new horizons in ab initio nuclear structure...

36
New Horizons in Ab Initio Nuclear Structure Theory Robert Roth 1

Upload: others

Post on 23-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • New Horizons in

    Ab Initio Nuclear Structure Theory

    Robert Roth

    1

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body prob-

    lem with controlled & im-

    provable approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    2

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body prob-

    lem with controlled & im-

    provable approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    FEW-BODYPATH

    inject few-bodyphilosophy with relaxedaccuracy goals into the

    many-body world

    3

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with con-

    verged truncations

    Controlled Approx.treat many-body problem

    with controlled & improv-

    able approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    4

  • Nuclear Interactions from Chiral EFT

    Robert Roth – TU Darmstadt – 09/2013

    Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Krebs, Bernard,...

    ■ chiral EFT background: talks byEpelbaum, Krebs, Gegelia,...

    ■ standard Hamiltonian:

    ● NN at N3LO:Entem & Machleidt, 500 MeV cutoff

    ● 3N at N2LO:Navrátil, A=3 fit, 500 MeV cutoff

    ■ alternatives:

    ● modified 3N interaction at N2LO(cutoff & LECs variations)

    ● consistent Hamiltonians at N2LO(NN: Epelbaum, POUNDERs-opt.)

    ● consistent Hamiltonians at N3LO(LENPIC Collaboration)

    ● Δ-full chiral EFT,...

    NN 3N 4N

    LO

    NLO

    N2LO

    N3LO

    Ä Ç ´

    É

    ¼

    £

    ¼

    µ

    Æ Ä Ç ´

    É

    ¾

    £

    ¾

    µ

    Æ

    ¾

    Ä Ç ´

    É

    ¿

    £

    ¿

    µ

    Æ

    ¿

    Ä Ç ´

    É

    £

    µ

    5

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with con-

    verged truncations

    Controlled Approx.treat many-body problem

    with controlled & improv-

    able approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    6

  • Similarity Renormalization Group

    Robert Roth – TU Darmstadt – 09/2013

    Wegner, Glazek, Wilson, Perry, Bogner, Furnstahl, Hergert, Roth, Jurgenson, Navratil,...

    continuous transformation drivingHamiltonian to band-diagonal formwith respect to a uncorrelated basis

    ■ unitary transformation of Hamiltonian and other observables

    Hα = Uα†HUα Oα = Uα†OUα

    ■ evolution equations for Hα and Uα depending on generator ηαd

    dαHα = [ηα,Hα]

    d

    dαUα = −Uαηα

    ■ dynamic generator: commutator with the operator in whoseeigenbasis Hα shall be diagonalized

    ηα = (2μ)2[Tint,Hα]

    simplicity and flexibilityare great advantages of

    the SRG approach

    solve SRG evolutionequations using two-,

    three- & four-body matrixrepresentation

    7

  • SRG Evolution in Three-Body Space

    Robert Roth – TU Darmstadt – 09/2013

    chiral NN+3NN3LO + N2LO, triton-fit, 500 MeV

    α = 0.000 fm4Λ = ∞ fm−1

    Jπ = 12

    +

    , T = 12, ̵hΩ = 28MeV

    3B-Jacobi HO matrix elements

    0 → E → 18 20 22 24 26 28(E, )

    28

    26

    24

    22

    20

    18

    ↓E′

    0

    .

    (E′,′)

    NCSM ground state 3H

    0 2 4 6 8 101214161820Nmx

    -8

    -6

    -4

    -2

    0

    2

    .

    E[M

    eV]

    8

  • SRG Evolution in Three-Body Space

    Robert Roth – TU Darmstadt – 09/2013

    α = 0.320 fm4Λ = 1.33 fm−1

    Jπ = 12

    +

    , T = 12, ̵hΩ = 28MeV

    3B-Jacobi HO matrix elements

    0 → E → 18 20 22 24 26 28(E, )

    28

    26

    24

    22

    20

    18

    ↓E′

    0

    .

    (E′,′)

    NCSM ground state 3H

    0 2 4 6 8 101214161820Nmx

    -8

    -6

    -4

    -2

    0

    2

    .

    E[M

    eV]

    suppression ofoff-diagonal coupling =̂pre-diagonalization

    significantimprovementof convergence

    behavior

    9

  • Hamiltonian in A-Body Space

    Robert Roth – TU Darmstadt – 09/2013

    ■ evolution induces n-body contributions H[n]α to Hamiltonian

    Hα = H[1]α +H

    [2]α +H

    [3]α +H

    [4]α +H

    [5]α + . . .

