rpa studies of the dynamic response of ultracold atoms in...

30
02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild | RPA Studies of the Dynamic Response of Ultracold Atoms in 1D Optical Lattices Markus Hild Panagiota Papakonstantinou Felix Schmitt Robert Roth 1

Upload: others

Post on 31-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

RPA Studies of the Dynamic

Response of Ultracold Atoms

in 1D Optical Lattices

Markus Hild

Panagiota PapakonstantinouFelix SchmittRobert Roth

1

Page 2: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Outline

2

• Bose-Hubbard Model & Spectroscopy

• Equations of Motion (EOM)

• Random Phase Approximation (RPA)...

• ... and the Bose-Hubbard Model

• Results

Page 3: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H = −JI�

i=1

(a†iai+1 + a

†i+1ai ) +

U

2

I�

i=1

ni(ni − 1)

I N U J

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Bose-Hubbard Model

optical

lattice

tunneling on-site interaction

3

sites, particles, interaction strength , tunneling strength

T = 0

Page 4: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H = −JI�

i=1

(a†iai+1 + a

†i+1ai ) +

U

2

I�

i=1

ni(ni − 1)

I N U J

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Bose-Hubbard Model

optical

lattice

tunneling on-site interaction

3

sites, particles, interaction strength , tunneling strength

T = 0

Page 5: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H = −JI�

i=1

(a†iai+1 + a

†i+1ai ) +

U

2

I�

i=1

ni(ni − 1)

I N U J

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Bose-Hubbard Model

optical

lattice

tunneling on-site interaction

3

sites, particles, interaction strength , tunneling strength

T = 0

Page 6: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H = −JI�

i=1

(a†iai+1 + a

†i+1ai ) +

U

2

I�

i=1

ni(ni − 1)

I N U J

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Bose-Hubbard Model

optical

lattice

tunneling on-site interaction

3

sites, particles, interaction strength , tunneling strength

T = 0

Page 7: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H = −JI�

i=1

(a†iai+1 + a

†i+1ai ) +

U

2

I�

i=1

ni(ni − 1)

I N U J

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Bose-Hubbard Model

optical

lattice

tunneling on-site interaction

3

sites, particles, interaction strength , tunneling strength

T = 0

number-state representation

|φ� =�

l

cφl |n1, ..., nI�l,

i

ni = N

Page 8: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

V (x) = V0 sin2(kx)

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Spectroscopy

via Lattice Modulation

static lattice potential

4

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4547

Page 9: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

V (x) = V0 sin2(kx)

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Spectroscopy

via Lattice Modulation

static lattice potential

4

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4547

amplitude modulated lattice

V (x, t) = V0[1 + F sin(ωt)] sin2(kx)

Page 10: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

V (x) = V0 sin2(kx)

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Spectroscopy

via Lattice Modulation

static lattice potential

4

I = N = 10U/J = 20

0 1 10 100 1000

ν

0

20

40

60

.

(Eν−

E0)/

J0

1

30 20 10

∆E/J0

0

20

40

60

ω/J

0

1

(Eν−

E0)/

J

ν∆E/J

ω/J

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4547

amplitude modulated lattice

V (x, t) = V0[1 + F sin(ωt)] sin2(kx)

exact time-evolution

Page 11: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

V (x) = V0 sin2(kx)

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Spectroscopy

via Lattice Modulation

static lattice potential

4

I = N = 10U/J = 20

0 1 10 100 1000

ν

0

20

40

60

.

(Eν−

E0)/

J0

1

30 20 10

∆E/J0

0

20

40

60

ω/J

0

1

(Eν−

E0)/

J

ν∆E/J

ω/J

linearized Hamiltonian

Hlin(t) = H0 + sin(ωt)(λH0 − κHJ)

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4547

amplitude modulated lattice

V (x, t) = V0[1 + F sin(ωt)] sin2(kx)

Page 12: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

V (x) = V0 sin2(kx)

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Spectroscopy

via Lattice Modulation

static lattice potential

4

I = N = 10U/J = 20

0 1 10 100 1000

ν

0

20

40

60

.

