new subclass of harmonic univalent ...new subclass of harmonic univalent functions defined by a...

13
NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY A GENERALISED DIFFERENTIAL OPERATOR (Subkelas Baharu Fungsi Univalen Harmonik yang Ditakrif oleh Pengoperasi Pembeza Teritlak) SALMA FARAJ RAMADAN & MASLINA DARUS ABSTRACT Let S denote the class of functions = f h g + which are harmonic univalent and sense preserving in the unit disk U. Earlier we have introduced a class of harmonic functions defined by a generalised differential operator. In this paper we introduce a new subclass of this class and obtain results on coefficient bounds, distortion and extreme points. Keywords: Univalent functions; harmonic functions; generalised differential operator ABSTRAK Andaikan S melambangkan kelas fungsi = f h g + harmonik uivalen dan kekal orientasi dalam cakera unit U. Terlebih dahulu telah diperkenalkan suatu kelas fungsi harmonik yang ditakrif oleh suatu pengoperasi pembeza teritlak. Dalam makalah ini diperkenalkan pula suatu subkelas bagi kelas tersebut, dan mendapatkan keputusan mengenai batas-batas pekali, erotan dan titik-titik ekstrem. Kata kunci: Fungsi univalen; fungsi harmonik; pengoperasi pembeza teritlak 1. Introduction A continuous functions = f u iv + is a complex harmonic function in a complex domain C if both u and v are real harmonic in . C In any simply connected domain D C we can write ( ) = , f z h g + where h and g are analytic in . D We call h the analytic part and g the co-analytic part of . f A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that ( ) ( ) > h z g z in D (See Clunie & Shell-Small 1984). Denote by S the class of functions = f h g + that are harmonic univalent and sense-preserving in the unit disk { } = : <1 U z z for which () () () 0= 0= 0 1 = 0. z f h f For = f h g S + H we may express the analytic functions h and g as ( ) ( ) 1 =2 =1 = , = < 1. n n n n n n hz z az g z bz b + (1.1) The class T is defined as the subclass of S consisting of all functions ( ) = , f z h g + where h and g are given by ( ) ( ) =2 =1 = , = . n n n n n n hz z a z g z b z (1.2) Journal of Quality Measurement and Analysis Jurnal Pengukuran Kualiti dan Analisis JQMA 8(1) 2012, 97-109

Upload: others

Post on 20-Feb-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

  • NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY A GENERALISED DIFFERENTIAL OPERATOR

    (Subkelas Baharu Fungsi Univalen Harmonik yang Ditakrifoleh Pengoperasi Pembeza Teritlak)

    SALMA FARAJ RAMADAN & MASLINA DARUS

    ABSTRACT

    Let S denote the class of functions =f h g+ which are harmonic univalent and sense preserving in the unit disk U. Earlier we have introduced a class of harmonic functions defined by a generalised differential operator. In this paper we introduce a new subclass of this class and obtain results on coefficient bounds, distortion and extreme points.

    Keywords: Univalent functions; harmonic functions; generalised differential operator

    ABSTRAK

    Andaikan S melambangkan kelas fungsi =f h g+ harmonik uivalen dan kekal orientasi dalam cakera unit U. Terlebih dahulu telah diperkenalkan suatu kelas fungsi harmonik yang ditakrif oleh suatu pengoperasi pembeza teritlak. Dalam makalah ini diperkenalkan pula suatu subkelas bagi kelas tersebut, dan mendapatkan keputusan mengenai batas-batas pekali, erotan dan titik-titik ekstrem.

    Kata kunci: Fungsi univalen; fungsi harmonik; pengoperasi pembeza teritlak

    1. Introduction

    A continuous functions =f u iv+ is a complex harmonic function in a complex domain C   if both u and v are real harmonic in .C   In any simply connected domain D ⊆ C   we can write ( ) = ,f z h g+   where h and g are analytic in .D We call h the analytic part and g the

    co-analytic part of .f A necessary and sufficient condition for f to be locally univalent and

    sense-preserving in D is that ( ) ( )>h z g zʹ′ ʹ′   in D (See Clunie & Shell-Small 1984). Denote by S the class of functions =f h g+   that are harmonic univalent and sense-preserving in

    the unit disk { }= :

  • Salma Faraj Ramadan & Maslina Darus

    98

    Clunie and Shell-Small (1984) investigated the class S as well as its geometric subclasses and obtained some coefficient bounds. Since then, there has been several related papers on

    S and its subclasses such that Silverman (1998), Silverman and Silvia (1999), and Jahangiri (1999) studied the harmonic univalent functions.

