non linearity in ccd detection - picard

27
JFH - Solar Metrology: Needs & Methods II Non linearity in CCD detection Intermission on the way to Picard Sodism L1 products J.-F. Hochedez 2015-09-23 1

Upload: others

Post on 11-Jul-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non linearity in CCD detection - Picard

JFH - Solar Metrology: Needs & Methods II

Non linearity in CCD detection

Intermission on the way to Picard Sodism L1 products

J.-F. Hochedez

2015-09-23 1

Page 2: Non linearity in CCD detection - Picard

1. Successive restorative steps of

instrumental correction

1. From the Level 0 to Level 1k+1 data products

2. The unwanted components in the signal of a pixel

3. Put the corrections in sequence!

2015-09-23 JFH - Solar Metrology: Needs & Methods II 2

Page 3: Non linearity in CCD detection - Picard

From the Level 0 to Level 1k+1 data products

β€’ Instrumental corrections:

– Condition the scientific objectives β€’ Especially in the fields of metrology/astrometry when accuracy and/or precision prevail

– Bring instrumental diagnostics

β€’ To convert Level 0 (= formatted & informed TM) into Level 1 products (= corrected for instrumental flaws), we must:

1. Elaborate a correction method

2. Compute its calibration elements β€’ E.g. the parameters of a non-linearity function

3. Process the data products provided by the previous correction stage

The above cycle actually applies from Level 1k to Level1k+1, i.e. several times!

2015-09-23 3 JFH - Solar Metrology: Needs & Methods II

Page 4: Non linearity in CCD detection - Picard

β€’ PSF

– Scattered light

– Kinematic blur

– Optical aberrations (defocus…)

β€’ Persistence / hysteresis

β€’ CCD charge transfer efficiency

β€’ Distortion (anamorphosis)

β€’ Offset

β€’ Dark signal

– Hot pixels

β€’ Cosmic ray hits

β€’ Ghost images

β€’ Optical flatfield

– incl. vignetting

β€’ Detector flatfield

β€’ Non linearity of the detection

What are we talking about? List of instrumental effects in the Picard Sodism solar space telescope

Additive Convolutive

Other

Multiplicative

2015-09-23 JFH - Solar Metrology: Needs & Methods II 4

Page 5: Non linearity in CCD detection - Picard

Components in the pixel signal

2015-09-23 JFH - Solar Metrology: Needs & Methods II 5

0 DN

Offset

Dark signal (CO) generated in the CCD memory zone (MZ), incl. MZ β€˜hot pixels’

Dark signal (CO) generated in the CCD image zone (IZ), incl. IZ β€˜hot pixels’

Persistence

Scientific signal (wanted!)

= G [DN/e-] FlatField (x,y,t, previous image) [e-/ph] Non Lin Function (Ξ¦ [ph_in]) Exptime(x,y) [s]

Signal due to the light scattered by the optical elements (window, mirrors, filters…)

Signal due to parasitic reflections = ghost(s)

Signal due to cosmic ray hits

NB: Convolution by the PSF core not listed here

Page 6: Non linearity in CCD detection - Picard

Put the corrections in the right sequence!

β€’ The corrections ought to apply in β€œsome” order…

β€’ They must proceed from back to front 1. DN or ADU

2. Detected e-

3. Detected photons

4. Incident photons

5. etc.

β€’ Typically, one cannot address optical effects with data that are still tainted by detection flaws. – In principle.

– Might be OK for the spadework

Preferred sequence 1. Offset

2. Cosmic ray hits

3. Dark signal and hot pixels

4. Non linearity

5. Detector flatfield

6. Persistence

7. Ghost

8. PSF (aberrations and scattered light)

9. Optical flatfield

10. Distortion

11. …

Sub-levels L1k+1 after each

2015-09-23 JFH - Solar Metrology: Needs & Methods II 6

Page 7: Non linearity in CCD detection - Picard

2. Non Linearity due to shutter kinematics

1. Evidencing the problem

2. Observational campaigns of exposure time variations

3. Modeling the shutter kinematics

a. Parameterized modelization

b. Inversion of the geometrical configuration

2015-09-23 JFH - Solar Metrology: Needs & Methods II 7

Page 8: Non linearity in CCD detection - Picard

Non linearity seen during exposure time variation campaigns

2015-09-23 JFH - Solar Metrology: Needs & Methods II 8

Ave

rage

sig

nal

in 5

35

D im

ages

[A

DU

. pxl

-1. s

ec-1

]

