaporation

    ©—,

    Monte-Carlo transport codes*» propagation of all particles created in elemen-

    tary interactions (HETC + MCNP type)

    Nuclear physics models (above 150-200MeV*» generating cross-sections (Intra-Nuclear

    Cascade followed by evaporation-fission)

    Evaluated data files (below 150-200 MeV)t» providing all reaction channels

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    What is needed above 150-200 MeVfor ADS and other applications

    Objective: to reliably predictproduction rates of all producednuclei with their energy andangular distributions• Elementary cross-sections measu-

    rements

    *> to test the physics models

    • Improvement of models and/ordevelopment of new ones

    *• validation on experimental data

    • Integral measurements

    test and validation of transportcodes

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Models for spallation reactions

    p(lGeV)

    Intra-Nuclear Cascad Excited nucleusEvaporation

    TWO Step mechanism (Serber 1947):

    t» Intra-Nuclear Cascade

    sequence of independent N-N collisions

    Ade Brogiie= hc^P « X = 1/paw mean free path

    fast process (» 30 fm/c)

    => Heating of the nucleus - thermalisation

    *> De-excitation by evaporation or fission

    statistical evaporation models

    slow process (hundreds of fm/c)

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • ;:lii^^

    Intra-Nuclear Cascade

    p (1 GeV)

    Determines the number and direction of

    the high energy particles*» shielding against energetic neutrons

    t» inter-nuclear cascade propagation

    for lead INC neutrons = 15% total nb

    but carry 80% of the energy

    Determines initial conditions forevaporation-fission

    • Excitation energy

    • Z, A of the pre-fragment

    • Angular momentum

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

    n

  • Nuclear Reactions at High Energies

    Intra-Nuclear Cascade models

    p(lGeV)•

    Common features*> linear trajectory between collisions

    t* nuclear potentiel

    ** free N-N cross-sections

    *• inelastic collisions N+N-* N+A -» N+ N+n

    *+ Pauli blocking

    Main available INC models• Bertini (Phys. Rev. 131 (1963) 1801)

    • Isabel (Yariv and Frankel, Phys. Rev. C20 (1979) 2227)

    • Cugnon (Cugnon et al., Nucl. Phys. A620 (1997) 457)

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

    \%

  • Nuclear Reactions at High Energies

    Differences between the different INC models

    ^ 7C

    Fig. 3 : Schematic representat ion of the INC models of the first type (left) and of second type {.right !. In thelat ter case, nucleons promoted from the continuum are. indicated by he.nvy dots.

    Medium '

    Cascade 'propagation••

    Collision',criteriuraStoppingcrit.eriivn

    Surface

    Pauli blocking

    Bertini

    continuous

    collidedparticles

    mean free path

    energy

    diffuse (3density regions)

    strict

    Isabel

    continuous

    time steps

    mean free path

    energy

    diffuse

    not fully strict

    Cugnon

    particles

    time steps

    minimum distanceof approach

    time

    sharp

    statistics

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

    id

  • Nuclear Reactions at High Energies

    The Liege INC model (INCL)

    First developed for heavy ion collisions (Cugnon et

    ai., Nuci. Phys. A352 (1981) 505) then applied to proton

    induced reactions (Cugnon, Nucl. Phys. A462 (1987) 751)

    standard INCL2 model(Cugnon et al., Nucl. Phys. A620 (1997) 457)

    • succession of binary collisions well separated inspace and time

    • generation of initial positions of target nucleonsat random inside a sharp surface sphere

    • stochastical generation of initial momenta oftarget nucleons inside a Fermi sphere

    • straight line trajectories until minimum distanceof approach or hitting of the wall of the potential

    • statistical Pauli blocking

    • inelastic collisions, pion production andabsorption: N+N

  • (chwjeJaffect 0° iA (p,x>r\)

    10 r • r n r

    CO -IO Io

    •-- H.W.Bertini,PRC131(63)1801•- J.Cugnonetal,NPA352(81)505- New parametrisationo M.LEvans et al,PRC26(82)2525* Y.Terrien et al,PRL59(1987)1534

    Elab=650 MeV

    . . . i . . . i . . . i i i . i0-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

    cos (0 J

  • Parametrisation of Delta production

    o Data n-p scattering at 0 deg.