    We denote by ( ), , , ,k α β λ δ γH   the class of all function of the form (1.1) that satisfy the condition

    ( )( ), , , > 1 ,R'kD f z z Ue α β λ δ γ− ∈ (1.3)

    where 0, ,kγ ∈ ∈C N   ( ) ( ) ( ), , , , , , , , ,=k k kD f z D h z D g zα β λ δ α β λ δ α β λ δ+ and ( ), , ,kD f zα β λ δ

    denote the operator introduced by Ramadan and Darus (2011) and given by

    ( ) ( )0 =D f z f z  

    ( ) ( )( ) ( ) ( )( ) ( )1, , , = 1D f z f z zf zα β λ δ λ δ β α λ δ β α ʹ′− − − + − −⎡ ⎤⎣ ⎦

    ( )( )( )

    =2= 1 1 nn

    nz n a zλ δ β α

    + − − − +⎡ ⎤⎣ ⎦∑

    that is

    ( ) ( )( )1 1

    , , , , , , , , ,=k kD f z D D f zα β λ δ α β λ δ α β λ δ

    ( ) ( )( )( ), , ,

    =2= 1 1 ,

    kk nn

    nD f z z n a zα β λ δ λ δ β α

    + − − − +⎡ ⎤⎣ ⎦∑ (1.4)

    for 0, 0, 0, 0, > , >α β λ δ λ δ β α≥ ≥ ≥ ≥   and { }0,1,2,... .k ∈

    Remark 1.1. (i) When = 0, = 0, =1, =1α δ λ β   we get Salagean differential operator (see Salagean 1983).

    (ii) When = 0α   we get Darus & Ibrahim differential operator (Darus & Ibrahim 2009).

    (iii) And when = 0, = 0, =1α δ β we get Al- Oboudi differential operator (Al-Oboudi 2004).

    Note that:

    ( ) ( )0 0,1, ,0,1λ λ≡H H studied by Yalcin and Ozturk (2004).

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    99

    ( ) ( )0 0,1, ,0, ,λ γ λ γ≡H H   studied by Janteng et al. (2007). Also we note that for the analytic part of the class ( )0 0,1, ,0,λ γH   was introduced and studied by Altintas and Ertekin (1992). We further denote by ( ), , , ,kT α β λ δ γH   the subclass of ( ), , , , ,k α β λ δ γH   where

    ( ) ( ), , , , = , , , , .k kT Tα β λ δ γ α β λ δ γ∩H H  

    2. Coefficients Bounds

    Theorem 2.1 Let ( ) = ,f z h g+   with h and g be given by (1.1). Let

    ( )( )( ) ( ) 1

    =21 ,

    kn n

    nn n a b bλ δ β α γ

    − − − + ≤ −⎡ ⎤⎣ ⎦∑ (2.1)

    where 1 =1,a γ ∈C , 0, 0, 0, 0, > , >α β λ δ λ δ β α≥ ≥ ≥ ≥   and 0.k ∈N   Then f is

    harmonic univalent sense preserving in U and ( ), , , , .kf α β λ δ γ∈H Proof: For 1 2 ,z z≤ we have by (2.1), ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2f z f z h z h z g z g z− ≥ − − −

    ( ) ( ) ( )1 2 1 2 1 2=2 =1

    = n n n nn nn n

    z z a z z b z z∞ ∞

    − + − − −∑ ∑  

    ( ) 11 2 1=2

    1 nn nn

    z z b n a b z∞

    −⎛ ⎞≥ − − − +⎜ ⎟

    ⎝ ⎠∑  

    ( )( )( ) ( )1 2 1 2=2

    1 1 1k

    n nn

    z z b z n n a bλ δ β α∞⎛ ⎞

    ≥ − − − − − − + +⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

    ( )1 2 1 2 11 > 0.z z b z bγ⎡ ⎤≥ − − − −⎣ ⎦  

    Consequently, f is univalent in .U We note that f is sense preserving in .U This is because