(Eν−

E0)/

J0

1

30 20 10

∆E/J0

0

20

40

60

ω/J

0

1

(Eν−

E0)/

J

ν∆E/J

ω/J

linearized Hamiltonian

Hlin(t) = H0 + sin(ωt)(λH0 − κHJ)

transition amplitudes

|�0|κHJ |ν�|2

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4547

amplitude modulated lattice

V (x, t) = V0[1 + F sin(ωt)] sin2(kx)

Page 13: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

H|ν� = Eν |ν�

�0|[δQ, [H,Q†ν ]]|0� = (Eν − E0)�0|[δQ,Q†

ν ]|0�

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

From the Schrödinger Equation

to the Equations of Motion (EOM)

5

phonon operators

Q†ν |0� = |ν�

Qν |0� = 0

Schrödinger equation

variations δQexhaust the whole

Hilbert space

!“complicated” reformulation of the Schrödinger equation

! requires the groundstate

!offers “handles” for approximations: phonon operators and restriction

of the variations

Page 14: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

Q†ν =

k

X(ν)k c†k

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Approximation of the

Phonon Operators

6

simplest expansions of phonon operators

1 particle - 1 holeexcitations

Tamm-Dancoff Approximation (TDA)

Random PhaseApproximation (RPA)

Q†ν =

k

X(ν)k c†k −

k

Y (ν)k ck

1 particle - 1 hole excitations +de-excitations

c†k (ck)

systematic approach

expand phonon operators in terms of particle-hole (de-) excitations

higherRPAs

Page 15: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Particle-Hole Operators and the

Bose-Hubbard Model

7

system properties

• filling factor

• strongly interacting

ground-state approximation

|RPA, 0� ≈ |1, 1, · · · , 1�N/I = 1U � J

Page 16: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Particle-Hole Operators and the

Bose-Hubbard Model

7

c†ij = a†iaj

cij = a†jai

naive ansatz

system properties

• filling factor

• strongly interacting

ground-state approximation

|RPA, 0� ≈ |1, 1, · · · , 1�N/I = 1U � J

Page 17: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Particle-Hole Operators and the

Bose-Hubbard Model

7

c†ij = a†iaj

cij = a†jai

naive ansatz just hopping in opposite directions

system properties

• filling factor

• strongly interacting

ground-state approximation

|RPA, 0� ≈ |1, 1, · · · , 1�N/I = 1U � J

Page 18: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Particle-Hole Operators and the

Bose-Hubbard Model

7

c†ij = a†iaj

cij = a†jai

naive ansatz just hopping in opposite directions

F a i l

system properties

• filling factor

• strongly interacting

ground-state approximation

|RPA, 0� ≈ |1, 1, · · · , 1�N/I = 1U � J

Page 19: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Particle-Hole Operators and the

Bose-Hubbard Model

7

c†ij = a†iaj

cij = a†jai

naive ansatz just hopping in opposite directions

F a i l

c†ij =1√2

a†ia

†iaiaj

cij =1√2

a†ja

†iaiai

creates ph-excitation

destroys ph-excitation

system properties

• filling factor

• strongly interacting

ground-state approximation

|RPA, 0� ≈ |1, 1, · · · , 1�N/I = 1U � J

Page 20: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

Page 21: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

[A,H,B] :=12

([A, [H,B]] + [[A,H],B])

Akl = �0|[ck,H, c†l ]|0� = Alk,

Bkl = −�0|[ck,H, cl]|0� = Blk,

Skl = �0|[ck, c†l ]|0� = Slk,

Tkl = �0|[ck, cl]|0� = −Tlk

Page 22: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

Page 23: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

Page 24: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

provides

!excitation energies

!excited states (Xν , Yν)Eν0

|Eν0� via

Page 25: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

strength function

R(ω) =�

(ν)

δ(ω − Eν0) |�0|κHJ |Eν0�|2

provides

!excitation energies

!excited states (Xν , Yν)Eν0

|Eν0� via

Page 26: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Solving RPA

8

�A B−B −A

� �Xν

�= Eν0

�S −T−T S

� �Xν

EOM formulated as generalized eigenproblem

strength function

R(ω) =�

(ν)

δ(ω − Eν0) |�0|κHJ |Eν0�|2

provides

!excitation energies

!excited states (Xν , Yν)Eν0

|Eν0� via

transition amplitudes

Page 27: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

R(ω

)in

a.u.

