nonequilibrium green’s function method in thermal transport

101
Nonequilibrium Green’s Function Method in Thermal Transport Wang Jian-Sheng 1

Upload: aulani

Post on 23-Feb-2016

59 views

Category:

Documents


0 download

DESCRIPTION

Nonequilibrium Green’s Function Method in Thermal Transport. Wang Jian-Sheng. Lecture 1: NEGF basics – a brief history, definition of Green’s functions, properties, interpretation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Nonequilibrium Green’s Function Method in Thermal Transport

1

Nonequilibrium Green’s Function Method in Thermal Transport

Wang Jian-Sheng

Page 2: Nonequilibrium Green’s Function Method in Thermal Transport

2

• Lecture 1: NEGF basics – a brief history, definition of Green’s functions, properties, interpretation.

• Lecture 2: Calculation machinery – equation of motion method, Feynman diagramatics, Dyson equations, Landauer/Caroli formula.

• Lecture 3: Applications – transmission, transient problem, thermal expansion, phonon life-time, full counting statistics, reduced density matrices and connection to quantum master equation.

Page 3: Nonequilibrium Green’s Function Method in Thermal Transport

3

References

• J.-S. Wang, J. Wang, and J. T. Lü, “Quantum thermal transport in nanostructures,” Eur. Phys. J. B 62, 381 (2008).

• J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, “Nonequilibrium Green’s function method for quantum thermal transport,” Front. Phys. (2013).

• See also http://staff.science.nus.edu.sg/~phywjs/NEGF/negf.html

Page 4: Nonequilibrium Green’s Function Method in Thermal Transport

4

Lecture One

History, definitions, properties of NEGF

Page 5: Nonequilibrium Green’s Function Method in Thermal Transport

5

A Brief History of NEGF

• Schwinger 1961• Kadanoff and Baym 1962• Keldysh 1965• Caroli, Combescot, Nozieres, and Saint-James

1971• Meir and Wingreen 1992

Page 6: Nonequilibrium Green’s Function Method in Thermal Transport

6

Equilibrium Green’s functions using a harmonic oscillator as an example

• Single mode harmonic oscillator is a very important example to illustrate the concept of Green’s functions as any phononic system (vibrational degrees of freedom in a collection of atoms) at ballistic (linear) level can be thought of as a collection of independent oscillators in eigenmodes. Equilibrium means that system is distributed according to the Gibbs canonical distribution.

Page 7: Nonequilibrium Green’s Function Method in Thermal Transport

7

Harmonic Oscillator

22

2 2 2 †

† †

1 ,2 2

1 1 1 ,2 2 2

, [ , ] , [ , ] 12

pH kx u x mm

kH u u a am

u a a x p i a a

k m

Page 8: Nonequilibrium Green’s Function Method in Thermal Transport

8

Eigenstates, Quantum Mech/Stat Mech

† † † †

1, , 0,1,2,2

1 , 1 1

1,Tr

0, 1

1Tr ,1

n n

H

HB

H n E n E n n

a n n n a n n n

ek Te

aa a a a a aa f

fe

Page 9: Nonequilibrium Green’s Function Method in Thermal Transport

9

Heisenberg Operator/Equation

† †

( )( ) 1 [ ( ), ]

( ) 1 1 1[ ( ), ] ( ), ( ) ( )2

( )

( ) , ( )

[ ]( )

Ht Hti i

i t i t

O t e OedO t O t H

dt i

da t a t H a t a t a tdt i i

i a t

a t ae a t a e

O: Schrödinger operatorO(t): Heisenberg operator

Page 10: Nonequilibrium Green’s Function Method in Thermal Transport

10

Defining >, <, t, Green’s Functions

( ') ( ')

( , ') ( ) ( ') , 1

( ) ( ) ( ) , ( )2

( , ') (1 )2

i t

i t t i t t

ig t t u t u t i

u t a t a t a t ae

ig t t fe f e

t

Page 11: Nonequilibrium Green’s Function Method in Thermal Transport

11

( , ') ( ') ( ) ( ', )

( , ') ( ) ( ') ( ') ( , ') ( ' ) ( , ')

( , ') ( ) ( ') ( ' ) ( , ') ( ') ( , ')

1, if 01( ) , if 020, if 0

t

t

ig t t u t u t g t t

ig t t Tu t u t t t g t t t t g t t

ig t t Tu t u t t t g t t t t g t t

t

t t

t

: time order: anti-time order

TT

Page 12: Nonequilibrium Green’s Function Method in Thermal Transport

12

Retarded and Advanced Green’s functions

2

( , ') ( ') [ ( ), ( ')]

sin ( ')( ') ,

( , ') ( ' ) [ ( ), ( ')] ( ', )

( ) ( ) ( ), with ( ) 0 for 0

r

a r

r r r

ig t t t t u t u t

t tt t

ig t t t t u t u t g t t

g t g t t g t t

Page 13: Nonequilibrium Green’s Function Method in Thermal Transport

13

Fourier Transform

2 2

*

[ ] ( ) , ( ) [ ]2

sin( )[ ] ( )

1 , 0

[ ] [ ] ,

[ ] ( ) (1 ) ( )

r r i t r r i t

r i t t

a r

dg g t e dt g t g e

tg t e dt

i

g gig f f

Page 14: Nonequilibrium Green’s Function Method in Thermal Transport

14

Plemelj formula, Kubo-Martin-Schwinger condition

1 1 ( )

