chapter 5 harmonic univalent and multivalent...

41
. CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONS

Upload: others

Post on 01-Aug-2020

19 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

.

CHAPTER 5

HARMONIC UNIVALENT AND

MULTIVALENT FUNCTIONS

Page 2: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

CHAPTER 5

Harmonic Univalent and MultivalentFunctions

5.1 Introduction

This last Chapter is allocated for the study of harmonic holomorphic uni-

valent and meromorphic multivalent functions. A number of mathematicians

have contributed a lot in the study of harmonic functions, in particular O . P.

Ahuja and J. M. Jahangiri [2] have defined and searched a family of Noshiro-

Type complex valued harmonic functions of the form f = h+ g, where h and

g are holomorphic in the unit disc. Many interesting properties leading to

distortion theorem, extreme points, convolution condition and convex com-

bination for the family of harmonic functions have been studied by number

of several researchers. Ahuja, Jahangiri and Silverman [3] have shared a lot

about the contraction of harmonic univalent mappings. Upon expressing Tay-

lor series expansion under different conditions, these authors have obtained

good results. A comprehensive class of complex valued harmonic univalent

functions with varying arguments is introduced by Jahangiri and Silverman

[11]. T. Rosy, B. A. Stephen, K. G. Subramanian and Jahangiri [20] have

also endowed in the study of harmonic functions.

We have divided this Chapter in two sections. The first section consists

of the study of univalent harmonic function defined by Ruscheweyh deriv-

ative, we also obtain several interesting properties such as sharp coefficient

199

Page 3: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

estimates, distortion bound, extreme points, Hadamard product and other

several results. We have also attempted for deriving applications of frac-

tional calculus operator in establishing distortion theorem. An attempt is

also made in undertaking study of multivalent harmonic meromorphic func-

tions in Section 2, we have introduced a subclass of multivalent harmonic

meromorphic functions defined in the exterior of the unit disk and obtain the

several geometric results which are routine in character.

SECTION 1

5.2 A Certain Subclass of Univalent Harmonic

Functions Defined by Ruscheweyh Derivatives

Let H be a class of all harmonic functions f = h + g that are univalent

and sense preserving in the open disk U = {z : |z| < 1} where

h(z) = z +∞∑

n=2

anzn and g(z) =

∞∑n=1

bnzn; |b1| < 1 (5.1)

normalized by f(0) = fz(0) − 1 = 0 with fz(0) denotes partial derivative of

f(z) at z = 0 and we call h and g holomorphic part and co-holomorphic part

of f respectively.

Now, we introduce a new class AJH(λ, α, k, γ) of functions f ∈ H where

h and g of the form

h(z) = z −∞∑

n=2

anzn and g(z) = −

∞∑n=1

bnzn, (5.2)

satisfying

Re

{keiξ + (1 + keiγ)

z(Dλf(z))′′

(Dλf(z))′

}≥ α, (5.3)

200

Page 4: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

where z = reiθ, γ, ξ, α and θ are real such that 0 ≤ γ < 1, 0 ≤ α < 1,

0 ≤ ξ < 1, α < k ≤ 1, 0 ≤ r < 1 and Dλf(z) is the Ruscheweyh derivative of

f and is defined by Dλf(z) =∞∑

n=1

Bn(λ)cnzn, λ > −1,

Bn(λ) =(λ+ 1)(λ+ 2) · · · (λ+ n− 1)

(n− 1)!,

also

Dλf(z) = Dλh(z) +Dλg(z) [21] (5.4)

Further, let H be the subfamily of H consisting of harmonic functions

f = h + g where

h(z) = z −∞∑

n=2

anzn and g(z) = −

∞∑n=1

bnzn, an ≥ 0, bn ≥ 0. (5.5)

Let AJH(λ, α, k, γ) be the subclass of functions f ∈ H and (5.3) holds true.

To attempt the various properties of Harmonic convex functions of form

f = h + g and (5.5), we need the following sufficient condition studied by J.

M. Jahangiri [9].

Theorem 5.2.1 : Let, f = h+ g where

h(z) = z −∞∑

n=2

anzn and g(z) = −

∞∑n=1

bnzn.

Furthermore let;∞∑

n=1

(n(n−α)

1−α|an| + n(n+α)

1−α|bn|)≤ 2 where a1 = 1 and

0 ≤ α < 1. Then f is harmonic univalent in U and f ∈ AJH(α). AJH(α) is

the subclass of AJH(α) consisting of harmonic convex functions of order α.

In continuation of studying we get the several properties of f given by

(5.2).

201

Page 5: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Theorem 5.2.2 : Let f = h+ g ∈ H with

∞∑n=1

(n(n(1 + k) − (1 + α))

k − α|an| +

n(n(1 + k) + (1 + α))

k − α|bn|)Bn(λ) ≤ 2

(5.6)

where a1 = 1, 0 ≤ α < 1, λ > −1, α < k ≤ 1. Then f is harmonic univalent

in U and f ∈ AJH(λ, α, k, γ).

Proof : By Theorem 5.2.1, we obtain f to be harmonic, since

∞∑n=2

n(n− α)

1 − α|an| +

∞∑n=1

n(n+ α)

1 − α|bn|

≤∞∑

n=2

(n(n(1 + k) − (1 + α))

k − α|an| +

n(n(1 + k) + (1 + α))

k − α|bn|)Bn(λ).

According to the Theorem 0.2.2, for proving f ∈ AJH(λ, α, k, γ), it suffices

to show that (5.3) holds. If

A(λ, z) = (1 + keiγ)[z2(Dλh(z))′′ + z2(Dλg(z))′′ + 2z(Dλg(z))′]

+keiξ[z(Dλh(z))′ − z(Dλg(z))′] (5.7)

and

B(λ, z) = z(Dλh(z))′ − z(Dλg(z))′, (5.8)

then we need only to show that

|A(λ, z) + (1 − α)B(λ, z)| − |A(λ, z) − (1 + α)B(λ, z)| ≥ 0. (5.9)

Substituting (5.7) and (5.8) in (5.9), we get

|A(λ, z) + (1 − α)B(λ, z)| − |A(λ, z) − (1 + α)B(λ, z)|

= |((1 − α) + keiξ)z(Dλh(z))′ + (1 + keiγ)z2(Dλh(z))′′ +

(1 + keiγ)z2(Dλg(z))′′ + [(2 + 2keiγ − keiξ) − (1 − α)]z(Dλg(z))′| −

202

Page 6: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

|(keiξ − 1 − α)z(Dλh(z))′ + (1 + keiγ)z2(Dλh(z))′′ +

(1 + keiγ)z2(Dλg(z))′′ + (2 + 2keiγ − keiξ + 1 + α)z(Dλg(z))′|

= |(1 + keiξ − α)z +∞∑

n=2

n[(1 + keiξ − α+ (n− 1)(keiγ + 1))]anBn(λ)zn +

∞∑n=1

n[(1 + keiγ)(n− 1) + 1 + 2keiγ − keiξ + α]bnBn(λ)zn| − |(keiγ − 1 − α)z +

∞∑n=2

n[keiγ − 1 − α + (n− 1)(1 + keiγ)]anBn(λ)zn +

∞∑n=1

n[n(1 + keiγ) + 2 + α]bnBn(λ)zn| ≥ 2(k − α)|z| ×

(1 −∞∑

n=2

nn(1 + k) − (1 + α)

k − α|an|Bn(λ)|z|n−1 −

∞∑n=1

nn(1 + k) + (1 + α)

k − α|bn|Bn(λ)|z|n−1) ≥ 0 (by (5.6))

Thus f(z) ∈ AJH(λ, α, k, γ).

For sharpness, consider the harmonic functions of the form

f(z) = z +∞∑

n=2

k − α

n(n(1 + k) − (1 + α))Tnz

n +∞∑

n=1

k − α

n(n(1 + k) + (1 + α))Snz

n,

(5.10)

where∞∑

n=2

|Tn| +∞∑

n=1

|Sn| = 1. �

Theorem 5.2.3 : Let f = h + g defined by (5.5). Then the necessary and

sufficient condition for the function f to be in the class AJH(λ, α, k, γ) is that

∞∑n=1

(n(n(1 + k) − (1 + α))

k − α|an| +

n(n(1 + k) + (1 + α))

k − α|bn|)Bn(λ) ≤ 2,

(5.11)

where a1 = 1, 0 ≤ α < 1, α < k ≤ 1, λ > −1, 0 ≤ γ < 1 and

Bn(λ) = (λ+1)(λ+2)···(λ+n−1)(n−1)!

.

Proof : Since AJH(λ, α, k, γ) ⊂ AJH(λ, α, k, γ), then the “necessary” part

203

Page 7: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

follows from Theorem 5.2.2. For the “sufficient” part, we show that (5.11)

does not hold good implies that f �∈ AJH(λ, α, k, γ).

Now, a function f ∈ AJH(λ, α, k, γ) if and only if

Re

{keiξ + (1 + keiγ)

z(Dλf(z))′′

(Dλf(z))′

}≥ α.