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Results I: 1U Resonance

Varying the System Size

Dynamic Response of Ultracold Bose Gases in 1D Optical LatticesMarkus Hild, Panagiota Papakonstantinou, Felix Schmitt, and Robert Roth

Institut fur Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

Summary & Motivation

we investigate dynamic properties of strongly corre-lated ultracold Bose gases in 1D optical lattices withinthe Bose-Hubbard model (BHM) [1,2]

we use a weak periodic modulation of the lattice am-plitude to excite the system (Bragg spectroscopy)

exact time evolution yields precise description of theresonance structure [3,4] but is feasible for moderatesystem sizes only

the results are in excellent agreement with the predic-tion from a linear response analysis [4]

random phase approximation (RPA) allows for studiesof the resonance structure at the level of particle-holeexcitations and beyond [5]

transition amplitudes derived from the linear responseanalysis lead to response functions

Bose-Hubbard Model (BHM) & Lattice Modulation

N bosons on I lattice sites described by the Bose-Hubbard Hamiltonian

latticeamplitude V0

H =

kinetic term (”tunneling”)! "# $

!JI

%

i=1

&

a†iai+1 + a†

i+1ai

'

+

on-site interaction! "# $

U

2

I%

i=1ni(ni ! 1) = !JHJ + UHU

eigenstates in number basis representation(((!

)

=*D

j=1 c(!)j

((({n1 · · ·nI}j

)

modifications due to the amplitude modulation

potential modified by a time-dependent factor : V0 !" V0(t) = V0[1 +F sin("t)]

parameters J , U become time dependent

Linear Response Analysis

which excited states couple to ground state?

linearization of H based on the Taylor expansion in the modulation amplitude F :

Hlin(t) = H0 + F sin("t) [#H0 ! $HJ ]

in first order only HJ couples ground and excited states!

look for finite matrix ele-ments

+

0((( HJ

((( !

)

right panel: lower eigenspec-trum with matrix elements;left panel: resonance struc-ture (time evolution)

30 20 10"/J

0

20

40

60

!E

/J

I = N = 10U/J = 20

0 1 10 100 1000!

0

20

40

60

(E!!

E0)/

J

Generalized Random Phase Approximation (RPA) and Response Functions

RPA ground state approximated by(((RPA

)

#(((1, · · · , 1

)

for N/I=1

excitations generated by phonon operator Q†! (obeying Q!

(((RPA

)

= 0) :

Q†! =

%

ijX!

ij a†ia

†iaiaj !

%

ijY !

ij a†ja

†iaiai ,

generalized eigenproblem to solve,

-A B

!B !A

.

/

,

-X!

Y !

.

/ = "!

,

-S !T

!T S

.

/

,

-X!

Y !

.

/

matrix elementsAiji$j $=

0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†i$a

†i$ai$aj $]

(( 1, · · · , 1

1

, Siji"$=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†i$a

†i$ai$aj $]

(( 1, · · ·, 1

1

,

Biji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†j $a

†i$ai$ai$]

(( 1, · · · , 1

1

, Tiji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†j $a

†i$ai$ai$]

(( 1, · · ·, 1

1

weighting the positive RPA spectrum {"!} by the transition amplitudes(((

+

1, · · · , 1((( HJ

((( "!

)(((

2yields the response function

R(") =%

!%(" ! "!)

(((

+

1, · · · , 1((( HJ

((( "!

)(((

2

Response Functions : RPA vs. Diagonalisation

I=N=10

0

100

200

300

400

500

"R

("),

a.u.

U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600

"R

("),

a.u.

U/J=20

I=N=20

0

100

200

300

400

500 U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600U/J=20

I=N=30

0

250

500

750

1000

1250 U/J=15

0 0.5 1 1.5 2"/U

0

500

1000

1500U/J=20

I=N=40

0

500

1000

1500

2000

2500 U/J=20

0 0.5 1 1.5 2"/U

0

1000

2000

3000U/J=30

( ) Random Phase Approximation ( ) Diagonalisation in ph-space ( ) Diagonalisation in 3p3h-space

plots show the " = 1U resonances for several interac-tion strengths and systems sizes in the strongly corre-lated regime excited by weak lattice modulations

diagonalization in 1p1h-space fails to describe reso-nance position & shape

RPA predicts correct centroid energy and resonanceshape

role of ground-state correlations on fine-structure &width to be investigated

RPA allows for the computation of response functionsfor large systems with minimal numerical e!ort

higher resonances and more complex lattice topologiesare possible by extension of the phonon operator