[ ] [ ] [ ] ( )

[ ] [ ],

( ) ( )

r a

P i xx i x

g g g f

g e g

g t g t i

Valid only in thermal equilibrium

P for Cauchy principle value

Page 15: Nonequilibrium Green’s Function Method in Thermal Transport

15

Matsubara Green’s Function

( ') ( ')

0

1( , ') ( ) ( ')

1 (1 )2

where 0 , ' , ( ) ( )

( ) ( )

2[ ] ( ) , , , 1,0,1,2,

[ ] [ ]

n

M

H H

M M

iM Mn n

r Mn

g T u u

fe f e

u u i e ue

g g

ng i g e d n

g g i i

Page 16: Nonequilibrium Green’s Function Method in Thermal Transport

16

Nonequilibrium Green’s Functions

• By “nonequilibrium”, we mean, either the Hamiltonian is explicitly time-dependent after t0, or the initial density matrix ρ is not a canonical distribution.

• We’ll show how to build nonequilibrium Green’s function from the equilibrium ones through product initial state or through the Dyson equation.

Page 17: Nonequilibrium Green’s Function Method in Thermal Transport

Definitions of General Green’s functions

17

( , ') ( ) ( ') , ( , ') ( ') ( )jk j k jk k ji iG t t u t u t G t t u t u t

( , ') ( ') ( , ') ( ' ) ( , '),

( , ') ( ' ) ( , ') ( ') ( , ')

t

t

G t t t t G t t t t G t t

G t t t t G t t t t G t t

( , ') ( ') ,

( , ') ( ' )

r

a

G t t t t G G

G t t t t G G

Page 18: Nonequilibrium Green’s Function Method in Thermal Transport

18

Relations among Green’s functions

,

,

( , ') ( ', )

( , ') ( ', )

r a

t t r t

t t r a a t

jk kj

r ajk kj

G G G G

G G G G G G G

G G G G G G G

G t t G t t

G t t G t t

Page 19: Nonequilibrium Green’s Function Method in Thermal Transport

Steady state, Fourier transform

19

( , ') ( '),

[ ] ( ) ,

[ ] [ ]

i t

r a

G t t G t t

G G t e dt

G G

Page 20: Nonequilibrium Green’s Function Method in Thermal Transport

20

Equilibrium Green’s Function, Lehmann Representation

( )

,

| | , ,

( ) , | | 1

( ) Tr ( ) (0)

1| ( ) (0) |

1| | | |

n

n

n mn

HE

nn

Ht Hti i

j jm

jk j k

Ej k

n

E E tE i

j kn m

eH n E n Z eZ

u t e u e m m

iG t u t u

i e n u t u nZ

i e n u m m u nZ

Page 21: Nonequilibrium Green’s Function Method in Thermal Transport

21

Kramers-Kronig Relation

0

0

0

00

ˆ[ ] ( ) is analytic on the upper half plane of

ˆ[ ] [ ], 0

1 [ '] ( )[ ] 'P , lim'

1 [ '][ ] 'P'

izt r

r

xrr IR

x

rr RI

G z e G t dt z

G G z i

G f xG d P dxx x

GG d

Page 22: Nonequilibrium Green’s Function Method in Thermal Transport

22

Eigen-mode Decomposition

( ) 2 ( ) (1) (2) ( )

21

222

2

, , , , , , , , , ,

122 2

, ( , , , )

,

0 00 0

diag0 0

0

( ) diag ( )

1[ ] diag

j j Nj

T

Tj

N

t t r a t t r a T

r T

j

Ku u S u u u

u SQ S S I

S KS

G t S g t S

G S S i Ki

Page 23: Nonequilibrium Green’s Function Method in Thermal Transport

23

Pictures in Quantum Mechanics

• Schrödinger picture: O, (t) =U(t,t0)(t0)

• Heisenberg picture: O(t) = U(t0,t)OU(t,t0) , ρ0, where the evolution operator U satisfies

'''''

( , ') ( , '),

( , ') , 't

tt

t

i H dt

U t ti H U t tt

U t t Te t t

See, e.g., Fetter & Walecka, “Quantum Theory of Many-Particle Systems.”

Page 24: Nonequilibrium Green’s Function Method in Thermal Transport

Calculating correlation

24

'

0 0 0 0 0

0 0 0

( )

0 '

( '') ''

( ) ( ') Tr ( ) ( ') '

Tr ( ) ( , ) ( , ) ( , ') ( ', )

Tr ( ) ( , ) ( , ') ( ', )

Tr ( ) ,

( , ') ,( , ') ( ', '') ( , '')

C

t

t

i H d

C t t

i H t dt

A t B t A t B t t t

t U t t AU t t U t t BU t t

t U t t AU t t BU t t

t T e A B

U t t TeU t t U t t U t t

t0 t’ t

B A

Page 25: Nonequilibrium Green’s Function Method in Thermal Transport

25

Evolution Operator on Contour2

1

2 1 2 1

3 2 2 1 3 1 3 2 1

11 2 2 1 1 2

0 0

( , ) exp ,

( , ) ( , ) ( , ),

( , ) ( , ) ,

( ) ( , ) ( , )

ciU T H d

U U U

U U

O U t OU t

Page 26: Nonequilibrium Green’s Function Method in Thermal Transport

Contour-ordered Green’s function

26

( )

0 '

( , ') ( ) ( ')

Tr ( ) C

TC

i H dTC

iG T u u

t T u u e

t0

τ’

τ

Contour order: the operators earlier on the contour are to the right. See, e.g., H. Haug & A.-P. Jauho.