    ■ truncation of cluster series formally destroys unitarity and in-variance of energy eigenvalues (independence of α)

    ■ flow-parameter α provides diagnostic tool to assess neglectedhigher-order contributions

    SRG-Evolved Hamiltonians

    NNonly use initial NN, keep evolved NN

    NN +3Nind use initial NN, keep evolved NN+3N

    NN +3Nfull use initial NN+3N, keep evolved NN+3N

    NN +3Nfull +4Nind use initial NN+3N, keep evolved NN+3N+4N

    10

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body problem

    with controlled & improv-

    able approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    11

  • No-Core Shell Model

    Robert Roth – TU Darmstadt – 09/2013

    Barrett, Vary, Navratil, Maris, Nogga, Roth,...

    NCSM is one of the most powerful anduniversal exact ab-initio methods

    ■ construct matrix representation of Hamiltonian using a basis of HOSlater determinants truncated w.r.t. HO excitation energy Nmxh̵Ω

    ■ solve large-scale eigenvalue problem for a few extremal eigenvalues

    ■ all relevant observables can be computed from the eigenstates

    ■ range of applicability limited by factorial growth of basis with Nmx & A

    ■ adaptive importance truncation extends the range of NCSM by reduc-ing the model space to physically relevant states

    12

  • Importance Truncated NCSM

    Robert Roth – TU Darmstadt – 09/2013

    Roth, PRC 79, 064324 (2009); PRL 99, 092501 (2007)

    ■ converged NCSM calcula-tions essentially restrictedto lower/mid p-shell

    ■ full Nmx = 10 calculationfor 16O very difficult(basis dimension > 1010)

    0 2 4 6 8 10 12 14 16 18 20Nmx

    -150

    -140

    -130

    -120

    -110

    .

    E[M

    eV]

    16ONNonly

    α = 0.04 fm4

    h̵Ω = 20MeV

    ImportanceTruncation

    reduce model spaceto the relevant basis

    states using an a prioriimportance measurederived from MBPT

    0 2 4 6 8 10 12 14 16 18 20Nmx

    -150

    -140

    -130

    -120

    -110

    .

    E[M

    eV]

    ● IT-NCSM

    + full NCSM

    13

  • 4He: Ground-State Energies

    Robert Roth – TU Darmstadt – 09/2013

    Roth, et al; PRL 107, 072501 (2011)

    NNonly

    2 4 6 8 10 12 14 16 ∞Nmx

    -29

    -28

    -27

    -26

    -25

    -24

    -23

    .

    E[M

    eV]

    NN+3Nind

    2 4 6 8 10 12 14 ∞Nmx

    Exp.

    NN+3Nfull

    2 4 6 8 10 12 14 ∞Nmx

    ● ◆ ▲ ∎ ★

    α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

    Λ = 2.24 fm−1 Λ = 2.11 fm−1 Λ = 2.00 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1

    ̵hΩ = 20MeV

    14

  • 16O: Ground-State Energies

    Robert Roth – TU Darmstadt – 09/2013

    Roth, et al; PRL 107, 072501 (2011)

    NNonly

    2 4 6 8 10 12 14 ∞Nmx

    -180

    -160

    -140

    -120

    -100

    -80

    .

    E[M

    eV]

    NN+3Nind

    2 4 6 8 10 12 ∞Nmx

    Exp.

    NN+3Nfull

    2 4 6 8 10 12 ∞Nmx

    ● ◆ ▲ ∎ ★

    α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

    Λ = 2.24 fm−1 Λ = 2.11 fm−1 Λ = 2.00 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1

    ̵hΩ = 20MeV

    in progress:

    explicit inclusion of

    induced 4N clear signature ofinduced 4N originating

    from initial 3N

    15

  • 16O: Ground-State Energies

    Robert Roth – TU Darmstadt – 09/2013

    Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012)

    NNonly

    2 4 6 8 10 12 14 ∞Nmx

    -180

    -160

    -140

    -120

    -100

    -80

    .

    E[M

    eV]

    NN+3Nind

    2 4 6 8 10 12 ∞Nmx

    Exp.