[1] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)[2] M. Greiner et al., Nature 415, 39 (2002)

[3] S.R. Clark and D. Jaksch, New J. Phys. 8, 160 (2006)[4] M. Hild et. al, J. Phys. B.: At. Mol. Opt. Phys. 39, 4547 (2006)

[5] D.J. Rowe, Rev. Mod. Phys. 40, 1 (1968)

9

R(ω

)in

a.u.

Dynamic Response of Ultracold Bose Gases in 1D Optical LatticesMarkus Hild, Panagiota Papakonstantinou, Felix Schmitt, and Robert Roth

Institut fur Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

Summary & Motivation

we investigate dynamic properties of strongly corre-lated ultracold Bose gases in 1D optical lattices withinthe Bose-Hubbard model (BHM) [1,2]

we use a weak periodic modulation of the lattice am-plitude to excite the system (Bragg spectroscopy)

exact time evolution yields precise description of theresonance structure [3,4] but is feasible for moderatesystem sizes only

the results are in excellent agreement with the predic-tion from a linear response analysis [4]

random phase approximation (RPA) allows for studiesof the resonance structure at the level of particle-holeexcitations and beyond [5]

transition amplitudes derived from the linear responseanalysis lead to response functions

Bose-Hubbard Model (BHM) & Lattice Modulation

N bosons on I lattice sites described by the Bose-Hubbard Hamiltonian

latticeamplitude V0

H =

kinetic term (”tunneling”)! "# $

!JI

%

i=1

&

a†iai+1 + a†

i+1ai

'

+

on-site interaction! "# $

U

2

I%

i=1ni(ni ! 1) = !JHJ + UHU

eigenstates in number basis representation(((!

)

=*D

j=1 c(!)j

((({n1 · · ·nI}j

)

modifications due to the amplitude modulation

potential modified by a time-dependent factor : V0 !" V0(t) = V0[1 +F sin("t)]

parameters J , U become time dependent

Linear Response Analysis

which excited states couple to ground state?

linearization of H based on the Taylor expansion in the modulation amplitude F :

Hlin(t) = H0 + F sin("t) [#H0 ! $HJ ]

in first order only HJ couples ground and excited states!

look for finite matrix ele-ments

+

0((( HJ

((( !

)

right panel: lower eigenspec-trum with matrix elements;left panel: resonance struc-ture (time evolution)

30 20 10"/J

0

20

40

60

!E

/J

I = N = 10U/J = 20

0 1 10 100 1000!

0

20

40

60

(E!!

E0)/

J

Generalized Random Phase Approximation (RPA) and Response Functions

RPA ground state approximated by(((RPA

)

#(((1, · · · , 1

)

for N/I=1

excitations generated by phonon operator Q†! (obeying Q!

(((RPA

)

= 0) :

Q†! =

%

ijX!

ij a†ia

†iaiaj !

%

ijY !

ij a†ja

†iaiai ,

generalized eigenproblem to solve,

-A B

!B !A

.

/

,

-X!

Y !

.

/ = "!

,

-S !T

!T S

.

/

,

-X!

Y !

.

/

matrix elementsAiji$j $=

0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†i$a

†i$ai$aj $]

(( 1, · · · , 1

1

, Siji"$=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†i$a

†i$ai$aj $]

(( 1, · · ·, 1

1

,

Biji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†j $a

†i$ai$ai$]

(( 1, · · · , 1

1

, Tiji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†j $a

†i$ai$ai$]

(( 1, · · ·, 1

1

weighting the positive RPA spectrum {"!} by the transition amplitudes(((

+

1, · · · , 1((( HJ

((( "!

)(((

2yields the response function

R(") =%

!%(" ! "!)

(((

+

1, · · · , 1((( HJ

((( "!

)(((

2

Response Functions : RPA vs. Diagonalisation

I=N=10

0

100

200

300

400

500

"R

("),

a.u.

U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600

"R

("),

a.u.