    ( ) 1=2 =2

    1 >1nn nn n

    h z n a z n a∞ ∞

    −ʹ′ ≥ − −∑ ∑  

    ( )( )( )=2

    1 11

    k

    nn

    n na

    λ δ β α

    γ

    ∞ − − − +⎡ ⎤⎣ ⎦≥ −∑  

  • Salma Faraj Ramadan & Maslina Darus

    100

    ( )( )( )=1

    1 1k

    nn

    n nb

    λ δ β α

    γ

    ∞ − − − +⎡ ⎤⎣ ⎦≥∑  

    ( )1=1

    > .nnnn b z g z

    ∞− ʹ′≥∑  

    Now we show that ( ), , , , .kf α β λ δ γ∈H Using the fact that { }>1R we γ−   if and only if 2 ,w wγ γ+ ≥ − −   it suffices to show that

    ( )( ) ( )( ) ( )( ) ( )( ), , , , , , , , , , , ,2' ' ' 'k k k kD f z D g z D f z D g zα β λ δ α β λ δ α β λ δ α β λ δγ γ+ − − − − +

    ( )( )( ) 1=2

    = 1 1 1k n

    nnn n a zγ λ δ β α

    ∞−+ + − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−− − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=2

    2 1 1 1k n

    nnn n a zγ λ δ β α

    ∞−− − − − − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−+ − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=2

    2 1 1k n

    nnn n a zγ λ δ β α

    ∞−

    ≥ − − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−

    − − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=2

    1 1k n

    nnn n a zλ δ β α

    ∞−

    − − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−

    − − − − +⎡ ⎤⎣ ⎦∑  

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    101

    ( )( )( ) 1=2

    = 2 2 1 1k n

    nnn n a zγ λ δ β α

    ∞−

    − − − − +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) 1=1

    2 1 1k n

    nnn n b zλ δ β α

    ∞−

    − − − − +⎡ ⎤⎣ ⎦∑  

    { ( )( )( )=2

    2 1 1k

    nnn n aγ λ δ β α

    ∞⎛≥ − − − − +⎡ ⎤⎜ ⎣ ⎦

    ⎝∑  

    ( )( )( )=1

    1 1k

    nnn n bλ δ β α

    ∞ ⎫⎞+ − − − +⎡ ⎤ ⎬⎟⎣ ⎦

    ⎠⎭∑  

    0,≥  

    by (2.1). The harmonic mappings

    ( )( )( )( )=2

    =1 1

    n nk

    n

    xf z z z

    n n

    γ

    λ δ β α

    +− − − +⎡ ⎤⎣ ⎦

    ( )( )( )=1,

    1 1n n

    kn

    yz

    n n

    γ

    λ δ β α

    +− − − +⎡ ⎤⎣ ⎦

    ∑   (2.2)

    where =2 =1

    =1,n nn nx y

    ∞ ∞

    +∑ ∑ show that the coefficient bound given by (2.1) is sharp.

    The functions of the form (2.2) are in ( ), , , ,k α β λ δ γH because

    ( )( )( ) ( )=1

    1 1k

    n nnn n a bλ δ β α

    − − − + +⎡ ⎤⎣ ⎦∑

    =2 =1=1 =1 .n n

    n nx yγ γ

    ∞ ∞⎧ ⎫+ + +⎨ ⎬

    ⎩ ⎭∑ ∑  

    The restriction placed in Theorem 2.1 on the moduli of coefficients of ( ) = ,f z h g+   enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would

    still be harmonic univalent and ( ), , , , .kf H α β λ δ γ∈ We next show that the condition (2.1) is also necessary for functions f in ( ), , , , .kT α β λ δ γH

