new faces of gan - ucsb college of engineering faces of gan: growth, doping and devices james s....

62
New Faces of GaN: Growth, Doping and Devices James S. Speck Materials Department University of California Santa Barbara, CA LEO of a-GaN from circular opening Engineering Insights 2006

Upload: phamliem

Post on 01-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

New Faces of GaN:Growth, Doping and Devices

James S. SpeckMaterials DepartmentUniversity of CaliforniaSanta Barbara, CA

LEO of a-GaN from circular opening

Engineering Insights 2006

Personnel

MOCVDMike Craven (now Lumileds)Arpan Chakraborty (now Cree)Bilge ImerJohn Kaeding - posterKC Kim - posterDon LeeMatt Schmidt

HVPETroy Baker - posterAsako Hirai - posterBen Haskell

MBEMel McLaurin - posterSiddharth RajanManHoi Wong

TEMFeng WuYuan Wu

StaffPaul FiniStacia Keller

FacultySteve DenBaarsUmesh MishraShuji NakamuraJim Speck

Key CollaboratorsS.F. Chichibu (Tsukuba)H. Grahn (PDI)M. Wraback (ARL)

$$$JST – ERATOUCSB SSLDCAFOSRONR

Reversed direction of polarization

Bulk GaNin vacuum

+ + + + + + +

PSP

- - - - - - - - - -

N-terminated surface

----------

PSP

+ + + + + + +

Ga-terminated surface

Wurtzite Nitrides Crystal Symmetry

Spontaneous and piezoelectricpolarization cause:

1. band bending2. charge separation in QW

• Emission red shift• Low recombination efficiency• High threshold current

Growth on non-polar, semi-polar GaN will solve these problems

Motivation – Polarization Effects

Total Polarization Discontinuity

30°15° 45°

60° 75° 90°

0.03

0.02

0.01

-0.01

-0.02

0

ΔP

(C/m

)2z’

(1)

(2)

(3)

(4)

ϑ

30°15° 45° 60°75° 90°

-0.03

-0.04

0.01

-0.01

-0.02

0(1)

(2)

(3)

(4)

ΔP (

C/m

)2z’

ϑ

InxGa1-xN/GaN

AlyGa1-yN/GaN

Romanov et al. J. Appl. Phys. 100 (2006)

Calculated total polarization change

InxGa1-xN coherently strained to GaN

AlyGa1-yN coherently strained to GaN

Polarization discontinuitySpontaneousPiezoelectric

x = 0.200.150.100.05

y = 0.100.200.300.40

Non-Polar Planes Semi-Polar Planes

GaN Crystal Structure

Courtesy of LumiLEDs Lighting, LLC

0%

10%

20%

30%

40%

50%

60%

350 450 550 650

Peak Wavelength (nm)

Exte

rnal

Qua

ntum

Effi

cien

cy

InxGa1-xN

UV

(AlxGa1-x).52In.48P

C-plane

Semi-polar

InxGa1-xN

LED Efficiency

Non-Polar Growth - Summary

Systems•a-GaN / r-Al2O3 (MOCVD, HVPE and MBE)•a-GaN / a-SiC (MOCVD, MBE, MBE → HVPE)•m-GaN / m-SiC (MOCVD and MBE, MBE → HVPE)•m-GaN / (001) LiAlO2 (HCPE, MBE → HVPE)

Exchange of MBE, MOCVD and HVPE material‘Mix and match’(e.g., MBE m-GaN/LiAlO2 templates for HVPE → MOCVD)

Research Topics•Growth mode and growth mechanisms•Morphology•Defect generation and structure•Optical properties•Doping•Heterostructures•Devices

a-GaN Growth: … the idea …

• a-plane surfaces encountered in the lateral overgrowth of c-plane GaN

1μm

Preactor= 76 Torr

cross-section SEM

Nonpolar a-GaN on r-plane Sapphire

a-GaN grown on r-sapphire via MOCVD– Previous efforts produced faceted films– Planar films attained using two-step growth

GaN Nucleation LayerV/III: 2500Tg: ~600°Ct: ~20 nm

GaN Epitaxial FilmV/III: 300 – 1300Tg: ~1120°Cg.r.: 2 – 9 Å/sP: ≤ 100 Torr

…compare to c-GaN Epitaxy…

V/III: 2000 – 3500Tg: ~1090°CP: 76-760 Torr

a-GaN Microstructure

– 2.6 x 1010 cm-2 threading dislocation (TD) density

• Common [1120] TD line direction

– 3.8 x 105 cm-1 basal plane stacking fault density

• Faults aligned perpendicular to the c-axis [0001]

x-sectionTEM

plan-viewTEM

• Lateral overgrowth techniques effectively reduce threading dislocation densities in c-plane GaN