U/J=20

I=N=20

0

100

200

300

400

500 U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600U/J=20

I=N=30

0

250

500

750

1000

1250 U/J=15

0 0.5 1 1.5 2"/U

0

500

1000

1500U/J=20

I=N=40

0

500

1000

1500

2000

2500 U/J=20

0 0.5 1 1.5 2"/U

0

1000

2000

3000U/J=30

( ) Random Phase Approximation ( ) Diagonalisation in ph-space ( ) Diagonalisation in 3p3h-space

plots show the " = 1U resonances for several interac-tion strengths and systems sizes in the strongly corre-lated regime excited by weak lattice modulations

diagonalization in 1p1h-space fails to describe reso-nance position & shape

RPA predicts correct centroid energy and resonanceshape

role of ground-state correlations on fine-structure &width to be investigated

RPA allows for the computation of response functionsfor large systems with minimal numerical e!ort

higher resonances and more complex lattice topologiesare possible by extension of the phonon operator

[1] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)[2] M. Greiner et al., Nature 415, 39 (2002)

[3] S.R. Clark and D. Jaksch, New J. Phys. 8, 160 (2006)[4] M. Hild et. al, J. Phys. B.: At. Mol. Opt. Phys. 39, 4547 (2006)

[5] D.J. Rowe, Rev. Mod. Phys. 40, 1 (1968)

Page 28: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

R(ω

)in

a.u.

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Results I: 1U Resonance

Varying the System Size

Dynamic Response of Ultracold Bose Gases in 1D Optical LatticesMarkus Hild, Panagiota Papakonstantinou, Felix Schmitt, and Robert Roth

Institut fur Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

Summary & Motivation

we investigate dynamic properties of strongly corre-lated ultracold Bose gases in 1D optical lattices withinthe Bose-Hubbard model (BHM) [1,2]

we use a weak periodic modulation of the lattice am-plitude to excite the system (Bragg spectroscopy)

exact time evolution yields precise description of theresonance structure [3,4] but is feasible for moderatesystem sizes only

the results are in excellent agreement with the predic-tion from a linear response analysis [4]

random phase approximation (RPA) allows for studiesof the resonance structure at the level of particle-holeexcitations and beyond [5]

transition amplitudes derived from the linear responseanalysis lead to response functions

Bose-Hubbard Model (BHM) & Lattice Modulation

N bosons on I lattice sites described by the Bose-Hubbard Hamiltonian

latticeamplitude V0

H =

kinetic term (”tunneling”)! "# $

!JI

%

i=1

&

a†iai+1 + a†

i+1ai

'

+

on-site interaction! "# $

U

2

I%

i=1ni(ni ! 1) = !JHJ + UHU

eigenstates in number basis representation(((!

)

=*D

j=1 c(!)j

((({n1 · · ·nI}j

)

modifications due to the amplitude modulation

potential modified by a time-dependent factor : V0 !" V0(t) = V0[1 +F sin("t)]

parameters J , U become time dependent

Linear Response Analysis

which excited states couple to ground state?

linearization of H based on the Taylor expansion in the modulation amplitude F :

Hlin(t) = H0 + F sin("t) [#H0 ! $HJ ]

in first order only HJ couples ground and excited states!

look for finite matrix ele-ments

+

0((( HJ

((( !

)

right panel: lower eigenspec-trum with matrix elements;left panel: resonance struc-ture (time evolution)

30 20 10"/J

0

20

40

60

!E

/J

I = N = 10U/J = 20

0 1 10 100 1000!

0

20

40

60

(E!!

E0)/

J

Generalized Random Phase Approximation (RPA) and Response Functions

RPA ground state approximated by(((RPA

)

#(((1, · · · , 1

)

for N/I=1

excitations generated by phonon operator Q†! (obeying Q!

(((RPA

)

= 0) :

Q†! =

%

ijX!

ij a†ia

†iaiaj !

%

ijY !

ij a†ja

†iaiai ,

generalized eigenproblem to solve,

-A B

!B !A

.

/

,

-X!

Y !

.

/ = "!

,

-S !T

!T S

.

/

,

-X!

Y !

.