Page 27: Nonequilibrium Green’s Function Method in Thermal Transport

Relation to other Green’s function

27

'

( , ), or ,

( , ') ( , ') or

,

,

t

t

t t

G GG G t t G

G G

G G G G

G G G G

t0

τ’

τ

Page 28: Nonequilibrium Green’s Function Method in Thermal Transport

28

An Interpretation

, 0 0 0

1 1 ,2 2

( ) ( )

Tr ( ) ( ) ( , )

exp ( ) ( , ') ( ') '2

T T T

T

M M

T

C C

H p p u Ku K K

V F u

U t t t U t t

i F G F d d

G is defined with respect to Hamiltonian H and density matrix ρ and assuming Wick’s theorem.

Page 29: Nonequilibrium Green’s Function Method in Thermal Transport

Calculus on the contour

• Integration on (Keldysh) contour

• Differentiation on contour

29

( ) ( ) ( ) ( )f d f t dt f t dt f t dt

( ) ( )df df td dt

Page 30: Nonequilibrium Green’s Function Method in Thermal Transport

Theta function and delta function• Theta function

• Delta function on contour

where θ(t) and δ(t) are the ordinary theta and Dirac delta functions

30

'

1 if is later than ' along the contour( , ')

0 otherwise

( , ') ( ')( , ') ( ' )

( , ') ( , ')( , ') 0( , ') 1

t t t tt t t t

t tt tt t

''

( , ')( , ') ( , ') ( ')d t t t td

Page 31: Nonequilibrium Green’s Function Method in Thermal Transport

31

Transformation/Keldysh Rotation'

' '

' '

( , ') ( , ')

or

1 0 1 11, ,0 1 1 12

1 ,2

0

jj jj

t

t

Tz

r KT T

z K a

t t t t

t t t t

r K

a

A A A t t

A AA A A

A A

R RR I

A AA R AR R AR

A A

A A A A A A A AA A A A A A A A

G GG

G

Page 32: Nonequilibrium Green’s Function Method in Thermal Transport

32

Convolution, Langreth Rule

2 3 1 2 2 3 1

11

( , ) ( , ) ( , )

0 0 0

or , , +

( )

n n n

r K r K r K

a a a

r r r a a a K r K K a

r r r r r r r r

K K r r K r K a K a a

AB D d d d A B D

C AB C AB C AB

C C A A B BC A B

C A B C A B C A B A B

G g g G G g g G G g

G g g G g G g G

,

(1 ) (1 )r r a a r aG G g G G G

Page 33: Nonequilibrium Green’s Function Method in Thermal Transport

33

Lecture two

Equation of motion method, Feynman diagrams, etc

Page 34: Nonequilibrium Green’s Function Method in Thermal Transport

34

Equation of Motion Method

• The advantage of equation of motion method is that we don’t need to know or pay attention to the distribution (density operator) ρ. The equations can be derived quickly.

• The disadvantage is that we have a hard time justified the initial/boundary condition in solving the equations.

Page 35: Nonequilibrium Green’s Function Method in Thermal Transport

35

Heisenberg Equation on Contour

2

1

2 1 2 1

0 0

( , ) exp ,

( ) ( , ) ( , )

( ) [ ( ), ]

ciU T H d

O U t OU t

dOi O Hd

Page 36: Nonequilibrium Green’s Function Method in Thermal Transport

Express contour order using theta function

36

),'()()'()',()'()(

)'()()',(

TTT

TC

uuiuui

uuTiG

Operator A(τ) is the same as A(t) as far as commutation relation or effect on wavefunction is concerned

Iiuu T ])(),([

Page 37: Nonequilibrium Green’s Function Method in Thermal Transport

Equation of motion for contour ordered Green’s function

37

IKG

IuKuTi

uuiuuTi

uuiuui

uuiG

uuTi

uuiuui

uuiuuiG

TC

TTC

TTT

T

TC

TTT

TTT

)',()',(

)',())'()((

)',(])'(),([)'()(

),'()()'()',()'()(

)',()'()()',(

)'()(

),'()()'()',()'()(

),'()()'()',()'()()',(

2

2

Page 38: Nonequilibrium Green’s Function Method in Thermal Transport

Equations for Green’s functions

38

2

2

2' '

'2

2, , , ,

2

2

2

2, ,

2

( , ') ( , ') ( , ')

( , ') ( , ') ( ') , , '

( , ') ( , ') ( ')

( , ') ( , ') ( ')

( , ') ( , ') 0

r a t r a t

t t

G KG I

G t t KG t t t t It

G t t KG t t t t It

G t t KG t t t t It

G t t KG t tt

Page 39: Nonequilibrium Green’s Function Method in Thermal Transport

Solution for Green’s functions

39

2, , , ,

2

2 , , , ,

1, , 2

12

( , ') ( , ') ( ')

using Fourier transform:

[ ] [ ]

[ ] ( ) ( )

[ ] [ ] ( ) , 0

( ),

r a t r a t

r a t r a t

r a t

r a

r a

t r

G t t KG t t t t It

G KG I

G I K c K d K

G G i I K

G f G G G e G

G G G

c and d can be fixed by initial/boundary condition.