  • Salma Faraj Ramadan & Maslina Darus

    102

    Theorem 2.2 Let ( ) = ,f z h g+   with h and g be given by (1.1). Then ( ), , , ,kf T α β λ δ γ∈ H  

    if and only if

    ( )( )( ) ( ) 1=2

    1 ,k

    n nnn n a b bλ δ β α γ

    − − − + ≤ −⎡ ⎤⎣ ⎦∑ (2.3)

    where 1 =1,a γ ∈C 0, 0, 0, 0, > , >α β λ δ λ δ β α≥ ≥ ≥ ≥   and 0.k ∈N  

    Proof: We first suppose that ( ), , , , ,kf T α β λ δ γ∈ H   then by (1.3) we have

    ( )( ) ( )( ){ }, , , , , ,R ' 'k kD h z D g ze α β λ δ α β λ δ−  

    ( )( )( ) 1=2

    = 1 1 1Rk n

    nnn n a ze λ δ β α

    ∞−⎧ − − − − +⎡ ⎤⎨ ⎣ ⎦

    ⎩∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−− − − − +⎡ ⎤⎣ ⎦∑

    >1 .γ−  

    If we choose z to be real and let 1 ,z −→   we get

    ( )( )( )=2

    1 1 1k

    nnn n aλ δ β α

    − − − − + −⎡ ⎤⎣ ⎦∑

    ( )( )( )=1

    1 1 1 ,k

    nnn n bλ δ β α γ

    − − − + ≥ −⎡ ⎤⎣ ⎦∑

    which is precisely the assertion (2.3).Conversely, suppose that the inequality (2.3) holds true. Then we find from the equation (1.3) that

    ( )( ) ( )( ){ }, , , , , ,R ' 'k kD h z D g ze α β λ δ α β λ δ−  

    ( )( )( ) 1=2

    = 1 1 1Rk n

    nnn n a ze λ δ β α

    ∞−⎧ − − − − +⎡ ⎤⎨ ⎣ ⎦

    ⎩∑  

    ( )( )( ) 1=1

    1 1k n

    nnn n b zλ δ β α

    ∞−− − − − +⎡ ⎤⎣ ⎦∑

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    103

    ( )( )( ) ( ) 1=1

    2 1 1k n

    n nnn n a b zλ δ β α

    ∞−≥ − − − − + +⎡ ⎤⎣ ⎦∑  

    ( )( )( ) ( )=1

    > 2 1 1 1 ,k

    n nnn n a bλ δ β α γ

    − − − − + + ≥ −⎡ ⎤⎣ ⎦∑

    provided that the inequality (2.3) is satisfied.

    Corollary 2.3 If ( ), , , , ,kf T α β λ δ γ∈ H   then

    ( )

    ( )( )1

    =2.

    2 1n n k

    n

    ba b

    γ

    λ δ β α

    ∞ −+ ≤

    − − +⎡ ⎤⎣ ⎦∑  

    (2.4)

    Corollary 2.4 Suppose that *,γ γ ∈C   such that

    *< .γ γ   Then for 0, 0, 0, 0, > , >α β λ δ λ δ β α≥ ≥ ≥ ≥   and 0k ∈N   we have ( ) ( )*, , , , , , , , .k kT Tα β λ δ γ α β λ δ γ⊂H H

    3. Distortion Bounds and Extreme Points

    In this section, we shall obtain distortion bounds for functions in ( ), , , ,kT α β λ δ γH   and also provide extreme points for this class.

    Theorem 3.1 If ( ), , , , ,kf T α β λ δ γ∈ H   for ,γ ∈C   0, 0, 0, 0, > , >α β λ δ λ δ β α≥ ≥ ≥ ≥   and 0k ∈N   and = >1,z r   then

    ( ) ( )( )( )

    1 211 ,

    2 1k

    bf z b r r

    γ

    λ δ β α

    −≤ + +

    − − +⎡ ⎤⎣ ⎦  

    and

    ( ) ( )( )( )

    1 211 .