    NN+3Nfull

    2 4 6 8 10 12 ∞Nmx

    ● ◆ ▲ ∎ ★

    α = 0.04 fm4 α = 0.05 fm4 α = 0.0625 fm4 α = 0.08 fm4 α = 0.16 fm4

    Λ = 2.24 fm−1 Λ = 2.11 fm−1 Λ = 2.00 fm−1 Λ = 1.88 fm−1 Λ = 1.58 fm−1

    ̵hΩ = 20MeV

    simple fix:3N interaction with

    400 MeV cutoff, cE refittedto 4He ground state

    16

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    ■ oxygen isotopic chain has received significant attention anddocuments the rapid progress over the past years

    Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

    ■ 2010: shell-model calculations with 3N effects highlighting therole of 3N interaction for drip line physics

    Hagen, Hjorth-Jensen, Jansen, Machleidt, Papenbrock, PRL 108, 242501 (2012)

    ■ 2012: coupled-cluster calculations with phenomenologicaltwo-body correction simulating chiral 3N forces

    Hergert, Binder, Calci, Langhammer, Roth, PRL 110, 242501 (2013)

    ■ 2013: ab initio IT-NCSM with explicit chiral 3N interactions...

    17

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Hergert et al., PRL 110, 242501 (2013)

    NN+3Nind(chiral NN)

    2 4 6 8 10 12 14 16 18Nmx

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    .

    E[M

    eV]

    12O

    14O

    16O18O20O22O24O26O

    NN+3Nfull(chiral NN+3N)

    2 4 6 8 10 12 14 16 18Nmx

    12O

    14O

    16O18O20O22O26O24O

    Λ3N = 400 MeV, α = 0.08 fm4, E3mx = 14, optimal h̵Ω

    18

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Hergert et al., PRL 110, 242501 (2013)

    NN+3Nind(chiral NN)

    12 14 16 18 20 22 24 26

    A

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    .

    E[M

    eV]

    NN+3Nfull(chiral NN+3N)

    12 14 16 18 20 22 24 26

    A

    AO

    experiment

    ● IT-NCSM

    Λ3N = 400 MeV, α = 0.08 fm4, E3mx = 14, optimal h̵Ω

    parameter-freeab initio calculations with

    full 3N interactionshighlights predictive power

    of chiral NN+3N Hamiltonians

    19

  • Spectroscopy of Carbon Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Forssen et al., JPG 40, 055105 (2013); Roth et al., in prep.

    0+ 1

    2+ 1

    2+ 1

    2 4 6 8 Exp.0

    2

    4

    6

    8

    .

    E[M

    eV]

    10C

    0+ 0

    0+ 0

    0+ 0

    1+ 0

    1+ 1

    2+ 0

    2+ 02+ 1

    4+ 0

    2 4 6 8 Exp.0

    2

    4

    6

    8

    10

    12

    14

    16

    12C

    0+ 1

    0+ 1

    0+ 1

    1+ 1

    2+ 1

    2+ 1

    2+ 14+ 1

    2 4 6 8 Exp.0

    2

    4

    6

    8

    10

    14C

    0+ 2

    0+ 2

    2+ 2

    2+ 23? 24+ 2

    2 4 6 Exp.Nmx

    0

    1

    2

    3

    4

    .

    E[M

    eV]

    16C

    0+ 3

    2+ 3

    2+ 3

    2 4 6 Exp.Nmx

    0

    1

    2

    3

    4

    18C

    0+ 4

    2+ 4

    2 4 6 Exp.Nmx

    0

    1

    2

    3

    4

    20C

    NN+3NfullΛ3N = 400MeV

    α = 0.08 fm4

    h̵Ω = 16MeV

    20

  • Spectroscopy of Carbon Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    INPR

    OGRES

    S2 4 6 8

    0

    1

    2

    3

    4

    5

    6

    7

    8

    .

    B(E2,2+→0+)[e

    2fm

    4] 10C

    2 4 6 80

    1

    2

    3

    4

    5

    6

    7

    8

    12C

    2 4 6 80

    1

    2

    3

    4

    5

    6

    7

    8

    14C

    2 4 6Nmx

    0

    0.5

    1

    1.5

    2

    2.5

    3

    .

    B(E2,2+→0+)[e

    2fm

    4] 16C

    2 4 6Nmx

    0

    0.5

    1

    1.5

    2

    2.5

    3

    18C

    2 4 6Nmx

    0

    1

    2

    3

    4

    5

    20C

    NN+3NfullΛ3N = 400MeV

    α = 0.08 fm4

    h̵Ω = 16MeV

    ● B(E2,2+1 → 0+

    gs)

    ◆ B(E2,2+2 → 0+

    gs)

    NEW

    EXPE

    RIME

    NT

    ANL,Mc

    Cutch

    anetal.