Page 40: Nonequilibrium Green’s Function Method in Thermal Transport

40

Feynman diagrammatic method

• The Wick theorem• Cluster decomposition theorem, factor

theorem• Dyson equation• Vertex function• Vacuum diagrams and Green’s function

Page 41: Nonequilibrium Green’s Function Method in Thermal Transport

Handling interaction

41

Transform to interaction picture, H = H0 + Hn

0 00 0

0 00 0

0 00 0

0 0 00 0 0

( ) ( )

0 0 0

( ) ( ' )

( ) ( )

0 0

( ) ( ) ( )

0 0

( ) ( ) ( , ) ( , ) ( )

( , ') ( , ')

( ) ( , ) ( , )

( ) ( , ) ( ) (

H Hi t t i t t

I S H I

H Hi t t i t t

H Hi t t i t t

I H

H H Hi t t i t t i t t

I s H

t e t e U t t S t t t

S t t e U t t e

t e U t t U t t e

A t e A e e U t t A t U t

0

0( ), )

Hi t tt e

Page 42: Nonequilibrium Green’s Function Method in Thermal Transport

Scattering operator S

42

0 0 0 0

0 0 0 0( ) ( ) ( ' ) ( ' )

0 0 0 0

0 0

( ) ( ') Tr ( ) ( ') '

Tr[ ( , ) ( ) ( , ) ( , ') ( ') ( ', )]Tr[ ( , ) ( ) ( , ') ( ') ( ', )]

H H H

H H H Hi t t i t t i t t i t t

I

I

A t B t A t B t t t

U t t e A t e U t t U t t e B t e U t tS t t A t S t t B t S t t

0 00 0

'

( ) ( )

( '') ''

( , ') ( ) ( , '), ( )

( , ') , '

tIn

t

H Hi t t i t tI I Sn n n

i H t dt

i S t t H t S t t H t e H et

S t t Te t t

Page 43: Nonequilibrium Green’s Function Method in Thermal Transport

Contour-ordered Green’s function

43

CIn

C

dHiIk

IjCI

dHi

kjC

kjjk

euuT

euuTt

uuiG

)(

)(

',,0

)'()(Tr

)(Tr

)'()()',(

t0

τ’

τ13n ijk i j k

ijk

H T u u u

Page 44: Nonequilibrium Green’s Function Method in Thermal Transport

Perturbative expansion of contour ordered Green’s function

44

( '') ''

2

1 1 1 1 2 2

3

1 2 3 1 2 3

( , ') ( ) ( ')

1( ) ( ') 1 ( ) ( ) ( )2!

1 1( ) ( ') ( ) ( ') ( , , ) ( ) ( ) ( )3! 3

ni H d

jk C j k

C j k n n n

C j k C j k lmn l m n

iG T u u e

i i iT u u H d H d H d

i iT u u T u u T u u u

1 2 3

4 5 6 4 5 6 4 5 6

01 2 3 4 5 6

1 2 5 3 6 4

1 ( , , ) ( ) ( ) ( )3

( , ') ... ( ) ( ') ( ) ( ) ( ) ( ) ( ) ( )

(Wick's theorem)

( ) ( ) ( ) ( ) ( ) ( ) ( )

lmn

opq o p qopq

jk C j k l m n o p q

C j l C m p C n q C o

d d d

T u u u d d d

G T u u u u u u u u

T u u T u u T u u T u u

( ')k

Page 45: Nonequilibrium Green’s Function Method in Thermal Transport

General expansion rule

1 2 1 2

0

1 2 1 2

( , ')( , , )

( , , , ) ( ) ( ) ( )n n

ijk i j k

j j j n C j j j n

GT

iG T u u u

Single line

3-line vertex

n-double line vertex

Page 46: Nonequilibrium Green’s Function Method in Thermal Transport

Diagrammatic representation of the expansion

46

21221100 )',(),(),()',()',( ddGGGG n

= + 2iħ + 2iħ

+ 2iħ

= +

Page 47: Nonequilibrium Green’s Function Method in Thermal Transport

Self -energy expansion

47

Σn =

Page 48: Nonequilibrium Green’s Function Method in Thermal Transport

Explicit expression for self-energy

48

' ' ', 0, 0,

'' '' '', ' 0, 0,

, ''

4

'[ ] 2 [ '] [ ']2

'2 '' [0] [ ']2

( )