/

matrix elementsAiji$j $=

0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†i$a

†i$ai$aj $]

(( 1, · · · , 1

1

, Siji"$=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†i$a

†i$ai$aj $]

(( 1, · · ·, 1

1

,

Biji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†j $a

†i$ai$ai$]

(( 1, · · · , 1

1

, Tiji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†j $a

†i$ai$ai$]

(( 1, · · ·, 1

1

weighting the positive RPA spectrum {"!} by the transition amplitudes(((

+

1, · · · , 1((( HJ

((( "!

)(((

2yields the response function

R(") =%

!%(" ! "!)

(((

+

1, · · · , 1((( HJ

((( "!

)(((

2

Response Functions : RPA vs. Diagonalisation

I=N=10

0

100

200

300

400

500

"R

("),

a.u.

U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600

"R

("),

a.u.

U/J=20

I=N=20

0

100

200

300

400

500 U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600U/J=20

I=N=30

0

250

500

750

1000

1250 U/J=15

0 0.5 1 1.5 2"/U

0

500

1000

1500U/J=20

I=N=40

0

500

1000

1500

2000

2500 U/J=20

0 0.5 1 1.5 2"/U

0

1000

2000

3000U/J=30

( ) Random Phase Approximation ( ) Diagonalisation in ph-space ( ) Diagonalisation in 3p3h-space

plots show the " = 1U resonances for several interac-tion strengths and systems sizes in the strongly corre-lated regime excited by weak lattice modulations

diagonalization in 1p1h-space fails to describe reso-nance position & shape

RPA predicts correct centroid energy and resonanceshape

role of ground-state correlations on fine-structure &width to be investigated

RPA allows for the computation of response functionsfor large systems with minimal numerical e!ort

higher resonances and more complex lattice topologiesare possible by extension of the phonon operator

[1] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)[2] M. Greiner et al., Nature 415, 39 (2002)

[3] S.R. Clark and D. Jaksch, New J. Phys. 8, 160 (2006)[4] M. Hild et. al, J. Phys. B.: At. Mol. Opt. Phys. 39, 4547 (2006)

[5] D.J. Rowe, Rev. Mod. Phys. 40, 1 (1968)

9

R(ω

)in

a.u.

Dynamic Response of Ultracold Bose Gases in 1D Optical LatticesMarkus Hild, Panagiota Papakonstantinou, Felix Schmitt, and Robert Roth

Institut fur Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

Summary & Motivation

we investigate dynamic properties of strongly corre-lated ultracold Bose gases in 1D optical lattices withinthe Bose-Hubbard model (BHM) [1,2]

we use a weak periodic modulation of the lattice am-plitude to excite the system (Bragg spectroscopy)

exact time evolution yields precise description of theresonance structure [3,4] but is feasible for moderatesystem sizes only

the results are in excellent agreement with the predic-tion from a linear response analysis [4]

random phase approximation (RPA) allows for studiesof the resonance structure at the level of particle-holeexcitations and beyond [5]

transition amplitudes derived from the linear responseanalysis lead to response functions

Bose-Hubbard Model (BHM) & Lattice Modulation

N bosons on I lattice sites described by the Bose-Hubbard Hamiltonian

latticeamplitude V0

H =

kinetic term (”tunneling”)! "# $

!JI

%

i=1

&

a†iai+1 + a†

i+1ai

'

+

on-site interaction! "# $

U

2

I%

i=1ni(ni ! 1) = !JHJ + UHU

eigenstates in number basis representation(((!

)

=*D

j=1 c(!)j

((({n1 · · ·nI}j

)

modifications due to the amplitude modulation

potential modified by a time-dependent factor : V0 !" V0(t) = V0[1 +F sin("t)]

parameters J , U become time dependent

Linear Response Analysis

which excited states couple to ground state?

linearization of H based on the Taylor expansion in the modulation amplitude F :

Hlin(t) = H0 + F sin("t) [#H0 ! $HJ ]

in first order only HJ couples ground and excited states!

look for finite matrix ele-ments

+

0((( HJ

((( !

)

right panel: lower eigenspec-trum with matrix elements;left panel: resonance struc-ture (time evolution)

30 20 10"/J

0

20

40

60

!E

/J

I = N = 10U/J = 20

0 1 10 100 1000!

0

20

40

60

(E!!

E0)/

J

Generalized Random Phase Approximation (RPA) and Response Functions

RPA ground state approximated by(((RPA

)

#(((1, · · · , 1

)

for N/I=1

excitations generated by phonon operator Q†! (obeying Q!