Therefore,

Re{[(k − α)|z| −∞∑

n=2

n(n(1 + k) − (1 + α))|an|Bn(λ)|z|n −∞∑

n=1

n(n(1 + k) + (1 + α))|bn|Bn(λ)|z|n]/[z −∞∑

n=2

n|an|Bn(λ)|z|n +

∞∑n=1

n|bn|Bn(λ)|z|n]} ≥ 0.

The last inequality must hold for all z, |z| = r < 1.

Choosing the values of z on the positive real axis where 0 < |z| = r < 1

we must have,

[(k − α) −∞∑

n=2

n(n(1 + k) − (1 + α))|an|Bn(λ)rn−1 −∞∑

n=1

n(n(1 + k) +

(1 + α))|bn|Bn(λ)rn−1]/[1 −∞∑

n=2

n|an|Bn(λ)rn−1 +

∞∑n=1

n|bn|Bn(λ)rn−1]

≥ 0 (5.12)

We note that if the condition (5.11) does not hold, then the numerator in

(5.12) when r goes to 1 is negative. This is a contradiction for f(z) ∈AJH(λ, α, k, γ) and the proof is complete. �

In the next theorem we obtain the extreme points of the closed convex

hulls of AJH(λ, α, k, γ) denoted by clcoAJH(λ, α, k, γ).

204

Page 8: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Theorem 5.2.4 : The function f(z) ∈ clco AJH(λ, α, k, γ) if and only if

f(z) =

∞∑n=1

(Tnhn(z) + Sngn(z)), (5.13)

where h1(z) = z,

hn(z) = z − k − α

n(n(1 + k) − (1 + α))Bn(λ)zn, n = 2, 3, 4, · · ·

gn(z) = z − k − α

n(n(1 + k) + (1 + α))Bn(λ)zn, n = 1, 2, 3, 4, · · ·

∞∑n=1

(Tn + Sn) = 1, Tn ≥ 0 and Sn ≥ 0.

In particular the extreme points of AJH(λ, α, k, γ) are {hn} and {gn}.

Proof : Let f be written as (5.13). Then we have

f(z) =∞∑

n=1

(Tn + Sn)z −∞∑

n=2

k − α

n(n(1 + k) − (1 + α))Bn(λ)Tnz

n

−∞∑

n=1

k − α

n(n(1 + k) + (1 + α))Bn(λ)Snz

n = z −∞∑

n=2

anzn −

∞∑n=1

bnzn.

Therefore,

∞∑n=2

n(n(1 + k) − (1 + α))Bn(λ)

k − α|an| +

∞∑n=1

n(n(1 + k) + (1 + α))Bn(λ)

k − α|bn|

=

∞∑n=2

Tn +

∞∑n=1

Sn = 1 − T1 ≤ 1.

Then f ∈ clco AJH(λ, α, k, γ).

Conversely, assume that f ∈ clco AJH(λ, α, k, γ). Putting

Tn =n(n(1 + k) − (1 + α))Bn(λ)

k − α|an|, n = 2, 3, · · ·

Sn =n(n(1 + k) + (1 + α))Bn(λ)

k − α|bn|, n = 1, 2, · · ·

205

Page 9: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

and

T1 = 1 −∞∑

n=2

Tn −∞∑

n=1

Sn,

then∞∑

n=1

(Tn + Sn) = 1, 0 ≤ Tn ≤ 1 (n = 2, 3, · · ·), 0 ≤ Sn ≤ 1 (n = 1, 2, · · ·).Thus, by simple calculations we get

f(z) =∞∑

n=1

(Tnhn(z) + Sngn(z))

and the proof is complete. �

Theorem 5.2.5 : Let f ∈ AJH(λ, α, k, γ). Then

|f(z)| ≤ (1+|b1|)r+ 1

2B2(λ)

[k − α

(1 + 2k − α)− 2 + k + α

(1 + 2k − α)|b1|]r2, |z| = r < 1

and

|f(z)| ≥ (1−|b1|)r− 1

2B2(λ)

[k − α

(1 + 2k − α)− 2 + k + α

(1 + 2k − α)|b1|]r2, |z| = r < 1.

(5.14)

Proof : We have

|f(z)| ≤ (1 + |b1|)r +∞∑

n=2

(|an| + |bn|)rn

≤ (1 + |b1|)r +∞∑

n=2

(|an| + |bn|)r2

= (1 + |b1|)r +k − α

2B2(λ)(1 + 2k − α)

∞∑n=2

[2(1 + 2k − α)

k − α|an| +

2(1 + 2k − α)

k − α|bn|]Bn(λ)r2

≤ (1 + |b1)r +k − α

2B2(λ)(1 + 2k − α)

∞∑n=2

(n(n(1 + k) − (1 + α))

k − α|an| +

n(n(1 + k) + (1 + α))

k − α|bn|)Bn(λ)r2

≤ (1 + |b1|)r +1

2B2(λ)(

k − α

1 + 2k − α− 2 + k + α

1 + 2k − α|b1|)r2.

206

Page 10: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

The next inequality can be proved by using similar arguments. This completes

the proof of theorem. �

Now we define the convolution of two harmonic functions. [see 16].

If f(z) and g(z) be given by

f(z) = z −∞∑

n=2

|an|zn −∞∑

n=1

|bn|zn, g(z) = z −∞∑

n=2

|cn|zn −∞∑

n=1

|dn|zn.

Then the Hadamard product of f(z) and g(z) defined by

(f ∗ g)(z) = f(z) ∗ g(z) = z −∞∑

n=2

|an||cn|zn −∞∑

n=1

|bn||dn|zn. (5.15)

Theorem 5.2.6 : Let f(z) ∈ AJH(λ, α, k, γ) and g(z) ∈ AJH(λ, β, k, γ).

Then for 0 ≤ β ≤ α < 1, we have

(f ∗ g)(z) ∈ AJH(λ, α, k, γ) ⊂ AJH(λ, β, k, γ).

Proof : Since f(z) ∈ AJH(λ, α, k, γ) and g(z) ∈ AJH(λ, β, k, γ), then both

of them satisfy (5.11) and since (|cn| ≤ 1, |dn| ≤ 1), then we have

∞∑n=2

n(n(1 + k) − (1 + α))k − α

|ancn|Bn(λ) +∞∑

n=1

n(n(1 + k) + (1 + α))k − α

|bndn|Bn(λ)

≤∞∑

n=1

n(n(1 + k) − (1 + α))k − α

|an|Bn(λ) +∞∑

n=1

n(n(1 + k) + (1 + α))k − α

|bn|Bn(λ).

The right hand side of the last inequality is bounded above by 1, then

f ∗ g ∈ AJH(λ, α, k, γ) ⊂ AJH(λ, β, k, γ).

The proof of this theorem is complete. �

Theorem 5.2.7 : The class AJH(λ, α, k, γ) is closed under convex combina-

tion.

207

Page 11: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Proof : Suppose fi ∈ AJH(λ, α, k, γ)(i = 1, 2, · · ·) are defined by

fi(z) = z −∞∑

n=2

|ai,n|zn −∞∑

n=1

|bi,n|zn,

from (5.11), we have

∞∑n=1

(n(n(1 + k) − (1 + α))

k − α|ai,n| +

n(n(1 + k) + (1 + α))

k − α|bi,n|

)Bn(λ) ≤ 2.

For∞∑i=1

si = 1, 0 ≤ si ≤ 1, we may write the convex combination of fi as

∞∑i=1

sifi(z) = z −∞∑

n=2

( ∞∑i=1

si|ai,n|)zn −

∞∑n=1

( ∞∑i=1

si|bi,n|)zn.

Thus

∞∑n=1

[n(n(1 + k) − (1 + α))

k − α

( ∞∑i=1

si|ai,n|)

+n(n(1 + k) + (1 + α))

k − α

( ∞∑i=1

si|bi,n|)]

Bn(λ)

=∞∑

i=1

[[ ∞∑n=1

n(n(1 + k) − (1 + α))k − α

|ai,n| + n(n(1 + k) + (1 + α))k − α

|bi,n|]

Bn(λ)

]si

≤ 2∞∑

i=1

si = 2,

then∞∑i=1

sifi(z) ∈ AJH(λ, α, kγ). The proof is complete. �

Next, we introduce a class ASH(λ, α, k, γ) of functions f ∈ H of the form

(5.1)satisfying

Re

{(1 + keiγ)

z2(Dλh(z))′′ + z2(Dλg(z))′′ + 2z(Dλg(z))′

z(Dλh(z))′ − z(Dλg(z))′+ 1

}≥ α (5.16)

where z = reiθ, γ, α, and θ are real such that 0 ≤ γ < 1, 0 ≤ α < 1, 0 ≤ k <

∞, 0 ≤ r < 1 and Dλf(z) is the Ruscheweyh derivative of f .

Further, let H be the subfamily of H consisting of harmonic functions

f = h + g where

h(z) = z −∞∑

n=2

|an|zn and g(z) = −∞∑

n=1

|bn|zn, |b1| < 1.

