new applications for gc/msms in and food laboratories · new applications for agilent 7000a gc/msms...

38
New applications for Agilent 7000A GC/MSMS in environmental and food laboratories

Upload: vancong

Post on 23-Nov-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

New applications for Agilent 7000A GC/MSMS in 

environmental and food laboratories

Advantages of a tandem MS as a Chromatographic Detector ‐Multiple Reaction Monitoring (MRM)

170 210 250 290

210

222

268 280165

Spectrum with

backgroundions (from EI)

Q1 lets only target ion 210 pass through

190 210

210

Collision cell breaks ion 210 apart

150 170 190 210

210158

191

Q2 monitors fragments 158

and 191 for quant and qual.

160

158

190

191

no chemical background

Quad Mass Filter (Q2)Quad Mass Filter (Q1) Collision CellSource

MS/MS Eliminates Scan and SIM Interferences

analyte

Product 1Product 3

Product 2

Single Quad MSno selectivity against ions

with same m/z

Tandem MSSelectivity by selection of product ions

interference

analyte

interference

unit mass resolution

MS/MS Ensures Lowest Detection LimitsEI: spectrum of analyte can also include

ions from matrix, column bleed, gases, etc.

Q1 SIM isolate precursor before CID

Product 1Product 3

Product 2

CID +Q2 SIM

Lower m/z Product Ions measured against “zero” chemical noise

chemical noise from other ions

eliminated

Three GC/Q1‐Scan Chromatograms Overlaid with 170 Pesticides Total 

Seven Injections of Pesticide Mix at 1.67 ppbExcellent RT reproducibility with GC/MSMS MRM   

4x10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

+EI TIC MRM (** -> **) pest_1_67ppb_1x_1.D

Counts vs. Acquisition Time (min)6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

Carrot Extract with Known Pesticide Residues

A Food Chemist  submitted a carrot extract sample that they had analyzed in their lab and said we would find: 

Chlorpyrifos

DDT

Could we use the Agilent GC/MSMS to find and quantify these compounds? 

Carrot Sample #4 Etridiazole 17 ppb

Carrot Sample #4 Trifluralin 22 ppb

Carrot Sample #4 Heptachlor 36 ppb

Carrot Sample #4 Gamma-Chlordene 6.8 ppb

Carrot Sample #4 Chlorpyrifos 21 ppb

Carrot Sample #4 Tolylfluanid 75 ppb

Carrot Sample #4 DDE 139 ppb

Carrot Sample #4 Iprodione 53 ppb

Carrot Extract with “known” Pesticide Residues

The Food Chemist said we would find: 

Chlorpyrifos

DDT

Using the Agilent 7000A GC/MSMS, we also found

Chlorpyrifos

Etridiazole Tolylfluanid

Trifluralin DDE (DDT breakdown product)

Heptachlor Iprodione

Gamma‐Chlordene Mirex

Dioxins and FuransPreliminary investigation of polychlorinated dioxins and 

furans on the Agilent 7000A GC‐QQQ 

With thanks to Anthony Macherone 

Samples Submitted

CS‐1: evaporated 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin(TCDD) & 2,3,7,8‐Tetrachlorodibenzo‐p‐Furan (TCDF) mix, reconstituted in 50 μl toluene to create 250 fg / μl solution

CS‐1: evaporated TCDD & TCDF mix, reconstituted in 50 μl toluene to create 1000 fg / μl solution

TCDD & TCDF Method

Column: HP-5MS UI 30m, 0.25mm-id, 0.25 filmCarrier: He - 1.0 ml/min constant flowOven Table: Ramp oC / min Tf

oC Hold (min)0 100 0.4

100 200 67.5 235 420 310 3

Inject: 1 μl, pulsed splitless: 25 ml / min for 0.5 minInject T: 300 oCAux 2: 310 oCSource T: 300 oCeV: 70Q1 = Q2: 150 oC

MRM Table

Compound Window Transition Fragment 1 Ion type Ion Ratio ParentTCDF 1 306 > 241 -65 M/M+2 < 1 M+2TCDD 1 322 > 257 -65 M/M+2 < 1 M+2