    NEW

    EXPE

    RIME

    NT

    NSCL, Petri e

    t al.

    NEW

    EXPE

    RIME

    NT

    NSCL, Voss e

    t al.

    NEW

    EXPE

    RIME

    NT

    NSCL, Petri e

    t al.

    21

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body prob-

    lem with controlled & im-

    provable approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    22

  • Frontier: Medium-Mass Nuclei

    Robert Roth – TU Darmstadt – 09/2013

    advent of novel ab initio many-body approachesapplicable in the medium-mass regime

    Hagen, Papenbrock, Dean, Piecuch, Binder,...

    ■ coupled-cluster theory: ground-state parametrized by exponentialwave operator applied to single-determinant reference state

    ● truncation at doubles level (CCSD) plus triples corrections (Λ-CCSD(T))

    ● equations of motion for excited states and near-closed-shell nuclei

    Bogner, Tsukiyama, Schwenk, Hergert,...

    ■ in-medium SRG: complete decoupling of particle-hole excitations frommany-body reference state through SRG evolution

    ● normal-ordered evolving A-body Hamiltonian truncated at two-body level

    ● both closed- and open-shell ground states; excitations via EOM or SM

    Barbieri, Soma, Duguet,...

    ■ self-consistent Green’s function approaches and others...

    control

    lingand

    quantif

    ying th

    e

    uncerta

    inties d

    ueto v

    arious t

    runcat

    ions is

    major

    challen

    ge

    23

  • CCSD with Explicit 3N Interactions

    Robert Roth – TU Darmstadt – 09/2013

    Roth, et al., PRL 109, 052501 (2012); Binder et al., PRC 87, 021303(R) (2013)

    NN+3Nfull

    -130

    -120

    -110

    -100

    .

    E[M

    eV]

    16Oh̵Ω = 20 MeV

    -170

    -160

    -150

    -140

    -130

    -120

    -11024Oh̵Ω = 20 MeV

    4 6 8 10 12emx

    -380

    -360

    -340

    -320

    -300

    -280

    -260

    .

    E[M

    eV]

    40Cah̵Ω = 24 MeV

    4 6 8 10 12emx

    -500

    -450

    -400

    -350

    -300

    -25048Cah̵Ω = 28 MeV

    CCSD-3B

    (● ◆ ▲)

    CCSD-NO2B

    (◯ ◇ △)

    ● α = 0.02 fm4

    ◆ α = 0.04 fm4

    ▲ α = 0.08 fm4

    HF basis

    E3mx = 12

    Λ3N = 400 MeVnormal-ordering

    approximation reproducesexplicit-3N results to

    better than 1%

    24

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Hergert et al., PRL 110, 242501 (2013)

    NN+3Nind(chiral NN)

    12 14 16 18 20 22 24 26

    A

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    .

    E[M

    eV]

    NN+3Nfull(chiral NN+3N)

    12 14 16 18 20 22 24 26

    A

    AO

    experiment

    ● IT-NCSM

    Λ3N = 400 MeV, α = 0.08 fm4, E3mx = 14, optimal h̵Ω

    25

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Hergert et al., PRL 110, 242501 (2013)

    NN+3Nind(chiral NN)

    12 14 16 18 20 22 24 26

    A

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    .

    E[M

    eV]

    NN+3Nfull(chiral NN+3N)

    12 14 16 18 20 22 24 26

    A

    AO

    experiment

    ● IT-NCSM

    ◆ MR-IM-SRG

    Λ3N = 400 MeV, α = 0.08 fm4, E3mx = 14, optimal h̵Ω

    26

  • Ground States of Oxygen Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    Hergert et al., PRL 110, 242501 (2013)

    NN+3Nind(chiral NN)

    12 14 16 18 20 22 24 26

    A

    -180

    -160

    -140

    -120

    -100

    -80

    -60

    -40

    .

