nuclear astrophysics luna-mv – the next underground ... · luna-mv – the next underground...

29
1 NUCLEAR ASTROPHYSICS NUCLEAR ASTROPHYSICS Frank Strieder RuhrUniversität Bochum, Germany Seconda Universita di Napoli, Caserta, Italy EuroGENESIS Workshop – Origin of the Elements Barcelona, Catalunya 14.06.2013 LUNA-MV – The next Underground Accelerator Facility

Upload: others

Post on 21-Apr-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

1

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Frank StriederRuhr‐Universität Bochum, GermanySeconda

Universita

di Napoli, Caserta, Italy

EuroGENESIS

Workshop – Origin of the

ElementsBarcelona, Catalunya14.06.2013

LUNA-MV – The next UndergroundAccelerator Facility

2

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Outline

of this

Presentation

LUNA-MV – The next Underground Accelerator Facility

History

and Status of the

LUNA-MV project

• Site preparation

at the

Laboratori

Nazionali

del Gran Sasso

• Astrophysical

Motivation and Advantage going

Underground

• Holy Grail

of Nuclear

Astrophysics

12C(α,γ)16O

3

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

History

of LUNA‐(MV)

in 2000: LUNA-400kV was installed → talk

by

G. Imbriani

(Wednesday)

in April 2007: a Letter of Intent was presented to the LNGS Scientific Committee about key reactions in He burning and the s-process neutron sources:12C(α,γ)16O, 13C(α,n)16O, and 22Ne(α,n)25Mgas well as (α,γ) reactions on 14,15N and 18O

→ 3.5 MV single ended positive ion accelerator

… 2013 …

something moved forward (finally)

4

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

A suitable place inside LNGS has been found (Node B), far away from  other experiments. A real feasibility study started!

LUNA‐MV

LUNA

5

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

A real feasibility study started!

LUNA‐MV

6

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

A real feasibility study started!

LUNA‐MV

7

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Single ended accelerator: •with Ion source for H and He  beams → high intensity α

beams

• robust, commercially available • reliable time line, reliable costing• 2 beam lines, accessible independently

LUNA‐MV

8

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

LNGS is a low background laboratory: a shielding solution has been developed and validated by Monte Carlo simulations

Just‐outside the wall the n‐flux is less than 1%  of the LNGS natural flux!

LUNA‐MVLUNA‐MV

9

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

LNGS is a low background laboratory: a shielding solution has been developed and validated by Monte Carlo simulations

Just‐outside the wall the n‐flux is less than 1%  of the LNGS natural flux!

LUNA‐MVLUNA‐MV

Constrains for neutron background

Natural Neutron flux in LNGS: appr. 1 -

2×10-6

cm-2

s-1

LUNA MV has been asked to verify compatibility with existing experiments→

Maximum neutron rate acceptable at LUNA-MV: 2000 n/s

Maximum neutron energy: 5.6 MeVLUNA has presented a shielding concept which allows to respect these constraintsThe concept is approved by LNGS.

Constraints due to drinking water abstraction

LUNA MV location is close to springs used for drinkable water→ special requirements to assure preservation of water qualityLNGS technical division has engineered a project to protect springs

10

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

60 participants mainly from Europe  but also Asia and USA

• Status of LUNA MV•

Physics cases with round table on

specific technical aspects•

Discussion on the 

collaboration structure 

• Request for adhesions"adhesion should be intended as the 

willingness of the involved group to  apply soon to the financing agency  of the respective country....“

process is still open, please contact: [email protected]

LUNA‐MV Workshop and status

11

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

60 participants mainly from Europe  but also Asia and USA

• Status of LUNA MV•

Physics cases with round table on

specific technical aspects•

Discussion on the 

collaboration structure 

• Request for adhesions"adhesion should be intended as the 

willingness of the involved group to  apply soon to the financing agency  of the respective country....“

process is still open, please contact: [email protected]

LUNA‐MV Workshop and status

12

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

4000 5000 6000 7000 8000 9000 10000 110001

10

100

1000

spectrum 25Mg(p,γ)26Al (Geant4) environmental backgr. beam induced backgr. total

25Mg (p,γ)25Al

11B

C

ount

s pe

r 40

keV

Eγ [keV]

13C

Ep = 100 keV

Motivation for

Underground measurement

13

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Motivation for

Underground measurement

4000 5000 6000 7000 8000 9000 10000 110001

10

100

1000

spectrum 25Mg(p,γ)26Al (Geant4) environmental backgr. x5 beam induced backgr. total

25Mg (p,γ)25Al

11B

C

ount

s pe

r 40

keV

Eγ [keV]

13C

14

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

William A. Fowler (1911 –

1995)

Nobel Prize

for

Physics

(1983) for

„his theoretical

and experimental studies

of thenuclear

reactions

of importance

in the

formation

of the

chemical

elements

in the

universe“. (shared

with

S. Chandrasekhar)

noble prize

lecture, 1983

„…

the

holy

grailof nuclear

astrophysics“

LUNA‐MV Physics

12C(α,γ)16O almost 40 years

15

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Carbonwe are made of !

Oxygenwhich we breath !