P5CDF 2 340 > 277 -63 M+2/M+4 > 1 M+2P5CDD 2 356 > 293 -63 M+2/M+4 > 1 M+2

H6CDF 3 374 > 311 -63 M+2/M+4 > 1 M+2H6CDD 3 390 > 327 -63 M+2/M+4 > 1 M+2

H7CDD* 4 426 > 361 -65 M+2/M+4 ~ 1 M+4

H7CDF* 5 410 > 345 -65 M+2/M+4 ~ 1 M+4OCDF* 5 444 > 379 -65 M+2/M+4 < 1 M+4OCDD 5 460 > 395 -65 M+2/M+4 < 1 M+4

*Predicted values based on table trends

TCDD & TCDF: 250 fg/µl each

TCDF

TCDD

Pentachloro‐dibenzodioxin  (P5CDD) and pentachloro‐dibenzofuran (P5CDF) 500 fg/µl each

2x10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

+ MRM (356.0 -> 293.0) CS-1_102908_MRM_1ul.D Smooth (1) Noise (RMS) = 0.56; SNR (17.241min) = 152.0

* 27117.241

3 3

2x10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

+ MRM (340.0 -> 277.0) CS-1_102908_MRM_1ul.D Smooth (1) Noise (RMS) = 0.22; SNR (16.296min) = 649.7

* 57716.296

32816.960

3 3

Counts vs. Acquisition Time (min)16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18 18.1 18.2 18.3 18.4

P5CDF – 2 isomers

P5CDD

Representative MRM’s for 1000 fg & 250 fg on column

October 30, 200823

2x10

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

+ MRM (340.0 -> 277.0) CS-2_102908_MRM_1ul.D Smooth (1)

16.32252

17.01348

2 3

Counts vs. Acquisition Time (min)15.7 15.8 15.9 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18 18.1

P5CDF – 2 isomers

P5CDD

Hexachloro‐dibenzodioxin  (H6CDD) and Hexachloro‐dibenzofuran (H6CDF) 500 fg/µl each

2x10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

+ MRM (390.0 -> 327.0) CS-1_102908_MRM_1ul.D Smooth (1) Noise (RMS) = 0.28; SNR (19.282min) = 311.8

311.819.282

* 258.219.105

* 156.419.148

4

2x10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

+ MRM (374.0 -> 311.0) CS-1_102908_MRM_1ul.D Smooth (1) Noise (RMS) = 0.28; SNR (18.762min) = 271.0

* 271.018.762

254.919.038* 246.1

18.711

221.619.362

4

Counts vs. Acquisition Time (min)18.55 18.6 18.65 18.7 18.75 18.8 18.85 18.9 18.95 19 19.05 19.1 19.15 19.2 19.25 19.3 19.35 19.4 19.45 19.5 19.55 19.6 19.65

H6CDD, 3 isomers

H6CDF, 4 isomers

Heptachloro‐dibenzodioxin  (H7CDD) 500 fg/µl

2x10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

+ MRM (426.0 -> 361.0) CS-1_102908_MRM_1ul.D Smooth (1) Noise (RMS) = 0.29; SNR (20.037min) = 473.0

473.020.037

Counts vs. Acquisition Time (min)19.76 19.78 19.8 19.82 19.84 19.86 19.88 19.9 19.92 19.94 19.96 19.98 20 20.02 20.04 20.06 20.08 20.1 20.12 20.14 20.16 20.18 20.2 20.22 20.24 20.26 20.28 20.3 20.32 20.34 20.36 20.38

H7CDD

Octochloro‐dibenzodioxin  (OCDD), Octochloro‐dibenzofuran (OCDF) and Hexachloro‐dibenzofuran (H7CDF)

OCDD (1000fg/ul)

OCDF (1000fg/ul)

H7CDF (500fg/ul),

co-elution of 2 isomers

Internal Standards

Compound list with retention times and S/N

Compound Window Transition Injection V (µl) Conc. (fg/µl) r.t. (min) S/NTCDD 1 322 > 257 1 250 13.038 169TCDF 1 306 > 241 1 250 13.045 112

P5CDF 2 340 > 277 1 500 16.296 650P5CDF 2 340 > 277 1 500 16.960 457P5CDD 2 356 > 293 1 500 17.241 152

H6CDF 3 374 > 311 1 500 18.711 246H6CDF 3 374 > 311 1 500 18.762 271H6CDF 3 374 > 311 1 500 19.038 245H6CDF 3 374 > 311 1 500 19.362 222H6CDD 3 390 > 327 1 500 19.105 258H6CDD 3 390 > 327 1 500 19.148 156H6CDD 3 390 > 327 1 500 19.282 312

H7CDD 4 426 > 361 1 500 20.037 473

H7CDF 5 410 > 345 1 500 21.809 1478H7CDF 5 410 > 345 1 500 21.809 1478OCDF 5 444 > 379 1 1000 21.865 45OCDD 5 460 > 395 1 1000 21.812 119

Observations and further work

Method needs more optimisation.