    E[M

    eV]

    NN+3Nfull(chiral NN+3N)

    12 14 16 18 20 22 24 26

    A

    AO

    experiment

    ● IT-NCSM

    ◆ MR-IM-SRG

    ▼ CCSD▲ Λ-CCSD(T)

    Λ3N = 400 MeV, α = 0.08 fm4, E3mx = 14, optimal h̵Ω

    different many-bodyapproaches using sameNN+3N Hamiltonian give

    consistent results minor differences are consis-tent with uncertainty analysis

    27

  • Next Step: Calcium Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    INPR

    OGRES

    S

    NN+3Nind NN+3Nfull

    -10

    -9

    -8

    -7

    -6

    .

    E/A[M

    eV]

    α-dependence α-dependence

    36Ca 40Ca 48Ca 52Ca 54Ca-10

    -9

    -8

    -7

    .

    E/A[M

    eV]

    E3mx-dependence

    36Ca 40Ca 48Ca 52Ca 54Ca

    E3mx-dependence

    ● α = 0.02 fm4

    ◆ α = 0.04 fm4

    ▲ α = 0.08 fm4

    CCSD

    E3mx = 14

    Λ3N = 400 MeV

    ● E3mx = 14

    ◆ E3mx = 16

    ▲ E3mx = 18

    CCSD

    α = 0.04 fm4

    Λ3N = 400 MeV

    28

  • Next Step: Nickel Isotopes

    Robert Roth – TU Darmstadt – 09/2013

    INPR

    OGRES

    S

    NN+3Nind NN+3Nfull

    -10

    -9

    -8

    -7

    -6

    .

    E/A[M

    eV]

    α-dependence α-dependence

    48Ni 56Ni 60Ni 62Ni 68Ni-10

    -9

    -8

    -7

    .

    E/A[M

    eV]

    E3mx-dependence

    48Ni 56Ni 60Ni 62Ni 68Ni

    E3mx-dependence

    ● α = 0.02 fm4

    ◆ α = 0.04 fm4

    ▲ α = 0.08 fm4

    CCSD

    E3mx = 14

    Λ3N = 400 MeV

    ● E3mx = 14

    ◆ E3mx = 16

    ▲ E3mx = 18

    CCSD

    α = 0.04 fm4

    Λ3N = 400 MeV

    control

    lingand

    quantif

    ying th

    e

    uncerta

    inties d

    ueto v

    arious t

    runcat

    ions is

    major

    challen

    ge

    29

  • Ab Initio Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body prob-

    lem with controlled & im-

    provable approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    30

  • Ab Initio Hyper-Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    Hyper-Nuclear Structure Observables

    Low-Energy Quantum Chromodynamics

    LatticeQCD

    quarks&gluononalattice

    LatticeEFT

    nucleons&pionsonalattice

    Energ

    y-D

    ensityFunct.

    guidedbychiralEFT

    Chiral EFT Hamiltoniansconsistent NN,3N,YN,YY,... interactions & current operators

    Chiral Effective Field Theorybased on relevant degrees of freedom & symmetries of QCD

    Exact Solutionssolve nuclear many-

    body problem with

    converged truncations

    Controlled Approx.treat many-body prob-

    lem with controlled & im-

    provable approximations

    Similarity Transformationsphysics-conserving unitary transformation to

    adapt Hamiltonian to limited model space

    31

  • Motivation: Hyper-Nuclear Structure

    Robert Roth – TU Darmstadt – 09/2013

    talks by Feliciello,...

    ■ precise data on ground states &spectroscopy of hyper-nuclei

    talks by Hiyama, Nogga,...

    ■ ab initio few-body (A ≲ 4) andphenomenological shell modelor cluster calculations

    talks by Haidenbauer,...

    ■ chiral YN & YY interactions at(N)LO are available

    ■ constrain YN & YY interactionby ab initio hyper-nuclear struc-ture calculations

    32

  • Application: Λ7Li

    Robert Roth – TU Darmstadt – 09/2013

    INPR

    OGRES

    S1+

    3+

    -45

    -40

    -35

    -30

    -25

    .

    E[M

    eV]

    1+

    3+

    2 4 6 8 10 Exp.Nmx

    0

    1

    2

    3

    .

    E[M

    eV]

    12+32+

    52+72+

    12+

    32+

    52+

    72+

    2 4 6 8 10 Exp.Nmx

    6Li 7ΛLi

    Jülich’04

    NN @ N3LOEntem&MachleidtΛNN = 500 MeV

    3N @ N2LONavratil

    Λ3N = 500 MeVtriton fit

    Jülich’04Haidenbauer et al.scatt. & hypertriton

    α = 0.08 fm4

    h̵Ω = 20 MeV

    induced YNNnot included

    33

  • Application: Λ7Li

    Robert Roth – TU Darmstadt – 09/2013

    INPR

    OGRES

    S1+

    3+

    -45

    -40

    -35

    -30

    -25

    .