(((RPA

)

= 0) :

Q†! =

%

ijX!

ij a†ia

†iaiaj !

%

ijY !

ij a†ja

†iaiai ,

generalized eigenproblem to solve,

-A B

!B !A

.

/

,

-X!

Y !

.

/ = "!

,

-S !T

!T S

.

/

,

-X!

Y !

.

/

matrix elementsAiji$j $=

0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†i$a

†i$ai$aj $]

(( 1, · · · , 1

1

, Siji"$=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†i$a

†i$ai$aj $]

(( 1, · · ·, 1

1

,

Biji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†j $a

†i$ai$ai$]

(( 1, · · · , 1

1

, Tiji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†j $a

†i$ai$ai$]

(( 1, · · ·, 1

1

weighting the positive RPA spectrum {"!} by the transition amplitudes(((

+

1, · · · , 1((( HJ

((( "!

)(((

2yields the response function

R(") =%

!%(" ! "!)

(((

+

1, · · · , 1((( HJ

((( "!

)(((

2

Response Functions : RPA vs. Diagonalisation

I=N=10

0

100

200

300

400

500

"R

("),

a.u.

U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600

"R

("),

a.u.

U/J=20

I=N=20

0

100

200

300

400

500 U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600U/J=20

I=N=30

0

250

500

750

1000

1250 U/J=15

0 0.5 1 1.5 2"/U

0

500

1000

1500U/J=20

I=N=40

0

500

1000

1500

2000

2500 U/J=20

0 0.5 1 1.5 2"/U

0

1000

2000

3000U/J=30

( ) Random Phase Approximation ( ) Diagonalisation in ph-space ( ) Diagonalisation in 3p3h-space

plots show the " = 1U resonances for several interac-tion strengths and systems sizes in the strongly corre-lated regime excited by weak lattice modulations

diagonalization in 1p1h-space fails to describe reso-nance position & shape

RPA predicts correct centroid energy and resonanceshape

role of ground-state correlations on fine-structure &width to be investigated

RPA allows for the computation of response functionsfor large systems with minimal numerical e!ort

higher resonances and more complex lattice topologiesare possible by extension of the phonon operator

[1] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)[2] M. Greiner et al., Nature 415, 39 (2002)

[3] S.R. Clark and D. Jaksch, New J. Phys. 8, 160 (2006)[4] M. Hild et. al, J. Phys. B.: At. Mol. Opt. Phys. 39, 4547 (2006)

[5] D.J. Rowe, Rev. Mod. Phys. 40, 1 (1968)

Dynamic Response of Ultracold Bose Gases in 1D Optical LatticesMarkus Hild, Panagiota Papakonstantinou, Felix Schmitt, and Robert Roth

Institut fur Kernphysik, TU Darmstadt, Schloßgartenstraße 9, 64289 Darmstadt

Summary & Motivation

we investigate dynamic properties of strongly corre-lated ultracold Bose gases in 1D optical lattices withinthe Bose-Hubbard model (BHM) [1,2]

we use a weak periodic modulation of the lattice am-plitude to excite the system (Bragg spectroscopy)

exact time evolution yields precise description of theresonance structure [3,4] but is feasible for moderatesystem sizes only

the results are in excellent agreement with the predic-tion from a linear response analysis [4]

random phase approximation (RPA) allows for studiesof the resonance structure at the level of particle-holeexcitations and beyond [5]

transition amplitudes derived from the linear responseanalysis lead to response functions

Bose-Hubbard Model (BHM) & Lattice Modulation

N bosons on I lattice sites described by the Bose-Hubbard Hamiltonian

latticeamplitude V0

H =

kinetic term (”tunneling”)! "# $

!JI

%

i=1

&

a†iai+1 + a†

i+1ai

'

+

on-site interaction! "# $

U

2

I%

i=1ni(ni ! 1) = !JHJ + UHU

eigenstates in number basis representation(((!

)

=*D

j=1 c(!)j

((({n1 · · ·nI}j

)

modifications due to the amplitude modulation

potential modified by a time-dependent factor : V0 !" V0(t) = V0[1 +F sin("t)]

parameters J , U become time dependent

Linear Response Analysis

which excited states couple to ground state?

linearization of H based on the Taylor expansion in the modulation amplitude F :

Hlin(t) = H0 + F sin("t) [#H0 ! $HJ ]

in first order only HJ couples ground and excited states!

look for finite matrix ele-ments

+

0((( HJ

((( !