208

Page 12: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Let ASH(λ, α, k, γ) be the subclass of functions f ∈ H and (5.16) holds true.

Special cases were studied by Kanas and Wisniowska [13], Kanas and

Srivastava [12] and Kim et. al. [16].

Now we obtain conditions for f(z) ∈ ASH(λ, α, k, γ) and f(z) ∈ ASH(λ, α, k, γ).

Theorem 5.2.8 : Let f = h+ g ∈ H of the form (5.1) with

∞∑n=1

(n(n(1 + k) − k − α)

1 − α|an| +

n(n(1 + k) + k + α)

1 − α|bn|)Bn(λ) ≤ 2

(5.17)

where a1 = 1, 0 ≤ α < 1, λ > −1, 0 ≤ k < ∞. Then f is harmonic univalent

in U and f ∈ ASH(λ, α, k, γ).

Proof : It is clear that

∞∑n=2

n(n− α)

1 − α|an| +

∞∑n=1

n(n + α))

1 − α|bn|

≤∞∑

n=2

(n(n(1 + k) − k − α)

1 − α|an| +

n(n(1 + k) + k + α))

1 − α|bn|)Bn(λ),

where 0 ≤ α < 1, 0 ≤ k <∞, λ > −1. Thus, by Theorem 5.2.1 f is harmonic.

Now by using Theorem 0.2.2 for proving f ∈ ASH(λ, α, k, γ), it suffices

to show that (5.16) holds. If we put

A(λ, z) = (1 + keiγ)[z2(Dλh(z))′′ + z2(Dλg(z))′′ + 2z(Dλg(z))′]

+[z(Dλh(z))′ − z(Dλg(z))′]

and

B(λ, z) = z(Dλh(z))′ − z(Dλg(z))′,

we want to show that

|A(λ, z) + (1 − α)B(λ, z)| − |A(λ, z) − (1 + α)B(λ, z)| ≥ 0.

209

Page 13: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

But

|A(λ, z) + (1 − α)B(λ, z)| − |A(λ, z) − (1 + α)B(λ, z)|

= |(1 + keiγ)[z2(Dλh(z))′′ + z2(Dλg(z))′′ + 2z(Dλg(z))′] +

[z(Dλh(z))′ − z(Dλg(z))′] + (1 − α)[z(Dλh(z))′ − z(Dλg(z))′| −

|(1 + keiγ)[z2(Dλh(z))′′ + z2(Dλg(z))′′ + 2z(Dλg(z))′] +

[z(Dλh(z))′ − z(Dλg(z))′] − (1 + α)[z(Dλ(h(z))′ − z(Dλg(z))′]|

= |(2 − α)z +∞∑

n=2

n(n+ 1 − α + k(n− 1)eiγ)Bn(λ)anzn +

∞∑n=1

n(n− 1 + α + k(n+ 1)eiγ)Bn(λ)bnzn

≥ (2 − α)|z| −∞∑

n=2

n(n(k + 1) + 1 − k − α]Bn(λ)|an||z|n −∞∑

n=1

n(n(k + 1) − 1 + k + α)Bn(λ)|bn||z|n −

α|z| −∞∑

n=2

n[(n(k + 1) − 1 − k − α]Bn(λ)|an||z|n −∞∑

n=1

n(n(k + 1) + 1 + k + α)Bn(λ)|bn||z|n

≥ 2(1 − α)|z|[

1 −∞∑

n=2

n(nk + n− k − α)

1 − αBn(λ)|an| −

∞∑n=1

n(nk + n + k + α)

1 − αBn(λ)|bn|

]≥ 0 (by (5.17)

This completes the proof of theorem.

The harmonic function

f(z) = z +

∞∑n=2

1 − α

n[n(k + 1) − k − α]Tnz

n +

∞∑n=1

1 − α

n[n(k + 1) + k + α]Snz

n

(5.18)

210

Page 14: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

where∞∑

n=2

|Tn| +∞∑

n=1

|Sn| = 1, shows the sharpness of (5.17). �

Theorem 5.2.9 : Let f(= h + g) ∈ H. Then the necessary and suffi-

cient condition for the function f to be in the class ASH(λ, α, k, γ) where

ASH(λ, α, k, γ) is the subclass of ASH(λ, α, k, γ), is that

∞∑n=1

(n(n(k + 1) − k − α)

1 − α|an| +

n(n(1 + k) + k + α)

1 − α|bn|)Bn(λ) ≤ 2

(5.19)

where a1 = 1, 0 ≤ α < 1, 0 ≤ k <∞, λ > −1, 0 ≤ γ < 1 and

Bn(λ) = (λ+1)(λ+2)···(λ+n−1)(n−1)!

.

Proof : Since ASH(λ, α, k, γ) ⊂ ASH(λ, α, k, γ), then the “necessary” part

follows from Theorem 5.2.8. For the “sufficient” part, we show that (5.19)

does not hold good implies that f �∈ ASH(λ, α, k, γ).

Now, a function f ∈ ASH(λ, α, k, γ) if and only if

Re

{1 + (1 + keiγ)

z(Dλf(z))′′

(Dλf(z))′

}≥ α.

Therefore,

Re

(1 − α)|z| −∞∑

n=2n(n(1 + k) − k − α)|an|Bn(λ)|z|n −

∞∑n=1

n(n(1 + k) + k + α))|bn|Bn(λ)|z|n

z −∞∑

n=2n|an|Bn(λ)|z|n +

∞∑n=1

n|bn|Bn(λ)|z|n

≥ 0.

The last inequality must hold for all z, |z| = r < 1.

Choosing the values of z on the positive real axis where 0 < |z| = r < 1

we must have,

(1 − α) −∞∑

n=2n(n(1 + k) − k − α)|an|Bn(λ)rn−1 −

∞∑n=1

n(n(1 + k) + k + α)|bn|Bn(λ)rn−1

1 −∞∑

n=2n|an|Bn(λ)rn−1 +

∞∑n=1

n|bn|Bn(λ)rn−1

≥ 0.

(5.20)

211

Page 15: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

We note that if the condition (5.19) does not hold, then the numerator in

(5.20) when r goes to 1, is negative. This is a contradiction for

f(z) ∈ ASH(λ, α, k, γ) and this completes the proof of theorem. �

Theorem 5.2.10 : f ∈ clco ASH(λ, α, k, γ) if and only if

f(z) =∞∑

n=1

(Tnhn(z) + Sngn(z)) (5.21)

where, h1(z) = z,

hn(z) = z − 1 − α

n(n(1 + k) − k − α)Bn(λ)zn, n = 2, 3, 4, · · ·

gn(z) = z − 1 − α

n(n(1 + k) + k + α))Bn(λ)zn, n = 1, 2, 3, 4, · · ·

∞∑n=1

(Tn + Sn) = 1, Tn ≥ 0 and Sn ≥ 0.

In particular the extreme points of ASH(λ, α, k, γ) are {hn} and {gn}.

Proof : Let f be written as (5.21), then we have

f(z) =

∞∑n=1

(Tn + Sn)z −∞∑

n=2

1 − α

n(n(1 + k) − k − α))Bn(λ)Tnz

n

−∞∑

n=1

1 − α

n(n(1 + k) + k + α))Bn(λ)Snz

n = z −∞∑

n=2

anzn −

∞∑n=1

bnzn.

Therefore,

∞∑n=2

n(n(1 + k) − k − α)Bn(λ)

1 − α|an| +

∞∑n=1

n(n(1 + k) + k + α)Bn(λ)

1 − α|bn|

=∞∑

n=2

Tn +∞∑

n=1

Sn = 1 − Tn ≤ 1,

and so f ∈ clco ASH(λ, α, k, γ).

Conversely, suppose that f ∈ clco ASH(λ, α, k, γ). Setting

Tn =n(n(1 + k) − k − α))Bn(λ)

2 + k − α|an|, n = 2, 3, · · ·

212

Page 16: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

and

Sn =n(n(k + 1) + k + α))Bn(λ)

2 + k − α|bn|, n = 1, 2, · · ·

where,∞∑

n=1

[Tn + Sn] = 1, then we obtain by simple calculations

f(z) =

∞∑n=1

(Tnhn(z) + Sngn(z)).

This completes the proof of theorem. �

Theorem 5.2.11 : Let f ∈ ASH(λ, α, k, γ). Then

|f(z)| ≤ (1 + |b1|)r +1

2B2(λ)

[1 − α

(2 + k − α)− 1 + 2k + α

(2 + k − α)|b1|]r2, |z| = r < 1

and

|f(z)| ≥ (1−|b1|)r− 1

2B2(λ)

[1 − α

(2 + k − α)− 1 + 2k + α

(2 + k − α)|b1|]r2, |z| = r < 1.