3%

1%

Page 9: Non linearity in CCD detection - Picard

Chronology of commanded exposure times

2015-09-23 JFH - Solar Metrology: Needs & Methods II 9

14 stages, from #0 to #13

0.5 sec

1.3 sec

Page 10: Non linearity in CCD detection - Picard

Offset image

Exposure time variation campaign March 22., 2011 @535D

Flux image π‹π’Š 2015-09-23 JFH - Solar Metrology: Needs & Methods II 10

Let’s first assume a fully linear model w.r.t. exposure time:

π‘Ίπ’Šπ’ˆπ’π’‚π’ 𝑝π‘₯𝑙 = 𝑖, πΆπ‘œπ‘šπ‘šπ‘Žπ‘›π‘‘π‘’π‘‘ 𝑒π‘₯π‘π‘œπ‘ π‘’π‘Ÿπ‘’ = 𝑇𝑗 = π‹π’Š 𝑻𝒋 + π‘Άπ’‡π’‡π’”π’†π’•π’Š

πœ‘π‘– and 𝑂𝑓𝑓𝑠𝑒𝑑𝑖 obtained by robust linear regression at each pxl

Page 11: Non linearity in CCD detection - Picard

Optical scheme

2015-09-23 JFH - Solar Metrology: Needs & Methods II 11

Page 12: Non linearity in CCD detection - Picard

2.3 Modeling the shutter kinematics

1. Exposure time is non homogeneous over the field

2. Six unknown parameters

3. Solution and result

2015-09-23 JFH - Solar Metrology: Needs & Methods II 12

Page 13: Non linearity in CCD detection - Picard

Effect of a not-so-swift electromechanical shutter Most geometrical parameters are known

Much information resides in the Uniblitz/Vincent Associates drawings

2015-09-23 JFH - Solar Metrology: Needs & Methods II 13

Page 14: Non linearity in CCD detection - Picard

2015-09-23 JFH - Solar Metrology: Needs & Methods II 14

Page 15: Non linearity in CCD detection - Picard

2015-09-23 JFH - Solar Metrology: Needs & Methods II 15

Page 16: Non linearity in CCD detection - Picard

β€’ Relative centering of CCD vs. shutter – X0 & Y0

β€’ Tilt of the overall shutter system – ΞΈ0

β€’ Speed of each blade – Reference blade : ΞΊ

– Relative speed of the other blade : ΞΆ

β€’ Delay between header exposure time and actual motion – Ο„0

Only 4 parameters needed to generate a map of extra exposure time

X0, Y0, ΞΈ0, ΞΆ 𝛾𝑖

6 Unknowns parameters

2015-09-23 JFH - Solar Metrology: Needs & Methods II 16

Page 17: Non linearity in CCD detection - Picard

Estimation of the unknown geometrical parameters

π‘Ίπ’Šπ’ˆπ’π’‚π’ 𝑝𝑖π‘₯𝑒𝑙 = 𝑖, π‘ͺπ’π’Žπ’Žπ’‚π’π’…π’†π’… 𝒆𝒙𝒑𝒐𝒔𝒖𝒓𝒆 = 𝑻𝒋 = πœ‘π‘– Γ— 𝑻𝒋 + 𝜏0 + πœ… 𝛾𝑖 = π‹π’Š 𝑻𝒋 + π‘Άπ’‡π’‡π’”π’†π’•π’Š

π‘Άπ’‡π’‡π’”π’†π’•π’Š π‹π’Š = π‰πŸŽ + 𝜿 Γ— πœΈπ’Š π‘ΏπŸŽ, π’€πŸŽ, 𝜽𝟎, 𝜻

(X0 , Y0 , ΞΈ0 , ΞΆ , 𝜏0, πœ…) estimated by minimizing Ο‡2 in the above linear regression