n jk jlm rsk lr mslmrs

jkl mrs lm rslmrs

ijk

di T T G G

di T T G G

O T

Page 49: Nonequilibrium Green’s Function Method in Thermal Transport

Junction system, adiabatic switch-on

49

• gα for isolated systems when leads and centre are decoupled

• G0 for ballistic system• G for full nonlinear system

t = 0t = −

HL+HC+HR

HL+HC+HR +V

HL+HC+HR +V +Hn

gG0

G

Equilibrium at Tα

Nonequilibrium steady state established

Page 50: Nonequilibrium Green’s Function Method in Thermal Transport

Sudden Switch-on

50

t = ∞t = −

HL+HC+HR

HL+HC+HR +V +Hn

g

Green’s function G

Equilibrium at Tα

Nonequilibrium steady state established

t =t0

Page 51: Nonequilibrium Green’s Function Method in Thermal Transport

Three regions

51

RCLuuTiG

uuu

uuuu

u

TC

CL

L

L

R

C

L

,,,,)'()()',(

,, 2

1

Page 52: Nonequilibrium Green’s Function Method in Thermal Transport

Heisenberg equations of motion in three regions

52

,1 1 ,2 2

1 1 1[ , ], [ , ],

, ,

T LC T RCL C R L C R C n

T T

C CL CRC C C L R C n

CC

H H H H u V u u V u H

H u u u K u

u u H H K u V u V u u Hi i i

u K u V u L R

Page 53: Nonequilibrium Green’s Function Method in Thermal Transport

53

Force Constant Matrix

0,

0

1 12 2

L LC

CL C CR

RC R

LT T T T

L C R C n

R

L

C

R

K VK V K V

V K

uH p p u u u K u H

uu

p u uu

Page 54: Nonequilibrium Green’s Function Method in Thermal Transport

Relation between g and G0

54

Equation of motion for GLC

2

2

2

2

( , ') ( ) ( ') ,

( , ') ( ) ( ')

( , ') ( , '),

( , ') ( , '') ( '', ') '',

( , ') ( , ') ( , ')

TLC C L C

TLC C L C

L LCLC CC

LCLC L CC

LL L

iG T u u

iG T u u

K G V G

G g V G d

g K g I

Page 55: Nonequilibrium Green’s Function Method in Thermal Transport

Dyson equation for GCC

55

RCR

CRLCL

CL

CCCCCC

CCRC

RCR

CCLC

LCL

CCC

RCCR

LCCL

CCC

TCCCCC

TCCCCC

VgVVgV

ddGggG

IdGVgV

dGVgVGK

IGVGVGK

IuuTiG

uuTiG

)',()',()',(

,)',(),(),()',()',(

),',('')',''()'',(

'')',''()'',()',(

)',()',()',()',(

)',()'()()',(

,)'()()',(

212211

2

2

Page 56: Nonequilibrium Green’s Function Method in Thermal Transport

56

Equation of Motion Way (ballistic system)

2

2

2

2

( , ') ( , ') ( , ')

( , ') ( , ') ( , ')

0 0 0 0, 0 0 , 0

0 0 0 0

( , ') ( , ') '' ( , '') ( '', ')

L LC

C CL CR

R RC

C

G KG I

g Dg I

K VK D V D K V V V

K V

G g d g VG

Page 57: Nonequilibrium Green’s Function Method in Thermal Transport

57

“Partition Function”

0 0 0

( ) ( )

0

Tr ( ) ( , ) ( , )

Tr ( )

1

nI I

C

i V H d

c

Z t U t t U t t

t T e

Page 58: Nonequilibrium Green’s Function Method in Thermal Transport

58

Diagrammatic WayFeynman diagrams for the nonequilibrium transport problem with quartic nonlinearity. (a) Building blocks of the diagrams. The solid line is for gC, wavy line for gL, and dash line for gR; (b) first few diagrams for ln Z; (c) Green’s function G0

CC; (d) Full Green’s function GCC; and (e) re-sumed ln Z where the ballistic result is ln Z0 = (1/2) Tr ln (1 –gCΣ). The number in front of the diagrams represents extra combinatorial factor.

Page 59: Nonequilibrium Green’s Function Method in Thermal Transport

The Langreth theorem

59

aaarrr

rrrr

ar

ar

rrrrrr

CBACBACBAD

CBAD

ddCBAD

BABAC

dtttBttAdtttBttAttC

BACdtttBttAttC

dtttBttAdBAC

,

)',(),(),()',(

][][][][][

'')',''()'',('')',''()'',()',(

][][]['')',''()'',()',(

'''')',''()'',('')',''()'',()',(

212211

''

'''''

Page 60: Nonequilibrium Green’s Function Method in Thermal Transport

Dyson equations and solution

60

an

r

aan

rn

ran

r

rn

rr

ar

rCr

n

CC

GG

GIGGIGGG

GG

GGG

KIiG

GGGGGggG

)(

)()(

,)(

0,)(

,

0

110

000

120

00

00

Page 61: Nonequilibrium Green’s Function Method in Thermal Transport

Energy current

61

0

( ', ) ( ', )( , ') ( , ') '

1 Tr [ ]2

1 Tr [ ] [ ] [ ] [ ]2

T LCLL L C

t ar L LCC CC

t

LCCL

r aCC L CC L

dHI u V udt

t t t ti G t t G t t dtt t

V G d

G G d

Page 62: Nonequilibrium Green’s Function Method in Thermal Transport

Landauer/Caroli formula

62

0

1 Tr2

,2

,

( )

r aLL CC L CC R L R

r a

L RL

r aL L R R

a r r aL R

dHI G G f f ddt

i

I II

G G G i f f

G G iG G

Page 63: Nonequilibrium Green’s Function Method in Thermal Transport

63

1D calculation

• In the following we give a complete calculation for a simple 1D chain (the baths and the center are identical) with on-site coupling and nearest neighbor couplings. This example shows the general steps needed for more general junction systems, such as the need to calculate the “surface” Green’s functions.