(5.22)

Proof : We have

|f(z)| ≤ (1 + |b1|)r +

∞∑n=2

(|an| + |bn|)rn

≤ (1 + |b1|)r +

∞∑n=2

(|an| + |bn|)r2

= (1 + |b1|)r +1 − α

2(2 + k − α)B2(λ)

∞∑n=2

[2(2 + k − α)

1 − α|an| +

2(2 + k − α)

1 − α|bn|]Bn(λ)r2

≤ (1 + |b1|)r +1

2B2(λ)

(1 − α

2 + k − α− 1 + 2k + α

2 + k − α|b1|)r2.

Also,

f(z) ≥ (1 − |b1|)r −∞∑

n=2

(|an| + |bn|)rn

≥ (1 − |b1|)r −∞∑

n=2

(|an| + |bn|)r2

213

Page 17: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

= (1 − |b1|)r − 1 − α

2(2 + k − α)B2(λ)

∞∑n=2

[2(2 + k − α)

1 − α|an| +

2(2 + k − α)

1 − α|bn|]Bn(λ)r2

≥ (1 − |b1|)r − 1 − α

2(2 + k − α)B2(λ)

∞∑n=2

[(n(n(1 + k) − k − α)

1 − α|an| +

n(n(1 + k) + k + α)

1 − α|bn|]Bn(λ)r2

≥ (1 − |b1|)r − 1

2B2(λ)[

1 − α

2 + k − α− 1 + 2k + α

2 + k − α|b1|]r2.

This completes the proof of theorem. �

Theorem 5.2.12 : Let f(z) ∈ ASH(λ, α, k, γ) and g(z) ∈ ASH(λ, β, k, γ).

Then for 0 ≤ β ≤ α < 1, we have

(f ∗ g)(z) ∈ ASH(λ, α, k, γ) ⊂ ASH(λ, β, k, γ).

Proof : We have

(f ∗ g)(z) = z −∞∑

n=2

|an||cn|zn −∞∑

n=1

|bn||dn|zn.

By noting that |cn| ≤ 1 and |dn| ≤ 1, the theorem follows easily by using the

condition (5.19).

The proof of this theorem is complete. �

In the next theorem we show that ASH(λ, α, k, γ) is closed under convex

combination of its members.

Theorem 5.2.13 : Let for i = 1, 2, 3, · · · the function

fi(z) = z −∞∑

n=2

|ai,n| −∞∑

n=1

|bi,n|zn

belong to ASH(λ, α, k, γ). Then∞∑

n=1

µifi(z) belongs to ASH(λ, α, k, γ), where

∞∑i=1

µi = 1, 0 ≤ µi < 1, i = 1, 2, · · · .

214

Page 18: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Proof : Since fi ∈ ASH(λ, α, k, γ)(i = 1, 2, · · ·), then from (5.19), we have

∞∑n=1

(n(n(1 + k) − k − α)

1 − α|ai,n| +

n(n(1 + k) + k + α)

1 − α|bi,n|

)Bn(λ) ≤ 2.

For∞∑i=1

µi = 1, 0 ≤ µi ≤ 1, we may write the convex combination of fi as

∞∑i=1

µifi(z) = z −∞∑

n=2

( ∞∑i=1

µi|ai,n|)zn −

∞∑n=1

( ∞∑i=1

µi|bi,n|)zn.

Thus

∞∑n=1

[n(n(1 + k) − k − α)

1 − α

( ∞∑i=1

µi|ai,n|)

+n(n(1 + k) + k + α)

1 − α×

( ∞∑i=1

µi|bi,n|)]

Bn(λ) =∞∑i=1

[[ ∞∑n=1

n(n(1 + k) − k − α)

1 − α|ai,n| +

n(n(1 + k) + k + α)

1 − α|bi,n|

]Bn(λ)

]µi ≤ 2

∞∑i=1

µi = 2,

then∞∑i=1

µifi(z) ∈ ASH(λ, α, kγ). This completes the proof of theorem. �

Now, we introduce a new class MAH(α, β, γ) of harmonic univalent func-

tion defined in the open unit disk. Jahangiri [10] defined a class MAH(α)

consisting of harmonic starlike functions f = h + g which are of order α

(0 ≤ α < 1), where

h(z) = z −∞∑

n=2

|an|zn, g(z) =

∞∑n=1

|bn|zn (5.23)

and which satisfy the condition that

∂θ(arg f(reiθ)) ≥ α, 0 ≤ α < 1, |z| = r < 1. (5.24)

It was proved in [10] that if f = h + g where h, g are given by (5.1) and if

∞∑n=1

(n− α

1 − α|an| +

n + α

1 − α|bn|)

≤ 2, (0 ≤ α < 1, a1 = 1), (5.25)

215

Page 19: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

then f is harmonic, univalent and starlike of order α in U . The condition in

(5.25) is shown to be necessary also if h and g are of the form (5.23). Avci

and Zlotkiewicz in [4] showed that if∞∑

n=2

n(|an|+|bn|) ≤ 1, then f ∈ MAH(0).

Silverman in [22] proved that the last condition is also necessary if f = h+ g

has negative coefficients.

Here we define a new class MAH(α, β, γ) of harmonic univalent functions

as follows:

A function f(= h+g) ∈ MAH(α) is said to be in the class MAH(α, β, γ)

if the holomorphic functions h and g satisfy the condition

�{1 + αz2h′′(z) − βzh′(z) + βg(z))} > 1 − |γ|, (5.26)

where 0 ≤ β ≤ α, α ≥ 0, γ ∈ C and z ∈ U .Here we obtain sufficient conditions for a function f to be in the class

MAH(α, β, γ) and derive distortion theorems by using fractional calculus

operators. We also obtain the radii of starlikeness, close-to-convexity and

convexity of functions belonging to the above class.

We begin by proving the following:

Theorem 5.2.14 : Let f = h + g (h and g being given by (5.23)). If

f ∈ MAH(α, β, γ), then

∞∑n=2

[n(α(n− 1) − β)|an| − β

1 − 3α

n + α

]≤ |γ|, (5.27)

where a1 = b1 = 1, 0 < α ≤ 1/3, 0 ≤ β < α and γ ∈ C. The result is sharp.

Proof : Assume that f ∈ MAH(α, β, γ). Using (5.26), we get

Re

{1 −

∞∑n=2

αn(n− 1)|an|zn +

∞∑n=2

βn|an|zn +

∞∑n=2

β|bn|zn

}> 1 − |γ|.

216

Page 20: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Choosing z real and letting z → 1−, we obtain

1 −[ ∞∑

n=2

n(α(n− 1) − β)|an| −∞∑

n=2

β|bn|]≥ 1 − |γ|

which implies∞∑

n=2

n(α(n− 1) − β)|an| − β|bn| ≤ |γ|. (5.28)

Since f ∈ MAH(α), therefore, it follows that

∞∑n=1

n + α

1 − α|bn| ≤ 2

and from the above inequality we infer that

|bn| ≤(

1 − 3α

n+ α

)(n ≥ 2),

and consequently

β|bn| ≤ β1 − 3α

n + α. (5.29)

The assertion (5.27) of Theorem 5.2.14 now follows upon combining (5.28)

and (5.29). �

Deduction 5.2.1 : If the function f = h + g where h and g are given by

(5.23) belong to the class MAH(α, β, γ), then

|an| ≤ (n+ α)|γ| + β(1 − 3α)

n(α(n− 1) − β)(n+ α)(n ≥ 2, 0 < α ≤ 1/3, 0 ≤ β < α, γ ∈ C).

(5.30)

The result is sharp for the functions h(z) and g(z), respectively, given by

h(z) = z − (n+ α)|γ| + β(1 − 3α)

n(α(n− 1) − β)(n+ α)zn (n ≥ 2), (5.31)

and

g(z) = z +β(1 − 3α)

n+ αzn (n ≥ 2). (5.32)

217

Page 21: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Making use of the operators in Definition 0.1.20, we establish the following

distortion theorems.

Theorem 5.2.15 : If the function f = h+ g (h and g being given by (5.23))

belong to the class MAH(α, β, γ), then

|D−λz h(z)| ≥ |z|1+λ

Γ(2 + λ)

{1 − (2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 + λ)|z|}

(5.33)

and

|D−λz h(z)| ≤ |z|1+λ

Γ(2 + λ)

{1 +

(2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 + λ)|z|}, (5.34)

for λ > 0, 0 < α ≤ 1/3, 0 ≤ β < α, γ ∈ C and z ∈ U . The results are sharp.

Proof : Applying (0.12) to (5.23), we find that

D−λz h(z) =

1

Γ(2 + λ)z1+λ −

∞∑n=2

Γ(n+ 1)

Γ(n+ 1 + λ)|an|zn+λ

which yields

Γ(2 + λ)z−λD−λz f(z) = z −

∞∑n=2

Γ(n + 1)Γ(2 + λ)

Γ(n + 1 + λ)|an|zn.

We observe that the function ϕ(n) = Γ(n+1)Γ(2+λ)Γ(n+1+λ)

(n ≥ 2) is a decreasing

function of n, and this implies that

0 < ϕ(n) ≤ ϕ(2) =2

2 + λ(n ≥ 2).