• Isomeric forms will be quantified using appropriate standards

Selected limited set of transitions in this preliminary study

• But was still able to predict MRM trends based on the available library data

Able to reduce run time from 55 min to 23 min using method translator 

• 60m DB‐5 column to 30m HP‐5MS UI column

Observed very low chemical noise in the TCDD / TCDF set

DL of 250 fg/μl achieved

• With additional optimization may be able to improve to a LOD of ~ 25 fg/μl – For select compounds based on lowest S/N ratio.

Nitro‐Polycyclic Aromatic Hydrocarbons in Air 

ParticulatesInvestigation of nitro‐polycyclic hydrocarbons in air utilizing the Agilent 7000A GC‐QQQ 

Thanks to:Frank DavidRIC, Belgium

30

Determination on Nitro‐Polycyclic Aromatic Hydrocarbons in Air Particulates

Air particulates are sampled on glass fiber filter (1000 m³ air) – Soxhlet extraction – concentration of extract (1 mL)

Direct analysis by GC‐MS (SIM MODE) not possible due to too high/complex matrix

Clean‐up by HPLC (normal phase) followed by GC‐MS analysis (SIM mode)

Alternative: two‐dimensional GC with MS (SIM) 

24 u @ 1,13 m3/min

glass fiber filter

Current Methodology

Determination on Nitro‐Polycyclic Aromatic Hydrocarbons in Air ParticulatesExtract: 1000 m³ in 1 mL (toluene)

15 m x 0.25 m x 0.25 µm DB‐5MSUI column

1 µL splitless injection

Fast ramp (70°C – 1 min – 20°C/min – 310°C)

• GC chromatogram even more “compressed” than classical method

MRM from molecular ion to M‐46 (‐NO2) and/or M‐30 (‐NO)

• Nitro‐naphthalene: 173 → 127• Nitro‐anthracene: 223 → 193• Nitro‐fluoranthene: 247 → 201• Nitro‐pyrene: 247 → 201

• Concentration NO2‐PAHs 100‐1000 X lower than PAHs (typical concentration in urban air particulates: 10‐100 pg/m³)

Nitro PAHs in air particulatesGC/QQQ – MRM – 50 pg/mL Calibration Standard)

1-N

itro-

Nap

htha

lene

9-N

itro-

Ant

hrac

ene

3-N

itro-

Fluo

rant

hene

1-N

itro-

Pyr

ene

2-N

itro-

Pyr

ene

GC/QQQ – MRM – Sample (extract air particulates – without clean‐up)

Nitro-naphthalene

Nitro-anthracene

Nitro-fluoranthene Nitro-pyrene

GC‐MS‐MS – MRM – Sample (extract air particulates – without clean‐up)

Nitro-naphthalene Nitro-anthracene

GC/QQQ vs GC/MS (SIM)(extract air particulates – without clean‐up)

Nitr

o-flu

oran

then

e

Nitr

o-py

rene12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time-->

Abundance

Ion 247.00 (246.70 to 247.70): nitropah-12.D\DATASIM.MS

12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.800

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time-->

Abundance

Ion 201.00 (200.70 to 201.70): nitropah-12.D\DATASIM.MS

SIM (5975C)

?

MRM (G7000A)

Determination on Nitro‐Polycyclic Aromatic Hydrocarbons in Air Particulates

Detected concentrations:

• 1‐nitro‐naphthalene: 21 pg/m³

• 9‐nitro‐anthracene: 57 pg/m³

• 3‐nitro‐fluoranthene: 77 pg/m³

• 2‐nitro‐pyrene: 14 pg/m³

No clean‐up

Faster GC analysis

QQQ offers higher specificity – higher selectivity

Agilent 7000A GC/QQQ

Outstanding sensitivity 100 fg of OFN on column at 100:1 S/N RMS in MS/MS mode using AUTOTUNE parameters verified at customer installation

1050 amu Mass Range

500 MRM/sec Speed

Reliable heated monolithic gold plated hyperbolic quadrupoles

Differentially pumped vacuum system

New Helium seeded collision cell technology

Agilent 7890A GC with Capillary Flow Technology

MassHunter Software

April, 2009ESAC2009