Consequenceslate stellar evolutioncomposition of C/O White dwarfsSupernova type I explosionSupernova type II nucleosynthesis

Stellar Helium burning in Red Giant Stars

the

He burning

is

ignited

on the

4He und 14N ashes

of the preceding

hydrogen

burning

phase

(pp

und CNO)

LUNA‐MV Physics

12C(α,γ)16O

16

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

relevant questions:Energy production and time scaleof Helium burning:4He(2α,γ)12C(α,γ)16O(α,γ)20Ne

Neutron sources for s process:

14N(α,γ)18F(β+ν)18O(α,γ)22Ne(α,n)22Ne(α,γ) Oxygen-16

Stellar Helium burning in Red Giant Stars

the

He burning

is

ignited

on the

4He und 14N ashes

of the preceding

hydrogen

burning

phase

(pp

und CNO)

LUNA‐MV Physics

12C(α,γ)16O

17

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

example: Stellar model for a 20 Msolar SternS factor(CF85) = 2 ×

S factor(CF88)

0

0,2

0,4

0,6

0,8

1

0,E+00 3,E+05 6,E+05 9,E+05t(yr)

XHe

(ΔtHe /tHe )CF85-88 ≤

10%

CF88

CF85

0

0,2

0,4

0,6

0,8

1

0,E+00 3,E+05 6,E+05 9,E+05t(yr)

X (ΔX12C /X12C )CF85-88 ≈

50%

12C

16O

CF85

CF88

12C/16O ratio

at the

end of Helium burning

G. Imbriani

et

al., ApJ

558 (2001) 903

& O. Straniero

private communication

CF88S300 = 100 keV b

CF85S300 = 200 keV b

in Gamow window

18

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

example: Stellar model for a 20 Msolar SternS factor(CF85) = 2 ×

S factor(CF88)

0

0,2

0,4

0,6

0,8

1

0,E+00 3,E+05 6,E+05 9,E+05t(yr)

XHe

(ΔtHe /tHe )CF85-88 ≤

10%

CF88

CF85

0

0,2

0,4

0,6

0,8

1

0,E+00 3,E+05 6,E+05 9,E+05t(yr)

X (ΔX12C /X12C )CF85-88 ≈

50%

12C

16O

CF85

CF88

12C/16O ratio

at the

end of Helium burning

G. Imbriani

et

al., ApJ

558 (2001) 903

& O. Straniero

private communication

CF88S300 = 100 keV b

CF85S300 = 200 keV b

in Gamow window

Why is the 12C(α,γ)16O so important?

The energy generation interferes with the structural dynamics of the stellar evolution!

19

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

M. Fey, Stuttgart, Ph.D. thesisEγ

[MeV]9.0 9.5 10.0

expected. Eγ

= 8.05 MeV

Direct

Methods

γ‐ray

Experiments 

20

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

M. Fey, Stuttgart, Ph.D. thesisEγ

[MeV]

7.5 8.0 8.5

expected. Eγ

= 8.05 MeV

Direct

Methods

γ‐ray

Experiments 

21

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Phaseshift

fixed

through

elastic

scattering

data

Measurements

at low

energies

are

very

difficult

!!

Direct

Methods

γ‐ray

Experiments 

22

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS12C(α,γ)16O –

towards

LUNA-MV12C(α,γ)16O –

State of the

Art

Influ

ence

of tw

osu

bthr

esho

ld s

tate

s (total)

23

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS12C(α,γ)16O –

Open Issues

Influ

ence

of tw

osu

bthr

esho

ld s

tate

s (total)

poor

statistic

of low-energy

data

E1 ExtrapolationReliability

of 16N β-delayed

α-decay

E2 Extrapolation largely

unconstrained

24

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS12C(α,γ)16O –

Open Issues

Influ

ence

of tw

osu

bthr

esho

ld s

tate

s (total)

E1 destructive

interferenceStot

(0.3) → 50 % lower

25

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Work in Progress:a Working Group between LUNA and ERNA was established→ ERLUNA Working GroupLUNA: direct kinematics -

α

beam, 12C solid target, γ-ray detection

→ measure angular distribution with E1 and E2ERNA: inverse kinematics -

12C beam, 4He gas target, γ-ray detection & recoil mass separator

→ measure Stot

(E) and cascade transitions

Objectives of Working Group:•

determination of Stot

(0.3) with sufficient precision for stellar models

identify and exploit synergies between two different approaches

• coordinate efforts and strategy

• solve common experimental issues, e.g. γ-ray detection system• develop improved techniques for target preparation/characterization

12C(α,γ)16O –

towards

LUNA-MV

26

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Influ

ence

of tw

osu

bthr

esho

ld s

tate

s (total)

12C(α,γ)16O –

Aims

LUNA-MV/ERNA

LUNA-MV: low-energy

E1/E2 measurementlowest

feasible

energy

to be

defined

by

WG

ERNA: higher energy Stot

measurement & cascadesconstraint on

total S factor

extrapolation

and E2 (through

6.92 MeV state

ANC)

improved

extrapolationto astrophysical

energy

27

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

12C(α,γ)16O –

ERLUNA practical workGEANT4 simulation

of γ-ray

array

example: GASP 4π

BGO array

12C target preparation at SIDONI (France)contact established preliminary studies in progress

target characterization at LNLtest studies in progress

high homogeneity

higher

separation

power

28

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

0 50 100 150 20010-5

100

105

1010

isot

opic

abu

ndan

ce

mass number A

cosmic rays

stellar burning phases,supernovae

s processHe burning in AGB stars,massive stars

r processsupernovae type II

p processsite disputed

- processes of nucleosynthesis

LUNA‐MV Physics

– Origin of the

Elements

n source

reactions: 13C(α,n)16O and 22Ne(α,n)25Mg

29

NUCLEAR ASTROPHYSICSNUCLEAR ASTROPHYSICS

Summary

of Presentation

LUNA-MV – The next Underground Accelerator Facility

• The LUNA-MV project has been launched.

Funding (through INFN, Italy) for accelerator and site preparation seems to be available

• Site preparation started (e.g. removal of the interferometer)

12C(α,γ)16O –

at low energies with sufficient statistical uncertainty will be one of the corner stones of the LUNA-MV project

• other reactions are: 3He(α,γ)7Be, 13C(α,n)16O, and 22Ne(α,n)25Mg