In view of Theorem 5.2.14, we conclude that

|Γ(2 + λ)z−λD−λz h(z)| ≥ |z| − ϕ(2)|z|2

∞∑n=2

|an|

≥ |z| − (2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 + λ)|z|2

218

Page 22: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

which gives the desired assertion (5.33) of Theorem 5.2.15. Similarly, it follows

that

|Γ(2 + λ)z−λD−λz h(z)| ≤ |z| + ϕ(2)|z|2

∞∑n=2

|an|

≤ |z| +(2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 + λ)|z|2.

This yields the second assertion (5.34) of Theorem 5.2.15. The sharpness of

the inequalities (5.32) and (5.33) are achieved when h(z) is given by

D−λz h(z) =

z1+λ

Γ(2 + λ)

{1 − (2 + α)|γ| + β(1 − 3α)

2(α− β)(2 + α)(2 + λ)z

}. �

Following similar steps as used in proving Theorem 5.2.15, wherein, the

fractional derivative operator (0.13) is applied to (5.23), we can prove the

following.

Theorem 5.2.16 : If the function f = h+ g (h and g being given by (5.23))

belong to the class MAH(α, β, γ), then

|Dλzh(z)| ≥ |z|1−λ

Γ(2 − λ)

{1 − (2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 − λ)|z|}

(5.35)

and

|Dλzh(z)| ≤ |z|1−λ

Γ(2 − λ)

{1 +

(2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 − λ)|z|}, (5.36)

where 0 ≤ λ < 1, 0 < α ≤ 1/3, 0 ≤ β < α, γ ∈ C and z ∈ U . The results are

sharp for the function given by

Dλzh(z) =

z1−λ

Γ(2 − λ)

{1 − (2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)(2 − λ)z

}. (5.37)

Letting λ→ 0 in Theorem 5.2.15, we obtain

219

Page 23: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Corollary 5.2.2 : If the function f = h+ g ( h and g being given by (5.23))

belong to the class MAH(α, β, γ), then

r− (2 + α)|γ| + β(1 − 3α)

2(α− β)(2 + α)r2 ≤ |h(z)| ≤ r+

(2 + α)|γ| + β(1 − 3α)

2(α− β)(2 + α)r2, (5.38)

where 0 < α ≤ 1/3, 0 ≤ β < α, γ ∈ C and |z| = r < 1. The result is sharp.

Also, by letting λ→ 1 in Theorem 5.2.16, we get

Corollary 5.2.3 : If the function f = h+ g ( h and g being given by (5.23))

belong to the class MAH(α, β, γ), then

1− (2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)r ≤ |h′(z)| ≤ 1+

(2 + α)|γ| + β(1 − 3α)

(α− β)(2 + α)r (5.39)

where 0 < α ≤ 1/3, 0 ≤ β < α, γ ∈ C and |z| = r < 1. The result is sharp.

We claim that the above results are entirely new.

Now, we begin by recalling the fractional integral operator Iλ,ξ,δ0,z and the

fractional derivative operator J λ,ξ,δ0,z of Saigo type as follows [23](see also [5]

and [19]):

The fractional integral operator of order λ for a function h(z) is defined by

Iλ,ξ,δ0,z h(z) =

z−λ−ξ

Γ(λ)

∫ z

0

(z − t)λ−12F1(λ+ ξ,−δ;λ; 1 − t

z)h(t)dt, (5.40)

where λ > 0, k > max{0, ξ − δ} − 1. The function h(z) is holomorphic

in a simply-connected region of the z-plane containing the origin with the

order h(z) = O(|z|k), z → 0, and the multiplicity of (z − t)λ−1 is removed by

requiring log(z − t) to be real when (z − t) > 0.

The fractional derivative operator of a function h(z) of order λ(0 ≤ λ < 1)

is defined by

J λ,ξ,δ0,z h(z) =

1Γ(1 − λ)

d

dz

{zλ−ξ

∫ z

0

(z − t)−λ2F1

(ξ − λ, 1 − δ; 1 − λ; 1 − t

z

)h(t)dt

}(0 ≤ λ < 1) (5.41)

220

Page 24: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

which holds under similar constraints as mentioned for the operator Iλ,ξ,δ0,z

defined above by (5.40).

We observe the following relationships of the operators (5.40) and (5.41):

Iλ,−λ,δ0,z h(z) = D−λ

z h(z) and Jλ,λ,δ0,z h(z) = Dλ

zh(z).

Corresponding to the fractional derivative operator (5.40), we make use

of the operator ∆λ,ξ,δ0,z which is defined by ([5])

∆λ,ξ,δ0,z h(z) =

Γ(2 − ξ)Γ(2 − λ+ ξ)

Γ(2 − ξ + δ)zξJ λ,ξ,δ

0,z h(z). (5.42)

(0 ≤ λ < 1, ξ < 2, δ > 0)

In view of (5.23) and (5.41) we obtain the series representation

∆λ,ξ,δ0,z h(z) = z −

∞∑n=2

(2 − ξ + δ)n−1(2)n−1

(2 − ξ)n−1(2 − λ+ δ)n−1|an|zn (5.43)

Theorem 5.2.17 : Let the function f = h + g such that h and g are given

by (5.23). If f ∈ MAH(α, β, γ), then

|∆ν,σ,s0,z h(z)| ≥ |z| − |z|2 (2 − σ + s)[(2 + α)|γ| + β(1 − 3α)]

(2 − σ)(2 − ν + s)(α− β)(2 + α)(5.44)

and

|∆ν,σ,s0,z h(z)| ≤ |z| + |z|2 (2 − σ + s)[(2 + α)|γ| + β(1 − 3α)]

(2 − σ)(2 − ν + s)(α− β)(2 + α)(5.45)

where 0 < α ≤ 13, 0 ≤ β < α, γ ∈ C, 0 ≤ ν < 1, σ < 2, s ∈ IR+, provided that

σ(ν − s)

ν≤ 3.

The results are sharp.

221

Page 25: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Proof : From (5.27) of Theorem 2.2.14, we obtain

∞∑n=2

|an| ≤ (2 + α)|γ| + β(1 − 3α)

2(α− β)(2 + α),

and in view of (5.43) the operator ∆ν,σ,s0,z applied to h(z) gives

∆ν,σ,s0,z h(z) = z −

∞∑n=2

(2 − σ + s)n−1(2)n−1

(2 − σ)n−1(2 − ν + s)n−1|an|zn. (5.46)

Under the assumptions stated with Theorem 5.2.17, we observe that the func-

tion

ψ(n) =(2 − σ + s)n−1(2)n−1

(2 − σ)n−1(2 − ν + s)n−1

(n ≥ 2)

is non-increasing and, therefore, we get

0 < ψ(n) ≤ ψ(2) =(2 − σ + s)(2)

(2 − σ)(2 − ν + s).

Consequently, we find that

|∆ν,σ,s0,z h(z)| ≥ |z| − |z|2ψ(2)

∞∑n=2

|an|

≥ |z| − |z|2 (2 − σ + s)[(2 + α)|γ| + β(1 − 3α)]

(2 − σ)(2 − ν + s)(α− β)(2 + α)

and

|∆ν,σ,s0,z h(z)| ≤ |z| + |z|2 (2 − σ + s)[(2 + α)|γ| + β(1 − 3α)]

(2 − σ)(2 − ν + s)(α− β)(2 + α).

The inequalities (5.44) and (5.45) are sharp, and the equalities are attained

for the function h(z) given by

h(z) = z − (2 + α)|γ| + β(1 − 3α)

2(α− β)(2 + α)z2. (5.47) �

Evidently, in the special case when σ = ν, Theorem 5.2.17 would correspond

to Theorem 5.2.16. In a similar manner, one can obtain the distortion in-

equalities involving the Saigo type fractional integral operator (5.40).

222

Page 26: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

We merely state here the following results (Theorems 5.2.18 to 5.2.20)

giving the radii of starlikeness, close to convexity and convexity for the holo-

morphic part of the function f belonging to the class MAH(α, β, γ). The

proofs of these results are omitted here as these results can be established by

following [23] (see also [19]).

Theorem 5.2.18 : Let f ∈ MAH(α, β, γ) where f = h + g with h and g

given by (5.23), then h(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r1 where

r1 = infn

[2(α− β)(2 + α)(1 − ρ)

[(2 + α)|γ| + β(1 − 3α)](n− ρ)

] 1n−1

, (n ≥ 2). (5.48)

Theorem 5.2.19 : Let f ∈ MAH(α, β, γ) where f = h + g with h and g

given by (5.23), then h(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r2

where

r2 = infn

[(1 − ρ)(α− β)(2 + α)

(2 + α)|γ| + β(1 − 3α)

] 1n−1

, n ≥ 2. (5.49)

Theorem 5.2.20 : Let f ∈ MAH(α, β, γ) where f = h+ g with h and g are

given by (5.23), then h(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3 where

r3 = infn

[(1 − ρ)(α− β)(2 + α)

[(2 + α)|γ| + β(1 − 3α)](n− ρ)

] 1n−1

, n ≥ 2. (5.50)

223

Page 27: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

SECTION 2

5.3 On a Certain Class of Multivalently Harmonic

Meromorphic Functions

In this Section we research a certain subclass of multivalent harmonic

meromorphic functions. This class with other subclasses has been researched

by O. P. Ahuja and J. M. Jahangiri [1], T. Rosy, B. A. Stephen, K. G.