    2 1k

    bf z b r r

    γ

    λ δ β α

    −≥ − −

    − − +⎡ ⎤⎣ ⎦

    Proof: We only proof the second inequality. The argument for first inequality is similar and will

    be omitted. Let ( ), , , , .kf T α β λ δ γ∈ H   Taking the absolute value of ,f we obtain

    ( ) ( ) ( ) ( ) ( ) 21 1=2 =2

    1 1nn n n nn n

    f z b r a b r b r a b r∞ ∞

    ≥ − − + ≥ − − +∑ ∑  

  • Salma Faraj Ramadan & Maslina Darus

    104

    ( )( )( )

    ( )( ) ( ) 21=2

    1= 1 2 12 1

    kn nk

    nb r a b rλ δ β α

    λ δ β α

    − − − − + +⎡ ⎤⎣ ⎦− − +⎡ ⎤⎣ ⎦

    ∑  

    ( )( )( )

    ( )( )( )1=2

    11 1 12 1

    k

    kn

    b r n nλ δ β αλ δ β α

    ≥ − − − − − + ×⎡ ⎤⎣ ⎦− − +⎡ ⎤⎣ ⎦

    ∑  

    ( ) 2n na b r+  

    ( )( )( )

    21 1

    11 .2 1

    kb r b rγλ δ β α

    ≥ − − ⎡ − ⎤⎣ ⎦− − +⎡ ⎤⎣ ⎦

     

    The bounds given in Theorem 3.1 for functions ( ) = ,f z h g+   of the form (1.2) also hold for functions of the form (1.1) if the coefficient condition (2.1) is satisfied. The functions

    ( )( )( )

    1 21=

    2 1k

    bf z z b z z

    γ

    λ δ β α

    −+ −

    − − +⎡ ⎤⎣ ⎦  

    and

    ( ) ( )( )( )

    1 21= 1 ,

    2 1k

    bf z b z z

    γ

    λ δ β α

    −− −

    − − +⎡ ⎤⎣ ⎦  

    for 1 < 1b show that the bounds given in Theorem 3.1 are sharp.

    The following covering result follows from the second inequality in Theorem 3.1.

    Corollary 3.2 If ( ), , , , ,kf T α β λ δ γ∈ H   then

    ( )( )

    ( )( )

    11 2 1:

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    105

    ( )( )( )( )= , =1,2,.... ,

    1 1

    n

    n kg z z nn n

    γ

    λ δ β α−

    − − − +⎡ ⎤⎣ ⎦

    ( )=1

    =1, 0n n nnY Y

    + ϒ ≥∑ and 0.nϒ ≥

    In particular, the extreme points of ( ), , , ,kT α β λ δ γH   are { }nh and { }.ng   Proof: Note that for f we may write

    ( ) ( )=1

    = n n n nn

    f z Y h g∞

    + ϒ∑

    ( )( )( )( )=1 =2

    =1

    nn n nk

    n nY z Y z

    n n

    γ

    λ δ β α

    ∞ ∞

    +ϒ −− − −⎡ ⎤⎣ ⎦

    ∑ ∑

    ( )( )( )=1.

    1n

    nkn

    zn n

    γ

    λ δ β α

    − ϒ− − −⎡ ⎤⎣ ⎦

    ∑  

    Now the first part of the proof is complete, since by Theorem 2.2

    ( )( )( )( )( )( )=2

    11

    k nk

    n

    Yn n

    n n

    γλ δ β α

    λ δ β α

    − − −⎡ ⎤⎣ ⎦− − −⎡ ⎤⎣ ⎦

    ∑  

    ( )( )( )( )( )( )=1

    11

    k nk

    nn n

    n n

    γλ δ β α

    λ δ β α

    ∞ ϒ+ − − −⎡ ⎤⎣ ⎦

    − − −⎡ ⎤⎣ ⎦∑  

    ( ) 1 1=1

    = = .n nnY Y Yγ γ γ

    + ϒ − − ≤∑  

    Conversely, suppose that ( ), , , , .kf T α β λ δ γ∈ H   Then

    ( )( )( ) ( )=1

    1 1 1 .k

    n nnn n a bλ δ β α γ

    − − − + + ≤ +⎡ ⎤⎣ ⎦∑  Setting

    ( )( )( )( )

    1 1= , 0,0 1, = 2,3,....

    k

    n n n

    n nY a Y n

    λ δ β αγ

    γ

    − − − +⎡ ⎤⎣ ⎦ ≠ ≤ ≤  

  • Salma Faraj Ramadan & Maslina Darus

    106

    ( )( )( )( )

    1 1= , 0,0 1, =1,2,.... ,

    k

    n n n

    n nb n

    λ δ β αγ

    γ

    − − − +⎡ ⎤⎣ ⎦ϒ ≠ ≤ ϒ ≤  

    and 1

    =2 =2=1 n n

    n nY Y

    ∞ ∞

    − + ϒ∑ ∑   we obtain

    ( ) ( )=1

    = n n n nn

    f z Y h g∞

    + ϒ∑as required.