• The LEO Process…– Initial MOCVD Growth

• GaN template layer

– Dielectric Mask Pattern• 200 nm PECVD SiO2

– MOCVD LEO Regrowth• Same conditions as planar a-GaN growth

Lateral Epitaxial Overgrowth

Polarity Effects

GaN polarity strongly affects lateral growth rate

– Ga-face sidewall grows ~10x faster than N-face sidewall

Scale bar = 3 μmSEM

Dislocation Reduction

– overgrown regions of [1100] stripes relatively TD free

– dislocations bend into overgrowth from [0001] stripes

[1100] [0001]cross-section

TEM

LEO: Circular Mask Openings

• Stable GaN facets under ‘a-plane’ MOCVD growth conditions

Scale bar = 3 μm

LEDs on Planar m-GaN Substrates

)1110( )3110( )2211((a) , (b) and (c) , (d) templates

[T.J. Baker et al., Jap. J. Appl. Phys. 44, L920 (2005)]

Semi-Polar Orientations

Summary and Prospects

•Routes to non-polar and semi-polar GaN – well demonstratedMajor challenge: high TD density and SF density

•Defect reduction via LEO, 2S-LEO, SLEO, in situ SiNx

•Record p-type doping in MBE GaN on m-plane SiC

•~1 mW, unoptimized, LEDs on m-plane GaN; semi-polar GaN

•Demonstration of polarized light emission in EL from •m-plane LEDs•Semi-polar LEDs

•N-face GaN•New promise for advanced electronic devices

MOCVD a-GaN LEO:Evidence for m-Facet Stability

a-GaN LEO with <0001> stripesa and m-facetsIncreasing reactor pressure: loss of a-facets, only m-facets

a-GaN LEO with <1100> stripesVertical Ga-face and N-face facetsIncreasing reactor pressure: favors vertical growth

45 Torr 60 Torr 100 Torr 150 Torr

<1100>

<0001>

<1120>

<0001><0001>

Stripe orientation

<0110><1120>

<1100>

<1010>

<1100>

Planar HVPE m-GaN on LiAlO2

• Surfaces characterized by long-range textures, peak to valley < 200 nm.• Near complete elimination of bulk, crystallographic defects.

Free-standing m-GaN:

LED on planar m-GaN

MQW parameters:4 nm InGaN well, 16 nm GaN:Si barrier

LED structure grown by MOCVD on ~250 µm thick HVPE free-standing m-GaN

n-GaN: 2.2 μm (3 x 1018 cm-3)p-GaN: 0.3 μm (6 x 1017 cm-3)n-contact: Al/Au (30/200 nm)p-contact: Pd/Au (20/200 nm)

Polarized Light Emission – EL – m-plane GaN LEDs

• Low gate leakage [1,2,3]

• Low contact resistance [1,2,3]

• Enhancement mode operation [1,2,3]

• Enhanced back barrier confinement [1,2,3]

• InN channel [4]

[1] S. Rajan et al., Jpn. J. Appl. Phys. 44 (2005) L1178.[2] S. Rajan et al., 32nd International Symposium on Compound Semiconductors (ISCS), Sept 18-22 (2005), Europa- Park Rust, Germany[3] S. Rajan, Ph.D. Thesis, University of California at Santa Barbara (2006). [4] K. Xu et al., Appl. Phys. Lett. 83, 251 (2003).

Advantages of N-face GaN for HEMTs

Ga-face

N-face

Courtesy: S. Rajan

Advantages of N-Face GaN for HEMTs

Outline

Background on GaN symmetry and propertiesCrystal symmetryPhysical properties: heterostructures

A-plane and M-plane growthCommon MicrostructureDefect reductionDopingDevices

Semi-polar GaNNew orientations and possibilities

N-face GaNTurning the crystal and devices upside down …

Epitaxial Relationship

– a-GaN (1120) growth surface – GaN c-axis aligns with sapphire c-axis projection