Subramanian and J. M. Jahangiri [20].

W. Hengartner and G. Schober [7], considered harmonic sense preserving

univalent mappings defined on U = {z : |z| > 1} that map ∞ to ∞ and

represented by

f(z) = h(z) + g(z) + A log |z| where

h(z) = αz +

∞∑n=0

anz−n, g(z) = βz +

∞∑n=1

bnz−n

are holomorphic in U and |α| > |β| ≥ 0, A ∈ C, further fz

fzis holomorphic

and∣∣∣fz

fz

∣∣∣ < 1.

Now, let us denote the family Σp(H) consisting of all harmonic sense-

preserving multivalent meromorphic mapping

f(z) = h(z) + g(z) (5.51)

where

h(z) = zp +

∞∑n=1

an+p−1z−(n+p−1), g(z) =

∞∑n=1

bn+p−1z−(n+p−1), |bp| < 1, |z| > 1.

(5.52)

For 0 ≤ α < 2(1 − k), 0 ≤ λ ≤ 1, 12≤ k < 1, 0 ≤ θ < 1, 0 ≤ ξ < 1 and

z = reiβ ;

224

Page 28: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

1 < r < ∞; β, ξ, θ and α are real, we introduce the subclass AOH(α, λ, k, p)

consisting of all functions f satisfying

Re

{(1 + eiθ)

zf ′(z)/f(z)

λzf ′(z)/f(z) + (1 − pλ)− pk(1 + eiξ)

}≥ pα. (5.53)

Also the subclass of multivalent meromorphic harmonic functions with

f = zp +∞∑

n=1

|an+p−1|z−(n+p−1) −∞∑

n=1

|bn+p−1|z−(n+p−1), |bp| < 1 (5.54)

that satisfies (5.53) is denoted by AOH(α, λ, k, p).

The particular case λ = 0, p = 1 recently is investigated by [15] for uni-

valent harmonic functions defined in U = {z : |z| < 1}.

In order to study the various properties of AOH(α, λ, k, p) we need the

following result due to O.P. Ahuja and J. M. Jahangiri [1].

Theorem 5.3.1 : Let f = h+ g with h and g given by (5.52). If

∞∑n=1

(n + p− 1)(|an+p−1| + |bn+p−1|) ≤ p (5.55)

then f is harmonic, sense preserving and multivalent in U and f ∈ Σp(H).

Theorem 5.3.2 : Let f = h+g where g and h given by (5.52). Furthermore,

let

∞∑n=1

([2(n + p− 1) − p(α+ 2k)(λn+ 2pλ− λ− 1)]|an+p−1|

+[2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)]|bn+p−1|) ≤ p(2 − 2k − α) , (5.56)

where 0 ≤ α < 2(1−k), 0 ≤ λ ≤ 1 and 12≤ k < 1. Then f is sense preserving

multivalent meromorphic harmonic functions with f ∈ AOH(α, λ, k, p).

Proof : If the inequality (5.56) holds for coefficients of f = h + g, then by

(5.55), f is sense preserving and harmonic multivalent in U . Now we want to

225

Page 29: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

show that f ∈ AOH(α, λ, k, p). According to (5.53), we have

Re

{[zh′(z) − zg′(z)](1 + eiθ)

λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z))− pk(1 + eiξ)

}≥ pα,

where z = reiγ , 0 ≤ γ ≤ 2π, 0 ≤ r < 1, 0 ≤ α < 2(1 − k), 0 ≤ θ < 1,

0 ≤ ξ < 1, 12≤ k < 1, and 0 ≤ λ ≤ 1.

Let N(λ, z) = (1 + eiθ)(zh′(z) − zg′(z)) − pk(1 + eiξ)[λ(zh′(z) − zg′(z)) +

(1 − pλ)(h(z) + g(z))] and

M(λ, z) = λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z)).

By using the fact Re w > pα if and only if |p(1 − α) + w| > |p(1 + α) − w|,it is enough to show that

|p(1 − α)M(λ, z) +N(λ, z)| − |N(λ, z) − p(1 + α)M(λ, z)| ≥ 0.

Therefore

|N(λ, z) + p(1 − α)M(λ, z)| = |(1 + eiθ)(zh′(z) − zg(z)′) − pk(1 + eiξ) ×

[λ(zh′(z) − zg′(z) + (1 − pλ)(h(z) + g(z))] + p(1 − α)[λ(zh′(z) − zg′(z)) +

(1 − pλ)(h(z) + g(z))]| = |[(1 + eiθ) − pλk(1 + eiξ) + pλ(1 − α)]zh′(z) −

[(1 − pλ)pk(1 + eiξ) − p(1 − α)(1 − pλ)]h(z) − [(1 + eiθ) − λpk(1 + eiξ) +

p(1 − α)λ]zg′(z) − [pk((1 + eiξ)(1 − pλ) − p(1 − α)(1 − pλ)]g(z)|

= |[(1 + eiθ) − pλk(1 + eiξ) + pλ(1 − α)][pzp −∞∑

n=1

(n+ p− 1)an+p−1z−(n+p−1)] −

[(1 − pλ)pk(1 + eiξ) − p(1 − α)(1 − pλ)][zp +∞∑

n=1

an+p−1z−(n+p−1)] −

[(1 + eiθ) − pλk(1 + eiξ) + p(1 − α)λ][−∞∑

n=1

(n + p− 1)bn+p−1z−(n+p−1)] −

226

Page 30: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

[pk(1 + eiξ)(1 − pλ) − p(1 − α)(1 − pλ)]∞∑

n=1

bn+p−1z−(n+p−1)

≥ (3p− 2kp− pα)|z|p −∞∑

n=1

[2(n+ p− 1) + p(1 − α− 2k) ×

(λn+ 2pλ− λ− 1)]|an+p−1||z|−(n+p−1) −∞∑

n=1

[2(n + p− 1) + p(1 − α− 2k)(λn− λ+ 1)]|bn+p−1||z|−(n+p−1),

also we have

|N(λ, z) − p(1 + α)M(λ, z)| = |(1 + eiθ)(zh′(z) − zg′(z) − pk(1 + eiξ) ×

[λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z))] −

p(1 + α)[λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z))]|

= |[(1 + eiθ) − pkλ(1 + eiξ) − pλ(1 + α)]zh′(z) − [(1 − pλ)pk(1 + eiξ) +

p(1 + α)(1 − pλ)]h(z) − [(1 + eiθ) − λpk(1 + eiξ) − p(1 + α)λ]zg′(z) −

[pk(1 + eiξ)(1 − pλ) + p(1 + α)(1 − pλ)]g(z)|

≥ (pα + 2pk − p)|z|p +∞∑

n=1

[2(n+ p− 1) − p(1 + α + 2k) ×

(λn+ 2λp− λ− 1)]|an−p−1||z|−(n+p−1) +∞∑

n=1

[2(n+ p− 1) − p(2k + 1 + α)(λn− λ+ 1)]|bn+p−1||z|−(n+p−1).

Thus,

|p(1 − α)M(λ, z) +N(λ, z)| − |N(λ, z) − p(1 + α)M(λ, z)|

≥ 2p(2 − 2k − α)|z|p − 2∞∑

n=1

[2(n+ p− 1) − p(α + 2k) ×

(λn+ 2λp− λ− 1)]|an+p−1||z|−(n+p−1) −

2∞∑

n=1

[2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)]|bn−p+1||z|−(n+p−1)

≥ 0 (by (5.56)).

227

Page 31: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

So f(z) ∈ AOH(α, λ, k, p). �

Theorem 5.3.3 : Let f = h + g, where h and g have the form given by

(5.52). Then f ∈ AOH(α, λ, k, p) if and only if

∞∑n=1

([2(n+ p− 1) − p(α + 2k)(λn+ 2pλ− λ− 1)]|an+p−1| + [2(n+ p− 1)

−p(α + 2k)(λn− λ+ 1)]|bn+p−1|) / (p(2 − 2k − α)) ≤ 1 (5.57)

Proof : The “if” part is clear, since AOH(α, λ, k, p) ⊆ AOH(α, λ, k, p), for “

only if” part we show that f �∈ AOH(α, λ, k, p) if the inequality (5.57) does

not hold. So, we must show that

Re

{(zh′(z) − zg′(z)

λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z))

)(1 + eiθ) − pk(1 + eiξ) − pα)

}

= Re

{C(z)D(z)

}≥ 0,

where

C(z) = [zh′(z)−zg′(z)](1+eiθ)−p(k(1+eiξ)+α)[λ(zh′(z)−zg′(z))+(1−pλ)(h(z)+g(z))],

also

D(z) = λ(zh′(z) − zg′(z)) + (1 − pλ)(h(z) + g(z)),

then

C(z) = p(2 − 2k − α)|z|p −∞∑

n=1

[2(n + p− 1) − p(α + 2k)(λn+ 2λp− λ− 1] ×

|an+p−1||z|−(n+p−1) + [2(n+ p− 1) − p(α+ 2k)(λn− λ+ 1)]|bn+p−1||z|−(n+p−1)

and

D(z) = zp−∞∑

n=1

(λn+2pλ−λ−1)|an+p−1||z|−(n+p−1)+∞∑

n=1

(λn−λ+1)|bn+p−1||z|−(n+p−1).