Page 64: Nonequilibrium Green’s Function Method in Thermal Transport

Ballistic transport in a 1D chain

• Force constants

• Equation of motion64

kkkk

kkkkkkkk

k

K

0020

202

0

0

0

0

1 0 1(2 ) , , 1,0,1,2,j j j ju ku k k u ku j

Page 65: Nonequilibrium Green’s Function Method in Thermal Transport

Solution of g

65

2

0

0

0

0

1 20

( ) , 0

2 02 0

0 20 0

, 0,1,2, ,

(( ) 2 ) / 0, | | 1

RR

R

jRj

i K g I

k k kk k k k

Kk k k k

k

g jk

i k k k

Page 66: Nonequilibrium Green’s Function Method in Thermal Transport

Lead self energy and transmission

66

2 1

| |

1

20 0

0 00 0 0 00 0 0

0 0 0

( ) ,

1, 4[ ] Tr

0, otherwise

L

r CL R

j krjk

r aL R

k

G K

Gk

k k kT G G

T[ω]

ω

1

Page 67: Nonequilibrium Green’s Function Method in Thermal Transport

Heat current and conductance

67

max

min

0

2 2

0

[ ]2

1lim ,2 1

, 0, 03

L R

L L R

L

T TL R

B

dI T f f

I f d fT T T e

k T T kh

Page 68: Nonequilibrium Green’s Function Method in Thermal Transport

General recursive algorithm for g

68

10

1110

011110

0100

00

00

kkkkkk

kk

K R

1200

12

01

11

00

)(

)|(| while}

)(

{ do

sIig

gggee

gss

eIig

kkeks

T

14

5

10

10

Page 69: Nonequilibrium Green’s Function Method in Thermal Transport

69

Lecture Three

Applications

Page 70: Nonequilibrium Green’s Function Method in Thermal Transport

70

CARBON NANOTUBE (6,0), FORCE FIELD FROM GAUSSIAN

Disp

ersio

n re

latio

n

Transmission

Calculation was performed by J.-T. Lü.

Page 71: Nonequilibrium Green’s Function Method in Thermal Transport

Carbon nanotube, nonlinear effect

71

The transmissions in a one-unit-cell carbon nanotube junction of (8,0) at 300K. From J-S Wang, J Wang, N Zeng, Phys. Rev. B 74, 033408 (2006).

Page 72: Nonequilibrium Green’s Function Method in Thermal Transport

72

u4 Nonlinear modelOne degree of freedom (a) and two degrees freedom (b) (1/4) Σ Tijkl ui uj uk ul

nonlinear model. Symbols from quantum master equation, lines from self-consistent NEGF. For parameters used, see Fig.4 caption in J.-S. Wang, et al, Front. Phys. Calculated by Juzar Thingna.

1

5

10

Page 73: Nonequilibrium Green’s Function Method in Thermal Transport

Molecular dynamics with quantum bath2

2

, , , ,

( ) ( ) ( ') ( ') '

( ) ( ') ( '), , ,

2,

tC rC

C L R

T

r C r C r r rL R

d u t F t t t u t dtdt

t t i t t L R

V g V

See J.-S. Wang, et al, Phys. Rev. Lett. 99, 160601 (2007);Phys. Rev. B 80, 224302 (2009).

Page 74: Nonequilibrium Green’s Function Method in Thermal Transport

Average displacement, thermal expansion

74

One-point Green’s function

0 0

( ) ( )

' '' ''' ( ', '', ''') ( ', '') ( ''', )

( 0) [ 0]

1

j C j

lmn lm njlmn

rj lmn lm nj

lmn

jj

j

iG T u

d d d T G G

G T G t G

dGiM x dT

Page 75: Nonequilibrium Green’s Function Method in Thermal Transport

Thermal expansion

75

(a) Displacement <u> as a function of position x.

(b) as a function of temperature T. Brenner potential is used. From J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B 80, 205429 (2009).

Left edge is fixed.

Page 76: Nonequilibrium Green’s Function Method in Thermal Transport

Graphene Thermal expansion coefficient

The coefficient of thermal expansion v.s. temperature for graphene sheet with periodic boundary condition in y direction and fixed boundary condition at the x=0 edge. is onsite strength. From J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B 80, 205429 (2009).

Page 77: Nonequilibrium Green’s Function Method in Thermal Transport

77

Phonon Life-Time

( )2

2 2,

,

,

2

1 , ( )[ ]

Re [ ] 2 ,

Im [ ]

13

q qq

ti tr rq qr

q n q

rn q q q q

qrn q q

q

q q qq

G G t ei

c v

For calculations based on this, see, Y. Xu, J.-S. Wang, W. Duan, B.-L. Gu, and B. Li, Phys. Rev. B 78, 224303 (2008).

Page 78: Nonequilibrium Green’s Function Method in Thermal Transport

Transient problems

781 2

0

0

0

,1 2

2

, 0( )

, 0

( , )( ) Im

L R

T LRL R

RL

Lt t t

H H H

H tH t

H u V u t

G t tI t kt

Page 79: Nonequilibrium Green’s Function Method in Thermal Transport

Dyson equation on contour from 0 to t

79

1 1 1

1 2 1 1 2 2,

( , ') ( ) ( ')

( ) ( ) ( ')

RL R RL L

C

R RL L LR RL

C C

G d g V g

d d g V g V G

Contour C

Page 80: Nonequilibrium Green’s Function Method in Thermal Transport

80

TRANSIENT THERMAL CURRENT

The time-dependent current when the missing spring is suddenly connected. (a) current flow out of left lead, (b) out of right lead. Dots are what predicted from Landauer formula. T=300K, k =0.625 eV/(Å2u) with a small onsite k0=0.1k. From E. C. Cuansing and J.-S. Wang, Phys. Rev. B 81, 052302 (2010). See also arXiv:1005.5014.