• Convergent beam electron diffraction (CBED) determined polarity

XRD 2θ−ω

Research accomplishments – Non-polar GaN

2001 2002 2003 2004 2005 2006

1st planarHVPEa-GaN

Blue LED onHVPE a-GaN

1st HVPEa-GaN LEO

1st LED onm-GaN

1st MOCVDa-GaN

Advanceda-GaN LEO

1st HVPEm-GaN LEOMOCVD

a-GaN ona-SiC

MBE a-GaNgrowth diagram

Highly p-dopedMBE m-GaNPlanar HVPE

m-GaN

1st MOCVDa-GaN LEO

AlGaN

GaN

+ + + + + + + + + +

+ + + + + + + + + +

- - - - - - - - - - - - - - -Ga-polar surface

- - - - - - - - - - - - - - -2DEG

AlGaN

GaN

- - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -

GaN+ + + + + + + + + +

N-polar surface

+ + + + + + + + + + - - - - - - - - - - - - - - -2DEG

+ + + + + + + + + +

AlGaN- - - - - - - - - - - - - - -

+ + + + + + + + + +

• N-face HEMT demonstrated promising performance

2DEG in excess of 1013 cm-2 with mobility of 1300 cm2/Vs [1]

ft and fmax of 12 GHz and 26 GHz respectively [2]

[1] S. Rajan et al., 47th Electronic Materials Conference, June 2005, Santa Barbara, CA [2] A. Chini et al., 63rd Device Research Conference, Conference Digest pp. 63-64.

AlGaN/GaN Heterostructures

Non-Polar – Common Microstructure

Systems•a-GaN / r-Al2O3 (MOCVD, HVPE and MBE)•a-GaN / a-SiC (MOCVD, MBE, MBE → HVPE)•m-GaN / m-SiC (MOCVD and MBE, MBE → HVPE)•m-GaN / (001) LiAlO2 (HCPE, MBE → HVPE)

TD density (total): ~1x1010 cm-2

SF density (total): >1x105 cm-1

SFs associated with exposed N face (000-1) during early growth

SolutionsIn situ/ex situ nanomaskingLateral Epitaxial Overgrowth (LEO)Two-step Lateral Epitaxial OvergrowthSidewall LEO (SLEO)‘Bulk’ GaN

• Under the current LEO growth conditions…– [0001] symmetric stripe – mixture of vertical and inclined m-planes– [1102] asymmetric stripe – vertical and inclined sidewalls– [1100] rectangular x-sections with vertical c-plane sidewalls

Scale bar = 5 μm (window width)

Inclined-view SEM

LEO Stripe Morphology

Cathodoluminescence (CL)

– uniform luminescence from overgrowth of [1100] stripes

– ‘mottling’ extends across width of [0001] stripes

Scale bar = 5 µm (window width)

CLλ = 365 nm

SEM

[0001][1100]

a-plane GaN/AlGaN MQWs

10-period GaN / AlxGa1-xN MQWs regrown on a-GaN (and c-GaN) templates via MOCVD

•Regrowth conditions modeled after HT epitaxial growth conditions– Tgrowth ~ 1120°C– Preactor = 76 Torr

a-plane vs. c-plane MQWs

•a- and c-plane MQWs simultaneously grown with varying well width

a- and c-MQW dimensions and xAl agree within 7%inferior a-MQW interface quality

a-plane69Å GaN /

96Å Al0.16GaN

c-plane72Å GaN /

98Å Al0.16GaN

PL Emission vs. Well Width

•MQW emission red-shifts with increasing GaN well width– a-plane: redshifts up to the GaN band edge– c-plane: redshifts beyond the GaN band edge

a-MQWc-MQW

MQW Emission Energy

– a-MQW emission modeled using square well SCPS calculations

• exciton binding energy accounts for model overestimation

•‘Nonpolar’ MQWs NOT Affected by Internal Electric Fields

m-GaN on m-SiC: MBE

m-GaN MBE: [Mg] vs. III-V Ratio

Substrate Temp ~ 530 °C on T.C.

REGIME Ga BEP [Torr]Ga-rich 3.3E-7Intermediate 2.4E-7III/V = 1 ~2.26e-7N-rich 1.54E-7

Doped Layers ~100 nm thick

AlGaN marker layers ~10 nm thick.

300K Transport Results

Hole Conc. Mobility

[1120]

[0001]

[0001]

[1120]

ConductivityCarrier concentration: Hall bars // a and c

Conductivity: via TLM patterns // a and c

1x1018 < p < 7x1018 cm-3

µ·p ↑ as p ↑ to p = 7x1018 cm-3

Anisotropy in hole mobility: expected from anisotropic hole masses

Range of dislocation density for which CL images shown in previous slide

Luminescence intensity is proportional to excess minority carrier concentration.