228

Page 32: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Upon choosing the values of z on the positive real axis, where |z| = r < 1,

then we must show that

[(2 − 2k − α) −∞∑

n=1

[(2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)]|an+p−1| +

[2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)]|bn+p−1|]/[1 −∞∑

n=1

(λn+ 2pλ− λ− 1) ×

|an+p−1|r−(n+2p−1) +

∞∑n=1

(λn− λ+ 1)|bn+p−1|r−(n+2p−1)] ≥ 0. (5.58)

We note that the last inequality is negative for r sufficiently close to 1, then

the inequality (5.57) does not hold, therefore Re{

C(z)D(z)

}is negative. This

contradicts the required condition for f ∈ AOH(α, λ, k, p). This completes

the proof of theorem. �

Next we obtain the distortion bounds and extreme points.

Theorem 5.3.4 : Let f(z) ∈ AOH(α, λ, k, p). Then

rp − p(2 − 2k − α)r−p ≤ |f(z)| ≤ rp + p(2 − 2k − α)r−p.

Proof : Let f ∈ AOH(α, λ, k, p), then for |z| = r > 1 we have

|f(z)| =

∣∣∣∣∣zp +

∞∑n=1

an+p−1|z|−(n+p−1) −∞∑

n=1

bn+p−1z−(n+p−1)

∣∣∣∣∣≤ rp +

∞∑n=1

(an+p−1 + bn+p−1)r−(n+p−1) ≤ rp + r−p

∞∑n=1

(|an+p−1| + |bn+p−1|)

≤ rp + r−p∞∑

n=1

[[2(n + p− 1) − p(α + 2k)(λn+ 2pλ− λ− 1)]|an+p−1| ×

r−(n+2p−1) + [2(n + p− 1) − p(α+ 2k)(λn− λ+ 1)|bn+p−1|r−(n+2p−1)]]

≤ rp + p(2 − 2k − α)r−p.

The left hand inequality can be proved by using similar arguments. This

completes the proof of theorem. �

229

Page 33: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Theorem 5.3.5 : The function

f(z) = h(z) + g(z) ∈ AOH(α, λ, k, p)

if and only if

f(z) =

∞∑n=0

(Sn+p−1hn+p−1(z) + Tn+p−1gn+p−1(z)), z ∈ U , p ≥ 1 (5.59)

where

hp−1(z) = zp, hn+p−1(z) = zp+p(2 − 2k − α)

2(n+ p− 1) − p(α+ 2k)(λn+ 2λp− λ− 1)z(n+p−1),

gp−1(z) = zp, gn+p−1(z) = zp− p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)z−(n+p−1)

for (n ≥ 1),∞∑

n=0

(Sn+p−1 + Tn+p−1) = 1, Sn+p−1 ≥ 0 and Tn+p−1 ≥ 0. In

particular the extreme points of AOH(α, λ, k, p) are {hn+p−1} and {gn+p−1}.

Proof : Suppose that f can be written of the form (5.59), then

f(z) = Sp−1hp−1(z) + Tp−1gp−1(z) +

∞∑n=1

Sn+p−1 ×(zp +

p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn− 2λp− λ− 1)z−(n+p−1)

)+

∞∑n=1

Tn+p−1

(zp − p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)z−(n+p−1)

)

=

∞∑n=0

(Sn+p−1 + Tn+p−1)zp +

∞∑n=1

[p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)Sn+p−1z

−(n+p−1) −

p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)Tn+p−1z

−(n+p−1)

].

Since

∞∑n=1

((2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1))×

230

Page 34: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

(p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)Sn+p−1

)+

(2(n+ p− 1) − p(α+ 2k)(λn− λ+ 1)) ×(p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)Tn+p−1

))

= p(2 − 2k − α)

∞∑n=1

(Sn+p−1 + Tn+p−1) ≤ p(2 − 2k − α).

So by Theorem 5.3.3, f ∈ AOH(α, λ, k, p).

Conversely, if f ∈ AOH(α, λ, k, p), then by Theorem 5.3.3 we have

∞∑n=1

1

p(2 − 2k − α)[(2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1))|an+p−1| +

(2(n+ p− 1) − p(α+ 2k)(λn− λ+ 1))|bn+p−1|] ≤ 1.

Putting Sn+p−1 = 2(n+p−1)−p(α+2k)(λn+2λp−λ−1)p(2−2k−α)

, Tn+p−1 = 2(n+p−1)−p(α+2k)(λn−λ+1)p(2−2k−α)

,

0 ≤ Sp−1 ≤ 1 and Tp−1 = 1−Sp−1−∞∑

n=1

(Sn+p−1 +Tn+p−1) we get the required

result. �

Definition 5.3.1 : Let

f(z) = zp +

∞∑n=1

|an+p−1|z−(n+p−1) −∞∑

n=1

|bn+p−1|z−(n+p−1) (5.60)

g(z) = zp +

∞∑n=1

|cn+p−1|z−(n+p−1) −∞∑

n=1

|dn+p−1|z−(n+p−1). (5.61)

be in AOH(α, λ, k, p), for real number β, we define the β-convolution of f and

g as follows.

(f ⊗β g)(z) = z +

∞∑n=1

|an+p−1cn+p−1|(n+ p− 1)β

z−(n+p−1) +

∞∑n=1

|bn+p−1dn+p−1|(n + p− 1)β

z−(n+p−1).

The 0-convolution of f and g is the familiar Hadamard product, also the

1-convolution of f and g is named integral convolution and is defined by

(f ⊗1 g)(z) = z +

∞∑n=1

|an+p−1cn+p−1|n+ p− 1

z−(n+p−1) +

∞∑n=1

|bn+p−1dn+p−1|n+ p− 1

z−(n+p−1).

231

Page 35: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

Theorem 5.3.6 : Let f(z), g(z) defined as (5.60), (5.61) respectively be in

AOH(α, λ, k, p). Then the β-convolution of f and g where β ≥ p(2−2k−α)2p−p(α+2k)(2λp−1)

belongs to AOH(α, λ, k, p), if furthermore of β,

then, we have

β ≥ maxn �=1

{(log(n+ p− 1))−1 log

2 − 2k − α

2 − (α + 2k)(2λp− 1),

(log(n+ p− 1))−1 log2 − 2k − α

2 − (α + 2k)

}.

Proof : By assumption, we have f, g ∈ AOH(α, λ, k, p), therefore

∞∑n=1

2(n+ p− 1) − p(α+ 2k)(λn+ 2pλ− λ− 1)

p(2 − 2k − α)|an+p−1| +

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)

p(2 − 2k − α)|bn+p−1| ≤ 1 (5.62)

∞∑n=1

2(n+ p− 1) − p(α+ 2k)(λn+ 2pλ− λ− 1)

p(2 − 2k − α)|cn+p−1| +

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)

p(2 − 2k − α)|dn+p−1| ≤ 1. (5.63)

Also we have

|cn+p−1| ≤ p(2 − 2k − α)

2(n+ p− 1) − p(α+ 2k)(λn+ 2pλ− λ− 1),

|dn+p−1| ≤ p(2 − 2k − α)

2(n+ p− 1) − p(α+ 2k)(λn− λ+ 1),

we have to show that

∞∑n=1

2(n+ p− 1) − p(α + 2k)(λn+ 2pλ− λ− 1)

p(2 − 2k − α)

|an+p−1cn+p−1|(n+ p− 1)β

+

[2(n+ p− 1) − p(α+ 2k)(λn− λ+ 1)]

p(2 − 2k − α)

|bn+p−1dn+p−1|(n+ p− 1)β

≤ 1 (5.64)

For this purpose, we have

∞∑n=1

2(n+ p− 1) − p(α + 2k)(λn+ 2pλ− λ− 1)

p(2 − 2k − α)

|an+p−1cn+p−1|(n+ p− 1)β

+

232

Page 36: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

2(n+ p− 1) − p(2 + 2k)(λn− λ+ 1)|bn+p−1dn+p−1|p(2 − 2k − α)(n+ p− 1)β

≤∞∑

n=1

|an+p−1| + |bn+p−1|(n+ p− 1)β

.