    4. Closure Theorem

    Let the functions ( )jf z   be defined, for =1,2,....,j m   by

    ( ) , ,=2 =1

    = , .n nj n j n jn n

    f z z a z b z z U∞ ∞

    − + ∈∑ ∑ (4.1)

    Theorem 4.1 Let the functions ( )jf z   defined by (4.1) be in the class ( ), , , ,kT α β λ δ γH   for

    every =1,2,...., .j m   Then the functions ( )zΨ defined by

    ( ) ( ) ( )=1

    = 0 ,j j jj

    z t f z t∞

    Ψ ≥∑   (4.2)

    is also in the class ( ), , , , ,kT α β λ δ γH where =1=1.

    m

    jjt∑  

    Proof: According to the definition of ,Ψ   we can write

    ( ) , ,=2 =1 =1 =1

    = .m m

    n nj n j j n j

    n j n jz z t a z t b z

    ∞ ∞⎛ ⎞ ⎛ ⎞Ψ − −⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠∑ ∑ ∑ ∑  

    (4.3)

    Further, since functions ( )jf z   are in ( ), , , , ,kT α β λ δ γH for every =1,2,....,j m   we get

    ( )( )( ) ( ), ,=1

    1 1 ,k

    n j n jnn n a bλ δ β α γ

    − − − + ≤ +⎡ ⎤⎣ ⎦∑  

    for every =1,2,...., .j m   We can see that

    ( )( )( ) ( ), ,=1 =1

    1 1mk

    j n j n jn jn n t a bλ δ β α

    ∞ ⎛ ⎞− − − + +⎡ ⎤ ⎜ ⎟⎣ ⎦

    ⎝ ⎠∑ ∑

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    107

    ( )( )( ) ( ), ,=1 =1

    = 1 1m k

    j n j n jj nt n n a bλ δ β α

    ∞⎛ ⎞− − − + +⎡ ⎤⎜ ⎟⎣ ⎦

    ⎝ ⎠∑ ∑  

    ( )=1

    1 =1 ,m

    jjtγ γ≤ + +∑  

    by Theorem 2.2, we have ( ) ( ), , , , .kz T α β λ δ γΨ ∈ H  

    5. An Applications of Neighbourhood

    Following Yalcin and Ozturk (2004), we defined the n-neighbourhood of a function*f S∈ H (

    *S H   class of starlike harmonic functions in U) by

    ( ) ( )=2 =1

    = : = n nn nn n

    f F H F z z A z B z andµ∞ ∞⎧⎪

    ∈ + +⎨⎪⎩

    ∑ ∑N  

    ( ) 1 1=2

    .n n n nnk a A b B b B µ

    ∞ ⎫− + − + − ≤ ⎬

    ⎭∑

    In particular, for the identity function ( ) = ,I z z   we immediately have

    ( ) ( )=2 =1

    = : = n nn nn n

    I f f z z a z b z andµ∞ ∞⎧⎪

    − +⎨⎪⎩

    ∑ ∑N

    ( ) 1=2

    .n nnn a b b µ

    ∞ ⎫+ + ≤ ⎬

    ⎭∑

    Theorem 5.1 Let

    ( )( )( )( )( )( )

    1

    2 1 1= .2 1 2 1

    k

    k k bλ δ β αγ

    µλ δ β α λ δ β α

    − − + −⎡ ⎤⎣ ⎦+− − + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

     

    Then, ( ) ( ), , , , .kT Iµα β λ δ γ ⊂H N

    Proof: Let ( ), , , , .kf T α β λ δ γ∈ H   Then the proof follows since, by (2.1), we have

