nihar&r.&sahoo&& texas&a&muniversity,& usa · 2014. 4. 16. ·...

20
RECENT RESULTS ON EVENT-BY-EVENT FLUCTUATIONS FROM RHIC BEAM ENERGY SCAN PROGRAM AT STAR EXPERIMENT Nihar R. Sahoo (for the STAR Collabora4on) Texas A&M University, USA 1 N. R. Sahoo, WWND 2014

Upload: others

Post on 21-Sep-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

RECENT RESULTS ON EVENT-BY-EVENT FLUCTUATIONS FROM RHIC BEAM ENERGY SCAN PROGRAM AT STAR EXPERIMENT

Nihar  R.  Sahoo    (for  the  STAR  Collabora4on)  

Texas  A&M  University,  USA  

1  N.  R.  Sahoo,  WWND  2014  

Page 2: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

• RHIC Beam Energy Scan Program • Search for QCD Critical Point

•  Higher moments of conserved charge distribution •  Other signatures

• Signature of QGP

• Signature of Disoriented Chiral Condensate

• Future perspective for BES-II and upgrades

• Summary

2  N.  R.  Sahoo,  WWND  2014  

Outline

Page 3: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

BES-I

RHIC Beam Energy Scan program (BES)

Main  Goal  

• Search  for  the  QCD  Cri3cal  Point      

•   Evidence  of  1st  order  phase  transi3on  in  the  QCD  Phase  diagram  

•   Understand  the  proper3es  of  the  QGP  as  a  func3on  of  μB    

3  

N.  R.  Sahoo,  WWND  2014  hFp://www.agsrhichome.bnl.gov/RHIC/Runs/   3  

20  

Page 4: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

Physics  Phenomena   Observables  

QCD  Cri3cal  Point  

• Higher  moments  of  conserved  charge  distribu3on  like,  

•       Net-­‐charge        •       Net-­‐proton  (proxy  of  net-­‐baryon)  •       Net-­‐kaon        (proxy  of  net  strangeness)  

(Skewness,  Kurtosis,  etc)  

• pT  fluctua3on  (  two  par4cle  pT  correla4on)  

• Par3cle  Ra3o  fluctua3on  (νk/π  ,  νp/π,  νk/p)  

Signature  of    QGP   Dynamical  charge  fluctua3on  (ν+/-­‐  )  

DCC  signature   Charged  par3cles-­‐Υ  correla3on    (rm,n)    

BES  E-­‐by-­‐E  fluctua3on  analysis  

4  N.  R.  Sahoo,  WWND  2014  

Page 5: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

AuAu  200  GeV   7.7  GeV  

Rapidity  

Transverse  mom

entum  Proton  

Pion  

Kaon  

 Uniform  pT  and  rapidity  acceptance.   Full  2π  coverage   Very  good  par3cle  iden3fica3on    capabili3es          (TOF  and  TPC)  

Important    tools  for  any  fluctua3on  analysis  

STAR  Experiment  at  RHIC  

5  N.  R.  Sahoo,  WWND  2014  

Page 6: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

QCD  Cri3cal  Point  

6  N.  R.  Sahoo,  WWND  2014  

• Divergence  of  the  correla4on  • Divergence  of  the  thermodynamic  suscep4bility        

•   Signature  of  CP  

(QCD  based  calcula4on)  

•   Bridge  between                Theory  and  Experiment  

Thermodynamic          Moments  of  the  conserved    suscep3bility                                        quan33es  distribu3on  

(σ)  (S)  (κ)  

(Labce  QCD  results)  

μB  =  0  

•   Various  baseline  measurements  (Like,  Poisson  dist.,  NBD,  etc.)  

 net-­‐charge,  net-­‐baryon  and                          net-­‐strangeness  

Higher  moments  of  the  distribu3on  of  conserved  quan33es  as  a  func3on  of  beam  energy  may  give  signature  of  Cri3cal  Point.  

Caveats:  finite  size  and  3me  effect,  cri3cal  slowing  down  etc.  

M.  Cheng  et  al,  PRD  79,  074505  (2009)  

Page 7: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

N.  R.  Sahoo,  WWND  2014   7  

Higher  moments  analysis:  Experimental  techniques    

10210310410510610710 (a) 7.7 GeV

-20 0 20

210

410

610

810 (e) 39 GeV

(b) 11.5 GeV

-20 0 20

(f) 62.4 GeV

(c) 19.6 GeV

-20 0 20

(g) 200 GeV

(d) 27 GeV

-20 0 20

0-5%30-40%70-80%

Au+Au CollisionsNet-proton

<0.8 (GeV/c)T

0.4<p|y|<0.5

Skellam Dis.Num

ber o

f Eve

nts

)pNNet-proton (

Net-­‐proton  distribu3on   Net-­‐charge  distribu3on  

Various  sophis3cated  analysis  techniques  are  used  • Extensive  event  quality  assurance  • Centrality  Bin  width  effect    • Efficiency  correc4on  of    higher  moments  