Therefore the inequality in (5.64) holds true if

(n+ p− 1)β ≥ p(2 − 2k − α)

2(n+ p− 1) − p(α + 2k)(λn+ 2pλ− λ− 1),

(n+ p− 1)β ≥ p(2 − 2k − α)

2(n+ p− 1) − p(2 + 2α)(λn− λ+ 1)

holds true

or

β ≥ maxn�=1

{(log(n + p − 1))−1 log

2 − 2k − α

2 − (α + 2k)(2λp − 1), (log(n + p − 1))−1 log

2 − 2k − α

2 − (α + 2k)

}.

Theorem 5.3.7 : Suppose 0 ≤ α1 ≤ α2 < 2(1 − k), 12≤ k < 1 and

f ∈ AOH(α2, λ, k, p), g ∈ AOH(α1, λ, k, p), then

f ∗ g ∈ AOH(α2, λ, k, p) ⊂ AOH(α1, λ, k, p).

Proof : By assumption it is clear that AOH(α2, λ, k, p) ⊂ AOH(α1, λ, k, p).

Further,

∞∑n=1

([2(n+ p− 1) − p(α2 + 2k)(λn+ 2pλ− λ− 1)]|an+p−1| +

[2(n+ p− 1) − p(α2 + 2k)(λn− λ+ 1)]|bn+p−1|)/(p(2 − 2k + α2)) ≤ 1

∞∑n=1

{[2(n+ p− 1) − p(α1 + 2k)(λn+ 2pλ− λ− 1)]|cn+p−1| +

[2(n+ p− 1) − p(α1 + 2k)(λn− λ+ 1)|dn+p−1]}/{p(2 − 2k + α)} ≤ 1

233

Page 37: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

and consequently, we have

|cn+p−1| ≤ p(2 − 2k − α1)

2(n+ p− 1) − p(α1 + 2k)(λn+ npλ− λ− 1),

|dn+p−1| ≤ p(2 − 2k − α1)

2(n+ p− 1) − p(α1 + 2k)(λn− λ+ 1).

Therefore,

∞∑n=1

([2(n + p− 1) − p(α2 + 2k)(λn+ npλ− λ− 1)]|an+p−1cn+p−1| +

[2(n+ p− 1) − p(α2 + 2k)(λn− λ+ 1)|bn+p−1dn+p−1|)/(p(2 − 2k − α2))

≤ [2(n+ p− 1) − p(α2 + 2k)(λn+ npλ− λ− 1)][p(2 − 2k + α1)

(p(2 − 2k − α2)[2(n+ p− 1) − p(α1 + 2k)(λn+ npλ− λ− 1)]|an+p−1| +

∞∑n=1

[2(n+ p− 1) − b(α2 + 2k)(λn− λ− 1)](p(2 + 2k + α1)

p(2 − 2k − α2)[2(n+ p− 1) − p(α1 + 2k)(λn− λ− 1)]|bn+p−1| ≤ 1,

then by Theorem 5.3.6, we have f ∗ g ∈ AOH(α2, λ, k, p). �

Theorem 5.3.8 : Let f ∈ AOH(α, λ, k, p). Then f is closed under convex

combination.

Proof : Let fj(z) ∈ AOH(α, λ, k, p) for j ≥ 1 be defined by the following

form

fj(z) = zp +

∞∑n=1

an+p−1,jz−(n+p−1) −

∞∑n=1

bn+p−1,jz−(n+p−1),

(an+p−1,j ≥ 0 and bn+p−1,j ≥ 0).

Therefore by Theorem 5.3.3, we have

∞∑n=1

[(2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)

p(2 − 2k − α)an+p−1,j +

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)

p(2 − 2k − α)bn+p−1,j

]≤ 1. (5.65)

Then we can write for∞∑

j=1

Sj = 1, 0 ≤ Sj ≤ 1, the convex combination of fj

234

Page 38: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

as

∞∑n=1

Sjfj(z) = zp+

∞∑n=1

(

∞∑j=1

Sjan+p−1,j)z−(n+p−1)−

∞∑n=1

(

∞∑j=1

Sjbn+p−1,j)z−(n+p−1).

From (5.65) we get

∞∑n=1

[2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)

p(2 − 2k − α)(

∞∑j=1

Sjan+p−1,j) +

2(n+ p− 1) − p(α + 2k)(λn− λ+ 1)

p(2 − 2k − α)(

∞∑j=1

Sjbn+p−1,j)

]

=∞∑

j=1

Sj

( ∞∑n=1

[2(n+ p− 1) − p(α + 2k)(λn+ 2λp− λ− 1)

p(2 − 2k − α)an+p−1,j +

2(n + p− 1) − p(α+ 2k)(λn− λ+ 1)

p(2 − 2k − α)bn+p−1,j

])≤

∞∑j=1

Sj = 1.

Therefore∞∑

j=1

Sjfj(z) ∈ AOH(α, λ, k, p). This completes the proof. �

235

Page 39: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

REFERENCES

[1] O. P. Ahuja and J. M. Jahangiri, Multivalent meromorphic

harmonic functions, Adv. Stud. Contemp. Math. 7(2) (2003),

179-187.

[2] −−−−−−−−−−−−−−−, Noshiro-Type harmonic univalent func-

tions, Scientiac Mathematicae Japonicae, 6(2) (2002), 253-259.

[3] O. P. Ahuja, J. M. Jahangiri and H. Silverman, Contractions

of harmonic univalent functions, Far East. J. Math. Sci.

(FJMS), 3(4) (2001), 691-704.

[4] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings,

Ann. Univ. Mariae Curie-Sk�lodowska Sect.A, 44 (1990), 1-7.

[5] S. Bhatt and R.K. Raina, A new class of analytic functions

involving certain fractional derivative operators, Acta Math.

Univ. Comenian, 68 (1999), 179-193.

[6] P. L. Duren, Univalent functions, Grundlehren der Mathema-

tischen Wissenchaften 259, Springer-Verlag, New York, Berlin,

Heidelberg, Tokyo, 1983.

[7] W. Hengartner and G. Schober, Univalent harmonic functions,

Trans. Amer. Math. Soc., 299 (1987), 1-31.

[8] J. M. Jahangiri, Harmonic meromorphic starlike functions,

Bull. Korean Math. Soc., 37 (2000), 291-301.

[9] −−−−−−−−−−−, Coefficient bounds and univalence criteria for

236

Page 40: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

harmonic functions with negative coefficients, Ann. University

Mariae Curie-Sklodowska Sect. A. 52, No. 2, (1998), 57-66.

[10] −−−−−−−−−−−, Harmonic functions starlike in the unit disk,J.

Math. Anal. Appl., 235 (1999), 470-477.

[11] J.M. Jahangiri and H. Silverman, Harmonic univalent func-

tions with varying arguments, Int. J. Appl. Math., 8(9)

(2002), 267-275.

[12] S. Kanas and H. M. Srivastava, Linear operator associated

with k-uniformly convex functions, Integral Transform. Spec.

Funct., 9(2) (2000), 121-132.

[13] S. Kanas and A. Wisniowska, Conic regions and k-uniform

convexity, S. Comp. Appl. Math., 105 (1999), 327-336.

[14] S. M. Khairnar, Properties of harmonic convex functions in

the unit disc, Ultra Science 15 (2) M, (2003), 157-164.

[15] S. M. Khairnar and S. R. Kulkarni, A subclass of harmonic

starlike functions with negative coefficients, J. Indian Acad.

Math., 21 (1) (2004), 47-61.

[16] Y. C. Kim, J. M. Jahangiri and S. H. Choi, Certain convex

harmonic functions, IJMMS, 29 (8) (2002), 459-465.

[17] G. Murugusundaramoorthy and K. Vijaya, On certain classes

of harmonic functions involving Ruscheweyh derivatives, Bull.

Cal. Math. Soc., 96(2), 99-108.

237

Page 41: CHAPTER 5 HARMONIC UNIVALENT AND MULTIVALENT FUNCTIONSshodhganga.inflibnet.ac.in/bitstream/10603/3418/13/13_chapter 5.pdf · Harmonic Univalent and Multivalent Functions 5.1 Introduction

[18] S. Owa, On the distortion theorems I, Kyungpook Math. J.,

18 (1978), 53-59.

[19] R. K. Raina and H. M. Srivastava, A certain subclass of ana-

lytic functions associated with operators of fractional calculus,

Comput. Math. Appl., 32 (7) (1996), 13–19.

[20] T. Rosy, B. A. Stephen, K. G. Subramanian, J. M. Jahangiri,

A class of harmonic meromorphic functions, Tamkang J. Math.,

33(1) (2002), 5-9.

[21] St. Ruscheweyh, New criteria for univalent functions, Proc.

Amer. Math. Soc., 49 (1975), 109-115.

[22] H. Silverman, Harmonic univalent function with negative co-

efficients, J. Math. Anal. Appl., 220 (1998), 283-289.

[23] H. M. Srivastava, M. Saigo and S. Owa, A class of distortion

theorems involving certain operators of fractional calculus, J.

Math. Anal. Appl., 131 (1988), 412-420.

238