Excess Minority Carrier Concentration: Diffusion Length and Dislocation Density

J.S. Speck and S.J. Rosner, Physica B 274. 24 (1999)

GaN: Minority carrier diffusion length: ~ 100 nm (common)TDs are a limiting factor in non-polar LED performance

The beginning …

The first planar non-polar orientedwurtzite films …

Reactor Pressure - MOCVD

• Reactor Pressure: important growth variable

Reactor pressures ~76 Torr required for planar film growth

76 Torr 300 Torr 600 Torr

inclined-viewSEM

plan-viewSEM

Crystal Mosaic – a-GaN on r-Al2O3

• a-GaN on r-sapphire: orientation-dependent crystal tilt mosaic

omega rocking curves

c-mosaic = 0.28° (Δc/c ~1.1%)m-mosaic = 0.62° (Δa/a ~13.8%)

– LEO stripe morphology dependent on stripe orientation• Analyzed using ‘wagon wheel’ mask

– Three primary orientations: [0001], [1102], [1100] (0°, 45°, 90°)

plan-viewSEM

LEO Orientation Analysis

Dislocation Reduction – AFM

– characteristic surface pits in window regions– “pit-free” overgrowth

•AFM pits decorate TD terminations•One-to-one pit-to-TD correspondence (AFM and TEM)

[1100]

AFM

Mono-CL

AFM TEM

Planar HVPE a-GaN

• Planar Surface decorated with high pit density.

• Faint ~1 nm steps oriented normal to <0001>.

• RMS roughness ~1 nm.TDD: ~ 1 x 1010 cm-2

SFD: ~ 4 x 105 cm-1

Partial TDs: 7x109 cm-2

g = 0002

g = 1010

HVPE LEO a-GaN

• <1100> stripes have vertical c-plane sidewalls.• Ga-face (0001) lateral growth rate ~6x N-face (0001) growth rate.

– Coalescence front offset towards windows (large defect-free wing area results)

Schematic Cross-Sectional SEM Image“Wagon Wheel” pattern

HVPE LEO a-GaN (cont.)

• Typical stripe patterns: 2 µm windows/8 µm wings (2/8), 5/5, and 5/15.

• Asymmetrical {0001} wing growth rates • TDD of < 3 × 10-6 cm-2 and SFD of < 10-3 cm-1 in

wings; no measurable wing tilt.• Four-fold increase in cathodoluminescence intensity

in wings versus windows.

Coalescence Front

N-Face Wing Ga-Face Wing

SEM Image365 nm CL Image

Inv. DomainsWindow

Ga-FaceWing

N-FaceWing

– a-AlN and a-GaN orientations match the a-SiC

smooth a-GaN surface morphology

AFM

XRD 2θ−ω

a-GaN on a-SiC: Morphology & Orientation

a-GaN on a-SiC: Crystal Mosaic

– Minimal tilt mosaic orientation dependence• c-mosaic greater than m-mosaic

XRD ω rocking curves

c-mosaic = 0.30° (Δc/c ~ -2.8%)m-mosaic = 0.27° (Δa/a ~ -3.4%)

a-GaN on a-SiC: Morphology

– m-Axis rows of coalesced GaN islands coalesce slowly along the c-axis

– Coalesced GaN surfaces feature:

• Undulations along the m-axis

• Low density of submicron pits

• Crystallographic terraces perpendicular to c-axis

a-GaN on a-SiC: N-face Surfaces

• Exposed N-face facets responsible for basal plane faulting

SEM – 100 nm GaN

Planar m-GaN (cont.)

• Threading dislocation density ~ 4 × 109 cm-2.• Basal plane stacking fault density ~ 1 × 105 cm-1.• Possible inhomogeneous distribution of TDs and SFs may explain surface

morphology variations.

AFM TEM

HVPE LEO of m-GaN

• Planar direct-growth films:– Lattice mismatch, island coalescence ⇒ threading dislocations.– Exposed (0001) planes in island/3D growth ⇒ basal plane stacking faults

• Lateral epitaxial overgrowth:– Mask geometry affects growth direction.– Natural growth habit: growth on m-planes preferred.– <1120>-oriented stripes (a-direction) ⇒ Growth on (0001) and (0001) planes (vertical sidewalls)

HVPE LEO of m-GaN (cont.)

• Direct growth:– Slate morphology most

prevalent.– Ridge density ~105 cm-1

– Inhomogeneous distribution of ridges and pits.

• LEO, <0001> Stripes:– Ridges remain, no pits.– Roughness: 0.6 nm– Wings TD-free.– SFs persist throughout

wings.