)

right panel: lower eigenspec-trum with matrix elements;left panel: resonance struc-ture (time evolution)

30 20 10"/J

0

20

40

60

!E

/J

I = N = 10U/J = 20

0 1 10 100 1000!

0

20

40

60

(E!!

E0)/

J

Generalized Random Phase Approximation (RPA) and Response Functions

RPA ground state approximated by(((RPA

)

#(((1, · · · , 1

)

for N/I=1

excitations generated by phonon operator Q†! (obeying Q!

(((RPA

)

= 0) :

Q†! =

%

ijX!

ij a†ia

†iaiaj !

%

ijY !

ij a†ja

†iaiai ,

generalized eigenproblem to solve,

-A B

!B !A

.

/

,

-X!

Y !

.

/ = "!

,

-S !T

!T S

.

/

,

-X!

Y !

.

/

matrix elementsAiji$j $=

0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†i$a

†i$ai$aj $]

(( 1, · · · , 1

1

, Siji"$=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†i$a

†i$ai$aj $]

(( 1, · · ·, 1

1

,

Biji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,H,a†j $a

†i$ai$ai$]

(( 1, · · · , 1

1

, Tiji$j $=0

1, · · ·, 1(( [a†ja

†iaiai ,a

†j $a

†i$ai$ai$]

(( 1, · · ·, 1

1

weighting the positive RPA spectrum {"!} by the transition amplitudes(((

+

1, · · · , 1((( HJ

((( "!

)(((

2yields the response function

R(") =%

!%(" ! "!)

(((

+

1, · · · , 1((( HJ

((( "!

)(((

2

Response Functions : RPA vs. Diagonalisation

I=N=10

0

100

200

300

400

500

"R

("),

a.u.

U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600

"R

("),

a.u.

U/J=20

I=N=20

0

100

200

300

400

500 U/J=15

0 0.5 1 1.5 2"/U

0

200

400

600U/J=20

I=N=30

0

250

500

750

1000

1250 U/J=15

0 0.5 1 1.5 2"/U

0

500

1000

1500U/J=20

I=N=40

0

500

1000

1500

2000

2500 U/J=20

0 0.5 1 1.5 2"/U

0

1000

2000

3000U/J=30

( ) Random Phase Approximation ( ) Diagonalisation in ph-space ( ) Diagonalisation in 3p3h-space

plots show the " = 1U resonances for several interac-tion strengths and systems sizes in the strongly corre-lated regime excited by weak lattice modulations

diagonalization in 1p1h-space fails to describe reso-nance position & shape

RPA predicts correct centroid energy and resonanceshape

role of ground-state correlations on fine-structure &width to be investigated

RPA allows for the computation of response functionsfor large systems with minimal numerical e!ort

higher resonances and more complex lattice topologiesare possible by extension of the phonon operator

[1] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)[2] M. Greiner et al., Nature 415, 39 (2002)

[3] S.R. Clark and D. Jaksch, New J. Phys. 8, 160 (2006)[4] M. Hild et. al, J. Phys. B.: At. Mol. Opt. Phys. 39, 4547 (2006)

[5] D.J. Rowe, Rev. Mod. Phys. 40, 1 (1968)

Page 29: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

ωR

(ω)

U/J

ω/U

30

20

10

0

0.5

1.0

1.5

0

50

100

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Results II: 1U Resonance

Varying U/J

10

ω = U!centroid slipping-off towards superfluid regime

centroid

width

30 particles 30 sites

Page 30: RPA Studies of the Dynamic Response of Ultracold Atoms in ...crunch.ikp.physik.tu-darmstadt.de/tnp/pres/2009_dpg_mhild.pdf · 02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus

02.03.2009 | TU Darmstadt | DPG 2009 Hamburg | Markus Hild |

Conclusion & Outlook

11

!RPA offers numerically efficient access to the strength function (solving a single eigenproblem)

!can be easily extended via generalization of the phonon operators

!adapt to other lattice topologies via additional matrix elements (e.g., superlattice potential)

! improve on the resonance’s width via correlated ground-state