Page 81: Nonequilibrium Green’s Function Method in Thermal Transport

81

FINITE LEAD PROBLEM

Top : no onsite (↥ k0=0), (a) NL = NR = 100, (b) NL=NR=50, temperature T=10, 100, 300 K (black, red, blue). TL=1.1T, TR = 0.9T.

Right : with onsite ↦ k0=0.1k and similarly for other parameters. From E. C. Cuansing, H. Li, and J.-S. Wang, Phys. Rev. E 86, 031132 (2012).

Page 82: Nonequilibrium Green’s Function Method in Thermal Transport

82

Full counting statistics (FCS)• What is the amount of energy (heat) Q transferred in a

given time t ?• This is not a fixed number but given by a probability

distribution P(Q)• Generating function

• All moments of Q can be computed from the derivatives of Z.

• The objective of full counting statistics is to compute Z(ξ).

dQQPeZ Qi )()(

Page 83: Nonequilibrium Green’s Function Method in Thermal Transport

A brief history on full counting statistics

• L. S. Levitov and G. B. Lesovik proposed the concept for electrons in 1993; rederived for noninteracting electron problems by I. Klich, K. Schönhammer, and others

• K. Saito and A. Dhar obtained the first result for phonon transport in 2007

• J.-S. Wang, B. K. Agarwalla, and H. Li, PRB 2011; B. K. Agarwalla, B. Li, and J.-S. Wang, PRE 2012.

83

Page 84: Nonequilibrium Green’s Function Method in Thermal Transport

Definition of generating function based on two-time measurement

84

( )

2

/

Tr '

'

| || |( ) (0, ) ( ,0)

e.g., ( ,0)

L Li H i H t

a aa

a a

L

L L

iHt

Z e e

P P

P P a aH a a aH t U t H U t

U t e

Consistent history quantum mechanics (R. Griffiths).

Page 85: Nonequilibrium Green’s Function Method in Thermal Transport

Product initial state

85

, ,

( )

/ 2 / 2

/ 2 / 2

, [ , ] 0, '

Tr

Tr (0, ) ( ,0)

Tr (0, ) ( ,0)

Tr (0, ) ( ,0)

( , ') ( , ')

L L

L L

L L L

L L

HL L

L C R

i H i H t

i H i H

i H i H i H

ixH ixHx

e P H

Z e e

e U t e U t

e U t e U t e

U t U t

U t t e U t t e

Page 86: Nonequilibrium Green’s Function Method in Thermal Transport

86

'

'

( )

( )

0 0

( , ')

, '

( ) ( )

( )

( )

( )

ti

tL L

ti

xt

L L

L L

L L

L L

H t dtixH ixHx

H t dt

ixH ixHx

ixH ixHLC RCL C R

ixH ixHRC LCL C R

RC L T LC C xx I

ixH ixHL L Lx

U t t e Te e

Te t t

H t e H t e

e H H H H H e

H H H H e H e

H H u V u H H

u e u e u x

Page 87: Nonequilibrium Green’s Function Method in Thermal Transport

Schrödinger/Heisenberg/interaction pictures

87tHitHi

I

dttHi

I

I

tHi

I

I

HHH

HH

i

AeetA

ttTettSttStHtttSi

tttStet

HHH

tHtAt

tAi

tAUtUtA

ttUtHt

ttUi

iiwtttUt

t

t I

00

'

0

)(

',)',(),',()()',(

)'(|)',()(|)(|

)](),([)()0(||),0,(),0()(

)',()()',(

||)'(|)',()(|

'')''(

0

Schrödinger picture

Heisenberg picture

Interaction picture

Page 88: Nonequilibrium Green’s Function Method in Thermal Transport

Compute Z in interaction picture

88

LxL

ALRLCC

AL

ALCR

xLC

LCxL

CLC

C C

xI

xIC

xIC

dHi

C

GggG

G

GggZ

VgVg

ddHHidHiT

eT

tUtUZ

C

xI

,,

)]1ln[(Tr21

)]1)(1det[(ln21)](1[lnTr

21ln

][Tr211

')'()(21)(1Tr

]Tr[

)]0,(),0([Tr

00

0

0

2

)(

2/2/

-ξ/2

+ξ/2

Page 89: Nonequilibrium Green’s Function Method in Thermal Transport

Important result

89

otherwise00if2/)(

0if2/)()(

)',()'('),()',(

,,

)1ln(Tr21ln

00

0

M

M

LLAL

LxL

ALRLCC

AL

tttx

tttxx

xx

GggG

GZ

Page 90: Nonequilibrium Green’s Function Method in Thermal Transport

Long-time result, Levitov-Lesovik formula

90

)/(1),1/(1

,),(

)1]([),1]([

where

)2()1()1(detln4

01lnTr

21

)1ln(Tr21ln

00

0

0

0

22

22

Tkef

RLi

ebea

ffeefefeGGIdt

GGG

GZ

Ba

ar

iL

iL

RLii

Ri

Li

Ra

Lr

M

a

Kr

AL

baba

baba

Page 91: Nonequilibrium Green’s Function Method in Thermal Transport

Arbitrary time, transient result

91 time)long in(

)(ln

)(Tr

21

)(ln

)(ln

)1ln(Tr21ln

2

2222

00

0

0

ItQ

iZQQQ

iG

iZQQ

iZQ

GZ

M

AL

n

nn

AL

Page 92: Nonequilibrium Green’s Function Method in Thermal Transport

Numerical results, 1D chain

92

1D chain with a single site as the center. k= 1eV/(uÅ2), k0=0.1k,TL=310K, TC=300K, TR=290K. Red line right lead; black, left lead. B. K. Agarwalla, B. Li, and J.-S. Wang, PRE 85, 051142, 2012.