    ( ) 1=2

    n nnn a b b

    + +∑

  • Salma Faraj Ramadan & Maslina Darus

    108

    ( )( )( )( ) ( )1

    =2

    1 12 1

    kn nk

    nb n a bλ δ β α

    λ δ β α

    ≤ + − − + +⎡ ⎤⎣ ⎦− − +⎡ ⎤⎣ ⎦

    ∑  

    ( )( )1 1

    12 1

    kb bγλ δ β α

    ≤ + ⎡ − ⎤⎣ ⎦− − +⎡ ⎤⎣ ⎦

     

    ( )( )( )( )( )( )

    1

    2 1 1= .

    2 1 2 1

    k

    k k bλ δ β αγ

    µλ δ β α λ δ β α

    − − + −⎡ ⎤⎣ ⎦≤ +− − + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

     

    Hence ( ).f Iµ∈⊂ N  

    Some other work related to harmonic functions and differential operators can be found in Al-Shaqsi and Darus (2008; 2007; 2006), Al-Shaqsi et al. (2010), Darus and Al-Shaqsi (2006), and many elsewhere.

    Acknowledgement: The work is supported by MOHE, UKM-ST-06-FRGS0244-2010.

    References

    Al-Oboudi F.M. 2004. On univalent functions defined by a generalized Salagean operator. Int .J. Math. Math. Sci. 27: 1429-1436.

    Al-Shaqsi K. & Darus M. 2006. A new class of multivalent harmonic functions. General Mathematics 14(4): 37-46.Al-Shaqsi K. & Darus M. 2007. On subclass of harmonic starlike functions with respect to k-symmetric points.

    International Mathematical Forum 2(57): 2799 - 2805.Al-Shaqsi K. & Darus M. 2008. On harmonic univalent functions with respect to k-symmetric points. Int. J. Con-

    temp. Math. Sciences 3(3): 111-118.Al-Shaqsi K., Darus M. & Fadipe-Joseph O.A. 2010. A new subclass of Salagean-type harmonic univalent functions.

    Abstract and Applied Analysis, Article ID 821531, 12 pp.Altintas O. & Ertekin Y. 1992. A new subclass of analytic functions with negative coefficints. Current Topics in

    Analytic Function Theory. River Edge, NJ: World Scientific Publishing: 36-47.Clunie J. & Shell-Small T. 1984. Harmonic univalent functions. Ann. Acad. Aci. Fenn. Ser. A I Math. 9: 3-25.Darus M. & Al-Shaqsi K. 2006. On harmonic univalent functions defined by a generalised Ruscheweyh derivatives

    operator. Lobachevskii Journal of Mathematics 22: 19-26.Darus M. & Ibrahim R.W. 2009. On subclasses for generalized operators of complex order. Far East Journal of

    Math. Sci. (FJMS) 33(3): 299-308.Jahangiri J.M. 1999. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 235: 470-477.Janteng A., Halim S.A. & Darus M. 2007. A new subclass of harmonic univalent functions. South. Asian Bull.Math.

    31: 81-88.Salagean G.S. 1983. Subclasses of univalent functions. Lecture Notes in Math. 1013. Berlin: Springer Verlag: 362- 372.Silverman H. 1998. Harmonic univalent functions with negative coefficients Proc. Amer. Math. Soc. 51: 283-289.Silverman H. & Silvia E.M. 1999. Subclasses of harmonic univalent functions New Zeal. J. Math. 28: 275-284.Ramadan S.F. & Darus M. 2011. Univalence criteria for a family integral operators defined by generalized differen-

    tial operator. Acta Univ. Apulensis 25: 119-131.Yalçin S. & Öztürk M. 2004. A new subclass of complex harmonic functions. Math. Inequal. Appl. 7: 55-61.

  • New subclass of harmonic univalent functions defined by a generalised differential operator

    109

    School of Mathematical SciencesFaculty of Science and TechnologyUniversity Kebangsaan Malaysia43600 UKM BangiSelangor DE, MALAYSIAE-mail: [email protected], [email protected]*

    __________________*Corresponding author