Various  effects  have  been  studied  •   Auto-­‐correla4on  effect      •   Centrality  resolu4on  effect  

• Various  baseline  measurements  including  different  MC  model  simula3ons  

Cri3cal  Analysis    for  Cri3cal  Point  

PRL  112,  032302  (2014).  Acta  Phys.Polon.Supp.  6  (2013)  437-­‐444  

Page 8: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

8  N.  R.  Sahoo,  WWND  2014  

BES  Results  of  Higher  moments  :  Net-­‐Proton  

• Devia4ons  for  both  κσ2  and  Sσ  from  HRG  and  Skellam  expecta4ons  are  observed  for    √sNN    ≤  27  GeV  

• At  low  energies,  large  sta4s4cal  error  

•   Various  model  es4ma4ons  are  compared  

•   Independent  Produc4on      (no  correla4on  between  proton  and    an4-­‐proton)  

•   UrQMD    

PRL  112,  032302  (2014).  

Page 9: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

M2

10

210 Net-chargeAu+Au

| < 0.5|

a)

S

0

0.2

0.4

0.6 b)

(GeV)NNs5 6 10 20 30 100 200

2

-15-10-505

c)

0-5%70-80%0-5% NBD70-80% NBD0-5% Poisson70-80% Poisson

9  N.  R.  Sahoo,  WWND  2014  

BES  Results  of  Higher  moments:  Net-­‐Charge  • Within  the  present  uncertainty,  no  non-­‐monotonic  behavior  is  observed  as  a  func4on  of  beam  energy  

• More  sta4s4cs  at  low  energies  is  needed  for  beFer  understanding  

•       Baseline  measurements  have  been  compared    

•   Poisson  (  input:  mean  of  Pos.  and  Neg.  dist)  •   NBD        (  input:  mean  and  width  of  Pos.  and  Neg.  dist)  

• These  results  can  be  used  to  extract  the  freeze-­‐out  parameters  by  comparing  with  labce  results  arXiv:1402.1558  

Page 10: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

N.  R.  Sahoo,  WWND  2014   10  

Extrac3on  of  Freeze-­‐out  parameter    • Lafce  QCD  calcula3on  and  Experiment  

Thermometer   Baryometer  

•   Recent  lafce  measurements    •   Es3ma3on  of  Tf  and  μB_f  :    comparing  experimentally  measured    

                   higher  moments  of    Net-­‐charge    distribu3on    (  A.  Bazavov,  et  al.,  PRL  109,  192302  (2012),    S.  Borsanyi  et  al.,  PRL  111,  062005  (2013)  ,  arXiv:1403.4576  )  

•   Exploring  more  about  QCD  phase  diagram  •     Sσ3/M  :    Tf      lies  between  150-­‐190  MeV  (with  uncertainty)  •   M/σ2      decreases  with  increased  beam  energy  as  μB  

Page 11: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

11  N.  R.  Sahoo,  WWND  2014  

QCD  Cri3cal  Point  vs  BES  program  Within  large  stat.  uncertainty,  • Net-­‐proton  Devia3ons  for  κσ2  from  UrQMD  and  Poisson  expecta3ons  for    √sNN    ≤  27  GeV  • Net-­‐charge  No  devia3on  is  observed  for  κσ2      from  NBD  and  Poisson  •     Net-­‐kaon  (ongoing  analysis)    • Large  Sta3s3cs  is  required  at  low  energies  

• Besides  expt.  challenges,  required  more      understanding  on    

• Various  final  state  effects                (Resonance  decay,    diffusion  of  charge  fluct.  etc)    

• Finite  volume  and  4me  effect  • Effect  of  baryon  stopping  at  low        energies…,  etc  

Other  Observables  for  Cri3cal  Point    search  ?  

STAR  white  paper  on  BES-­‐I  

Page 12: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

12  N.  R.  Sahoo,  WWND  2014  

Transverse  momentum  fluctua3on    

• Two-­‐par3cle  transverse  momentum  correla3on  

• No  non-­‐monotonic  behavior  is  observed  as  a  func3on  of  collision  energy  • Two  par3cles  pT  correla3on  decreases  with  decreased  collision  energy  • Rapid  increase  of  pT  correla3on  below  39  GeV  and  a  plateau  above  it  

�< ∆pt,i,∆pt,j >

<< pt >>∝ 1

Cv

Related  to  specific  heat  of  the  system  

Page 13: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

13  N.  R.  Sahoo,  WWND  2014  

Par3cle  Ra3o  Fluctua3ons  

• Dynamical  p/π  and  k/p  fluctua4on  are  nega4ve  and  decreases  with  decreased  collision  energy  

• Dynamical  K/π  fluctua4on  remains  independent  of  collision  energy.  