Page 93: Nonequilibrium Green’s Function Method in Thermal Transport

93

Cumulants in Finite SystemPlot of the culumants of heat <<Qn>> for n=1,2,3, and 4 for one-atom center connected with two finite lead (one-dimensional chain) as a function of measurement time tM. The black and red line correspond to NL =NR =20 and 30, respectively. The initial temperatures of the left, center, right parts are 310K, 360K, and 290K, respective. We choose k=1 eV/(uÅ2) and k0=0.1 eV/(uÅ2) for all particles. From J.-S. Wang, et al, Front. Phys. 2013.

Page 94: Nonequilibrium Green’s Function Method in Thermal Transport

FCS for coupled leads

94

,

LC LRL

CL CRC

RL RCR

K V VK V K V G g gVG

V V K

1 1

ln ln det ( 1) (1 ) ( 1) (1 ) [ ]4

[ ] , , ,

If center is absent 0, then

[ ] [ ]

i iM L R R L g

r a a rg LR R RL L

LC RC

r ag I RR R RR L

dZ t I e f f e f f T

T G G i g g L R

V V

T T G G

From H. Li, B. K. Agarwalla, and J.-S. Wang, Phys. Rev. E 86, 011141 (2012); H. Li, B. K. Agarwalla, and J.-S. Wang, Phys. Rev. B 86, 165425 (2012). For multiple leads, see B. K. Agarwalla, et al, arXiv:1308.1604

Page 95: Nonequilibrium Green’s Function Method in Thermal Transport

FCS in nonlinear systems

• Can we do nonlinear?

• Yes we can. Formal expression generalizes Meir-Wingreen

• Interaction picture defined on contour

• Some example calculations

95

Page 96: Nonequilibrium Green’s Function Method in Thermal Transport

Vacuum diagrams, Dyson equation, interaction picture transformation on

contour

96

,

[

Lj,

0 0

( )I1 2 1 2

0 0

( )

ln 1 Tr( ) 2 ( )

1( , ) Tr ( ) ( )

, (0 , ) ( ,0 ) /

( ) (0 , ) ( ) ( ,0 )

( ,0 )

InC

x T LC T CRL C C R

C

AL n

i H dI I TC

n

In M M

I

i u V u u V u d

C

Z Gi i

G G G G

iG T u u eZ

Z Z Z V t V t Z

O V O V

V T e

,0 ]

Page 97: Nonequilibrium Green’s Function Method in Thermal Transport

Nonlinear system self-consistent results

97

Single-site (1/4)λu4 model cumulants. k=1 eV/(uÅ2), k0=0.1k, Kc=1.1k, V LC

-1,0=V CR

0,1=-0.25k, TL=660 K, TR=410K.

From H. Li, B. K. Agarwalla, B. Li, and J.-S. Wang, arxiv::1210.2798

( , ') 3 ( , ') ( , ')n i G

Page 98: Nonequilibrium Green’s Function Method in Thermal Transport

98

Quantum Master Equations

• When we tried to calculation the reduced density matrix from Dyson expansion, we found that the 2nd order (of the system-bath coupling) diagonal terms do not agree with master equation results, and there are also divergences in higher orders. Similarly, the currents also diverge at higher order. We were quite puzzled. The following is our effort to solve this puzzle and found an expression of the high order current which is finite.

Page 99: Nonequilibrium Green’s Function Method in Thermal Transport

99

Quantum Master Equations0

( )

0

( )

0

2 42 4 6

0

( ) Tr ( , ) ( ) ( , )

Tr ( ) ,

( ) Tr ( ) [ ( ), ( )] ,

( )2! 4!

| |, Tr

C

C

IH B

V dI

B c

V dI

H B c

T T T

Inm

O t S t O t S t

iT O t e

d O t T O t O t V t edt

X X V X V O

X n m

.B cT

Page 100: Nonequilibrium Green’s Function Method in Thermal Transport

100

Unique one-to-one map ρ ↔ ρ0

2 4 42 4 2 2

0 2

42 3

42

4 42 3 2 6

2! 4! 2!

[ , ] [ , ]3!

[ , ]2!

( )3! 2!

I T T T T

T T

T T

TH

T LCL C

X V X V X V X V

d i X V V X V Vdt

X V X V V

I VV VV X V VV

V p V u

Page 101: Nonequilibrium Green’s Function Method in Thermal Transport

101

Group & AcknowledgementsGroup members: front (left to right) Mr. Zhou Hangbo, Prof. Wang Jian-Sheng, Dr./Ms Lan Jinghua, Mr. Wong Songhan; Back: Mr. Li Huanan, Dr. Zhang Lifa, Dr. Bijay Kumar Agarwalla, Mr. Kwong Chang Jian, Dr. Thingna Juzar Yahya. Picture taking 17 April 2012. Others not in the picture: Qiu Hongfei. Thanks also go to Jian Wang, Jingtao Lü, Jin-Wu Jiang, Edardo Cuansing, Meng Lee Leek, Ni Xiaoxi, Baowen Li, Peter Hänggi, Pawel Keblinski.http://staff.science.nus.edu.sg/~phywjs/