    - Bertlnl angular distribution

    — Cugnon angular distribution

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0

    p(1600 MeV)+Pb[0-5]degre

    En(MeV)

  • Nuclear Reactions at High Energies

    The Liege INC model (INCL)

    The new INCL4 version(Boudard et al., to be published)

    • diffuseness of the nuclear surface:Wood-Saxon distribution with parameters in

    accordance with experimental values

    good total reaction cross-sections

    better prediction of peripheral collisions

    • consistent dynamical Pauli blocking:phase space occupation probability evaluated

    collisions leading to energy Eej > EGS(AR) forbidden

    -> no more negative excitation energies

    • collisions between spectators forbiddenno spurious nucleon evaporation

    dynamical evolution of the phase spacepreserved

    • angular momentum of the remnant calculated-> important for input in evaporation-fission

    • possibility of composite incident particleswith realistic momentum distribution

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • 2500

    2000

    1500

    1000

    500

    I 0

    ' ' ' ' I

    oin(0

    2

    oo0)

    2500

    1250

    1000

    750

    500

    250

    p+U• , , , I

    10 102

    10 103

    I I I I I I I I

    p+Fe

    10 102

    (MeV)

  • lGeV p+Pb, INCL4 (INCL3) + KHS_V3p, V=45MeV2001/08/07 16.12

    JQ

    | i o 21 0 ' -

    10 -

    ZZZZjf/

    /

    f, , ,

    cfid.lJAe....

    biuJe.dnsh

    . . .

    IMCL4J

    ad.line.IN;

    L :

    •L. !.A\, :. . . \ !

    • \

    i . . . I

    QL3:::::::::::

    1 i i i

    / /

    I:::::-:::::::::::]?::/:::::::::::fT f

    L #. .

    / . . . /

    • ';

    11

    . . .

    r \v

    . . .

    1: :1 :...i

    ....Tfl/

    60 80 100 120 140 160 180 200

    180 180 200 180 200

    Mass Number

  • i!

    3

    2

    If

    « JL Dk 1JJ T

    • ^ ^ -

    j

    i

    i

    5sz:::::::-UL-

    S|-. .

    [::m::::jEntrhMeanRMS

    •TIL.—T.L

    ^! |«

    IfUL-V*"W"

    r T ' -m!> *.-«.]

    •:::::::::::::::::::::::::::::il4::jftC ; ...ifUUUU!

    ;

    'a • lUUUulr ]

    Ift

    147.6 :117.7 i

    j:::Ut:J::v:::::::::::::::::;

    illi I i" i 1 i i i 1 f i i I i 1" i i i I 1 I I i 1 [ I i i i 1" B • 1 1 • 1

    10 -

    1 -

    0 100 200 300 400 500

    Ex

    600 700 800

    4

    3

    2

    i i i i

    ;

    mmmmmmmm

    t::::::::::::j-- f .^JT.

    lnJT.|u M. . . . i . . . .

    m

    p j

    ST.: :

    1 i i i i

    L-

    , . .p .Q U

    fi1

    •pi -r

    tf"strn

    1 . . . . i . . . .

    1]

    • • !

    I

    i . , , ,

    DEntries

    MeanIMS

    i . . . .

    *i.

    jpJ . .

    I l l

    115;2033991 i

    4,« «|j •

    15.78 :

    i . . . . i130 140 150 160 170 180 190 200 210 220

    MassJio

  • P\ (\ Qvv u w\ GJU&YA v

    7000

    6000

    5000

    4000

    3000

    2000

    1000

    0

    30000

    25000

    20000

    15000

    10000

    5000

    10 20

    2001/09/07 15.13

    pb1000zcu4zv3pzdejong.hbk

    :

    1 1 1 1L

    LU

    IJ

    2

    -

    /

    J

    1J

    \

    I . I I

    1L

    \

    , , , ,

    ft?

    JD. - -[

    rF

    k.LU• *

    lntries/leanRMS

    . , , ,

    i-1365V7.-3-4 •3.930

    . . . . , . . i30 40 50 60 70 80 90 100

    JzremzlNCLpb1000zcu4zv3pzdejong.hbk

    -

    -

    h

    i i, , , . . . .

    «

    IDEntriesMeanf̂ MS

    vD v i rvvVt Ĉ p X

    i . . . . i . . . .

    i

    T

    x*Ck eJ. . . .

    2•1365

    7T68""'2.760

    . . . .

    » ^ \««T"

    . . . . i , , , , '0 10 20 30 40 50 60 70 80 90 100

    JzremzKHS

  • lGeV Pb+p, INCL4 + KHSV3p (J mean dejong)2001/09/07 12.21

    O

    I0)01

    1 0 2

    10

    1

    i i

    i I i i

    Ixerrmai

    J.meaaA

    itJNCL ,

    :aJue.f.rai

    „ .i

    .: : . : : /j...j

    V

    n.de.Jon

    s::«•::::::::*iT...^ ...

    "mt.s.

    Q

    ••^T

    :̂:::::̂ !L:::::.•......V.

    v* '•*

    1

    k*^

    \

    I- i

    1

    *

    t.J

    1

    : 3•;:::3::::::::.Jmj.