• No  non-­‐monotonic  behavior  is  observed  as  a  func3on  of  collisions  energy  

 νk/p  

νp/π   νk/π  

Page 14: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

14  N.  R.  Sahoo,  WWND  2014  

Dynamical  charge  fluctua3on  

• With  decrease  in  collision  energy,  dynamical  charge  fluctua3on  decreases  and  becomes  more  nega3ve  

• Correla4on  between  posi4ve  and  nega4ve  charged  par4cles  increases  with  decreased  beam  energy  

Forward  rapidity:    -­‐3.7  <  η  <  -­‐2.8  Mid  rapidity:    -­‐0.5  <  η  <  0.5  

Page 15: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

DCC  signature  

15  N.  R.  Sahoo,  WWND  2014  

•   DCC  signature:  presence  of  very  large  e-­‐by-­‐e  flut.  in  frac3on  of  π0  produc3on  • Photons  (Υ)  mostly  from  π0  decay  

•   Anomalous  pion  produc3on  as  signature  of  DCC  domain  forma3on  •   r1,1Υ-­‐ch    is  a  robust  variable  for  DCC  search    •   More  systema3c  study  is  needed  (  on  going  work)  

• Photons  are  counted  at  forward  detector  PMD  

r 1,1  

Page 16: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

Where  do  we  stand,  so  far  ?  Observables   Signature  of     Observa3on   Remarks  

Net-­‐proton  higher  moments  

QCD  Cri3cal  Point    

Devia3on  below      27  GeV  

Large  Sta3s3cal  Error  

Net-­‐charge  higher  moments  

No  clear  devia3on   Large  Sta3s3cal  Error  

Par3cle  ra3o  Fluctua3on   No  Devia3on   Sta3s3cally  sound  

Two  par3cle  pT  fluctua3on  

No  Devia3on   Sta3s3cally  sound  

ν-­‐dynamic  :  posi3ve-­‐neg.  charged  par3cles  

     QGP   Systema3cally    decrease  of  dyn.    fluc.  

Ongoing  analysis  

ν-­‐dynamic  :  charge-­‐neutral    par3cles  

     DCC   No  conclusive  signature  

Ongoing  analysis      

16  N.  R.  Sahoo,  WWND  2014  

More  sta3s3cs  is  required  for  the  higher  moment  analysis  to  close  the  chapter  on  Cri3cal  Point  at  STAR  Experiment.  (Let’s  give  one  more  try!)  

Page 17: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

Future  BES-­‐II  program  Collision Energy (GeV)

7.7 9.1 11.5 14.6 19.6

µB (MeV) 0-5% central collisions

420 370 315 260 205

BES-I (106 Events)

4 - 12 20 (y2014) 36

BES-II (106 Events)

100 160 230 300 400

Detector  Upgrades  • iTPC  (Rebuilding  of  inner-­‐sector  of  STAR  TPC)  

•   Improve  dE/dX,      •   η  coverage  (from  1.0  to  1.7)  •   accessible  for  low  pT.    

• EPD  (Event  Plane  and  centrality  Detector)  • End-­‐cap  Time-­‐Of-­‐Flight  (ETOF)  

17  N.  R.  Sahoo,  WWND  2014  

Expected  2018-­‐2019      

future  E-­‐by-­‐E    fluct.  Analysis  will  improve  

Page 18: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

N.  R.  Sahoo,  WWND  2014   18  

Summary  

• STAR  experiment  has  successfully  completed  BES-­‐I  program  • With  large  stat.  uncertainty  

• Net-­‐proton  higher  moments  show  devia3on  below  27  GeV  from      UrQMD  and  Poisson  baseline  • No  clear  devia3on  is  observed  from  Net-­‐charge  higher  moments  

• More  sta3s3cs  and  energy  points  are  needed  for  final  conclusion  on  Cri3cal  Point  

•   BES-­‐II  program  with  large  sta3s3cs  and  detector  upgrade              may  resolve  the  clear  existence  of  Cri3cal  point  in        QCD  phase  Diagram    

Page 19: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

N.  R.  Sahoo,  WWND  2014   19  

Back  Up  

Page 20: Nihar&R.&Sahoo&& Texas&A&MUniversity,& USA · 2014. 4. 16. · Nihar&R.&Sahoo&& (for&the&STARCollaboraon)& Texas&A&MUniversity,& USA N.&R.&Sahoo,&WWND&2014& 1 •RHIC Beam Energy

20  N.  R.  Sahoo,  WWND  2014