2015-09-23 JFH - Solar Metrology: Needs & Methods II 17

OPEN

CLOSE

TC

100% open

TE =

CE

Origin of π‰πŸŽ TC = commanded exposure time TE = duration of the 100% open configuration π‰πŸŽ = TE – TC

Page 18: Non linearity in CCD detection - Picard

Chi square minimization [1/2]

2015-09-23 JFH - Solar Metrology: Needs & Methods II 18

X0 Y0

ΞΈ0 ΞΆ

Ο‡2

Ο‡2

Ο‡2

Ο‡2

41.5Β°

846 960

1.18

Page 19: Non linearity in CCD detection - Picard

Chi square minimization [2/2]

2015-09-23 JFH - Solar Metrology: Needs & Methods II 19

𝜏0 πœ…

Ο‡2 Ο‡2

0.0855

-0.0277

ΞΈ0 = 41.5Β° X0 = 846 pxl, Y0 = 960 pxl πœ… = 85,5 ms.rad-1

LinearModel = πœ‘π‘– Γ— 𝐸π‘₯π‘π‘œπ‘ π‘’π‘Ÿπ‘’π‘€π‘Žπ‘ 𝑖, 𝑗 , with 𝐸π‘₯π‘π‘œπ‘ π‘’π‘Ÿπ‘’π‘€π‘Žπ‘ 𝑖, 𝑗 = 𝑇𝑗 + 𝜏0 + πœ… 𝛾𝑖

1/πœ… = 11.7 rad.s-1 = 111.6 rpm ΞΆ = 1.18, viz. 2nd blade is 18% faster

𝜏0 = -27.7 ms

Page 20: Non linearity in CCD detection - Picard

Extra exposure time due to the shutter

2015-09-23 JFH - Solar Metrology: Needs & Methods II 20

3% locally for a 1 sec commanded exposure

Page 21: Non linearity in CCD detection - Picard

3. Residual non linearity

1. Dependency on exposure time - correct

2. Limits of the linear model

3. Model of the CCD non linearity

2015-09-23 JFH - Solar Metrology: Needs & Methods II 21

Page 22: Non linearity in CCD detection - Picard

No more dependency on exposure time (almost)

2015-09-23 JFH - Solar Metrology: Needs & Methods II 22

Ave

rage

sig

nal

in 5

35

D im

ages

[A

DU

. pxl

-1. s

ec-1

]

Average (over all pixels i) of : Data(i,Tj)/ExposureMap(i,j)

Page 23: Non linearity in CCD detection - Picard

Observational data / Linear Model Ratio [1/4] Histogram equalized ok, but should be flat & unstructured

2015-09-23 JFH - Solar Metrology: Needs & Methods II 23

Exposure time

1.3 sec

0.5 sec

Page 24: Non linearity in CCD detection - Picard

Observational data / Linear Model Ratio [2/4]

2015-09-23 JFH - Solar Metrology: Needs & Methods II 24

Chronology

1.3 sec

0.5 sec

0.5 sec

Page 25: Non linearity in CCD detection - Picard

Observational data / Linear Model Ratio [3/4]

2015-09-23 JFH - Solar Metrology: Needs & Methods II 25

Saturation

A model based on photons filling defects in the β€œdead layer” seems to fit well the residual non linearity (except for the wavy pattern)

Nolin = Exp(-A . Exp (-B . Ο•)) O.5

1.0

535nm (535D)

Page 26: Non linearity in CCD detection - Picard

Observational data / Linear Model Ratio [4/4]

2015-09-23 JFH - Solar Metrology: Needs & Methods II 26

O.5

1.0

393

Page 27: Non linearity in CCD detection - Picard

Conclusion

β€’ Shutter effect – Needs to be corrected, as it otherwise adds false signal

β€’ 3% locally for a 1 sec commanded exposure

– Especially important around solar disc center – Avoidable via CCD or CMOS-APS integration within shutter opening

β€’ CCD non linearity – Critical effect below 100 ADU/s – Non linearity will affect

β€’ Scattered light removal β€’ Estimation of the bottom part of the radial profile (esp. corner images)

– Laboratory studies desirable (reality of waves) EUV

β€’ Do vary exposure in flight

2015-09-23 JFH - Solar Metrology: Needs & Methods II 27