    »/.fj

    1:• ' / •

    • . . . / .W J

    ....• 1...• /

    • /

    ; J ;i ¥ :

    •tF

    . . . . i . . . . i K . . . i . . . . I . . , , i . 1 . , . ! . . r . . i . . . . i i i i

    10 20 30 40 50 60 70 80 90z

    fio»

    10 -

    1 -

    10 -

    10•2

    I

    -

    -

    1 1

    1

    1

    1 1

    1 1

    1

    J remnarJ mean v

    4

    i . . . .

    t INCL :alue frorr

    jm >>r»'/«

    i . . . .

    ) de Jong

    / * *

    f

    ! . . . .

    v ^ ^

    \

    i . . . .

    1 *t 'il. m .

    i•i . . . . . . . .

    m

    1

    i ,

    >

    25 50 75 100 125 150 175 200

  • 2001/07/16 11.59

    1600 MeV d+Pb, INCL4 + KHSV3p

    neutron energy $eV)

  • Nuclear Reactions at High Energies

    The Liege INC model (INCL)

    The new INCL4 version

    • no really free parameters:stopping time fixed by consideration on thevariation rate of several observables

    -> results insensitive to a variation of ± 5fm/c

    Potential = 45 MeV (EF+S)

    -> could be slightly varied

    • Further possible improvements

    ^realistic momentum density

    ^•medium effect on N-N cross-sections

    ^emission of composite particles (d, t, a, IMF)

    ^special treatment of the first collision

    (quasi-elastic reactions)

    ^energy dependence of the potential

    ^improvement of pion dynamics

    • Implementation in LAHET3 in progress

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • p+Pb (Tp=1.0 GeV), b=4 fm2000

    1000900800700600500

    400

    300

    200

    100908070

    Excitation e

    ^ , , .•• I •

    1*

    nergy (

    150 100 150

    time (fm/c)

    10 2

    10

    1

    B, J

    •:M""

    dF/j

    i\mmI/

    dt

    50 100 150

    time (fm/c)

    -

    102:

    10 ;

    ::::::Ave:r;.................

    ...A

    i

    ag:e::Kmof-ejec

    L v i

    ...energ

    tries •

    b-

    y

    i

    50 100 150

    time (fm/c)

    25

    20

    15

    10

    I Mom

    II

    i i i i

    sntum <

    of pdrti

    4,

    Dsymm

    ci pant's

    IP •

    etry

    I i i

    50 100 150

    time (fm/c)\\

  • 1000 MeV p+Pb, INCL4 + KHSV3p, t=63,70,77 fm/c2001/07/10 11.57

    10

    10

    10

    250 500 750 1000

    n energy

    10 4

    10 3

    10 2

    10

    1I

    i

    A

    i

    at

    4

    -

    44

    •r] i] i4 ••'*

    ; i• •r , , , J

    0* * # •

    f—•

    •—<

    J••

    t

    I*j

    •••

    *< •

    tJL••• I I I I

    , M ^ | J '/^HUii J :

    ut :I :1 :I jf ;

    "" }""'.|

    •} :t j

    t :

    ! If;

    !! :

    »*',• 1• ;

    si

    , . , , 1 *180 190 200 210

    remnant mass

    10

    140 160 180 200

    residual mass

  • Models for the de-excitation

    + Evaporation: statistical modelsEmission probability of one particle governed by

    *> inverse capture cross-section (detailed balanceprinciple)

    t» Coulomb barriers

    *» density of available states

    + Most widely used model: Dresner (ORNL-TM-196 (1962))

    t» Weisskopf-Ewing formalism

    *> all types of LCP evaporation

    ** GCC-lgnatyuk level density parameter (-> A/8)

    ** Coulomb barriers lowering with E*

    + GSI (K.H.Schmidt) model (Nucl. Phys. A629 (1998) 635)

    *> Weisskopf-Ewing formalism

    ^ only n,p,a evaporation

    *• Level density parameter -> ~ A/12

    t» realistic Coulomb barriers

    Fermi-Break-up* • For A < 22

    ^ break-up probabilities from available phase space

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001

  • Nuclear Reactions at High Energies

    Models for the de-excitation

    • Fission:+ Models used in high-energy transport codes

    *» Bohr-Wheeler formalism

    t» phenomenological parameterisation of barriers

    t» phenomenological parameterisation of Z and Adistribution of fission fragments

    *» only n/fission competition

    > ORNL, Z>91 (Alsmiller, ORNL-7528 (1981))

    >̂ RAL, Z>70 (Atchison, KFA Julich conf-34 (1981))

    + GSI modelt» friction introduced through a delay time

    t» full particle/fission competition

    *» Z and A distribution of fission fragments based onpotential energy surface at saddle

    ty

    + GEMINI model (Moretto et al., NP A247 (1975) 211)

    *> Transition state method

    *» particle, IMF and fission treated on an equal footing

    Sylvie LERAY (CEA/Saclay) Trieste, Sept. 10-21, 2001