• LEO, <1120> Stripes:– Ga-face wing TD and SF

free.– Ridges eliminated, clear

step edges on surface.– Roughness: ~0.5 nm

AFM

n-Type Doping of a-GaN • a-GaN on a-SiC:

– Undoped GaN is resistive– n increases with Si/Ga ratio for n > 1 x 1018 cm-3

– Residual acceptor concentration on the order of 1 x 1018 cm-3

– Acceptors related to dislocations, stacking faults, and point defects– µ increases with n (screening of defects)

– at n = 1.5 x 1019 cm-3, μ = 109 cm2/V⋅s

Si/Ga

0 1e-4 2e-4 3e-4 4e-4

μ 300Κ

[c

m2 / V

s ]0

20406080

100120

n

[cm

-3]

0

1e+19

2e+19

resistive

N.G. Weimann et al. J. Appl. Phys.83 (1998) 3656

p-Type Doping of a-GaN • a-GaN on r-sapphire:

100 150 200 250 300

4.0x1019

6.0x1019

8.0x1019

1.0x1020

1.2x1020

1.4x1020

Mg effective flow (sccm)M

g co

ncen

trat

ion

(cm

-3)

2x1017

3x1017

4x1017

5x1017

6x1017

7x1017

Hole concentration (cm

-3)

100 150 200 250 30002468

101214

Res

istiv

ity (Ω

-cm

)

Mg Effective Flow (sccm)

• [Mg] tracks Cp2Mg effective flow

• Reduction in hole concentration: • Incorporation of Mg in electrically

inactive form (e.g. precipitates)• Formation of Mg-induced

compensating defects

LED on HVPE LEO a-GaN

n-GaN: 2.2 μm (3 x 1018 cm-3)p-GaN: 0.3 μm (6 x 1017 cm-3)n-contact: Al/Au (30/200 nm)p-contact: Pd/Au (3/200 nm)

• Template: LEO HVPE a-GaN with 2µm windows, 8 µm wings, <1100> direction

0 50 100 150 200 2500.0

0.4

0.8

1.2

1.6

Driving Current (mA)

Out

put P

ower

(mW

)

0.20

0.25

0.30

0.35

0.40

EQE (%

)

On-chip measurement:1.5 mW at 200 mA (unsaturated)

• Electroluminescence vs. current: no shift in peak position, little peak linewidthbroadening

– No quantum-confined Stark Effect present

300 400 500 600 7000

1000

2000

3000

a-GaN LED ELEL

Inte

nsity

(a. u

.)

Wavelength (nm)

10 mA 20 mA 50 mA 80 mA 200 mA

0 50 100 150 200 250

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

Line

wid

th (n

m)

Driving Current (mA)

• MOCVD 5-QW LED on 250 µm free-standing planar HVPE m-GaN

0 50 100 150 200448

450

452

454

456

458

460

462

LED on planar m-GaN (cont.)

EL E

mis

sion

Wav

elen

gth

(nm

)

Drive Current (mA)

0 50 100 150 200

(b)

Current Density (A/cm2)

400 500 600

1000

2000

3000

4000 (a)100 mA80 mA60 mA40 mA30 mA20 mA5 mA

EL In

tens

ity (a

. u.)

Wavelength (nm)

• Turn-on voltage: 3-4 V• Low on series resistance: 16 Ω• Ideality factor ~4• EL emission at 450 nm• Peak shift observed at low current

densities due to band filling

Unpackaged m-GaN LED Results

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Drive Current (mA)

CW

Out

put P

ower

(mW

)

0.32

0.34

0.36

0.38

0.40

0.42

0.44

EQE

(%)

0 200 400 600 800 1000

0

2

4

6

8

10

Onw

afer

Out

put P

ower

(mW

)

Drive Current (mA)

1% Duty Cycle (500 ns pulse) 5% Duty cycle (2.5 ms pulse) CW

• cw on-wafer output power at 300 mA : 2.95 mW (0.24 mW @ 20 mA)• Max EQE of 0.43% at 30 mA drive current• Saturation in output power not observed for higher cw drive currents

• Pulsed on-wafer output power at 1 A for 5% duty cycle: 8.5 mW

Packaged m-GaN LED Results

m-GaN LED Lamp Integrated Power

0

1

2

3

4

5

6

0 50 100 150 200

Current [mA]

Inte

grat

ed P

ower

[mW

]

First LED Lamp on Free-Standing m-GaN Substrate

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

300 400 500 600 700 800

Wavelength [nm]

Pow

er D

ensi

ty [W

/nm

]

1mA2mA3mA5mA10mA15mA20mA30mA40mA50mA60mA70mA80mA90mA100mA120mA140mA160mA180mA200mA

• Unoptimized chip packaged in standard T05 package• Integrated optical power measured in integrating sphere• Approx. 6 mW at 200 mA• Same slight emission peak shift vs. current, as for on-wafer testing