    E[M

    eV]

    1+

    3+

    2 4 6 8 10 Exp.Nmx

    0

    1

    2

    3

    .

    E[M

    eV]

    12+32+

    52+72+

    12+

    32+

    52+

    72+

    2 4 6 8 10 Exp.Nmx

    6Li 7ΛLi

    chiral YN @ LOΛYN = 700 MeV

    NN @ N3LOEntem&MachleidtΛNN = 500 MeV

    3N @ N2LONavratil

    Λ3N = 500 MeVtriton fit

    YN @ LOHaidenbauer et al.ΛYN = 700 MeV

    scatt. & hypertriton

    α = 0.08 fm4

    h̵Ω = 20 MeV

    induced YNNnot included

    hyper-nuclear structuresets tight constraints on

    YN interaction

    start investigating

    sensitivity of spectra

    on YN input

    34

  • New Horizons...

    Robert Roth – TU Darmstadt – 09/2013

    ■ nuclear structure theory connected to QCD via chiral EFT

    ● chiral EFT as universal, controlled and improvable starting point

    ● consistent and optimized interactions at N2LO, N3LO,...

    ● consistent similarity transformation of Hamiltonian and observables

    ■ innovations in ab initio many-body theory

    ● consistent inclusion of 3N (and 4N) interactions

    ● precision structure and spectroscopy in p- and sd-shell (IT-NCSM,...)

    ● access to the medium-mass regime (CC, IM-SRG,...)

    ● extension to ab initio hyper-nuclear structure

    ● bridge to reaction theory (NCSM/RGM, NCSMC)

    ● uncertainty quantification, error propagation, feedback cycle

    ■ many exciting applications ahead...

    35

  • Epilogue

    Robert Roth – TU Darmstadt – 09/2013

    ■ thanks to my group & my collaborators

    ● S. Binder, A. Calci, S. Fischer, E. Gebrerufael,H. Spiess, J. Langhammer, S. Reinhardt, S. Schulz,C. Stumpf, A. Tichai, R. Trippel, R. Wirth, K. VobigInstitut für Kernphysik, TU Darmstadt

    ● P. NavrátilTRIUMF Vancouver, Canada

    ● J. Vary, P. MarisIowa State University, USA

    ● S. Quaglioni, G. HupinLLNL Livermore, USA

    ● P. PiecuchMichigan State University, USA

    ● H. HergertOhio State University, USA

    ● P. PapakonstantinouIPN Orsay, F

    ● C. ForssénChalmers University, Sweden

    ● H. Feldmeier, T. NeffGSI Helmholtzzentrum

    JUROPA LOEWE-CSC HOPPER

    COMPUTING TIME

    36

    1 - Title2 - Ab Initio Nuclear Structure3 - Ab Initio Nuclear Structure4 - Ab Initio Nuclear Structure5 - Nuclear Interactions from Chiral EFT6 - Ab Initio Nuclear Structure7 - Similarity Renormalization Group8 - SRG Evolution in Three-Body Space9 - SRG Evolution in Three-Body Space10 - Hamiltonian in A-Body Space11 - Ab Initio Nuclear Structure12 - No-Core Shell Model13 - Importance Truncated NCSM14 - 4He: Ground-State Energies15 - 16O: Ground-State Energies16 - 16O: Ground-State Energies17 - Ground States of Oxygen Isotopes18 - Ground States of Oxygen Isotopes19 - Ground States of Oxygen Isotopes20 - Spectroscopy of Carbon Isotopes21 - Spectroscopy of Carbon Isotopes22 - Ab Initio Nuclear Structure23 - Frontier: Medium-Mass Nuclei24 - CCSD with Explicit 3N Interactions25 - Ground States of Oxygen Isotopes26 - Ground States of Oxygen Isotopes27 - Ground States of Oxygen Isotopes28 - Next Step: Calcium Isotopes29 - Next Step: Nickel Isotopes30 - Ab Initio Nuclear Structure31 - Ab Initio Hyper-Nuclear Structure32 - Motivation: Hyper-Nuclear Structure33 - Application: 7Li34 - Application: 7Li35 - New Horizons...36 - Epilogue