neutron generator for bnct based on high current ecr ion source with gyrotron plasma heating v.a....

19
Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1 , I.V. Izotov 1 , S.V. Golubev 1 , A.V. Sidorov 1 , S.V. Razin 1 , O. Tarvainen 2 , H. Koivisto 2 , T. Kalvas 2 email: [email protected]m 1 Institute of Applied Physics, RAS, 46 Ul`yanova st., 603950 Nizhny Novgorod, Russia 2 University of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), 40500 Jyväskylä, Finland

Upload: basil-freeman

Post on 16-Jan-2016

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma

Heating

V.A. Skalyga1, I.V. Izotov1, S.V. Golubev1, A.V. Sidorov1, S.V. Razin1, O. Tarvainen2, H. Koivisto2, T. Kalvas2

 email: [email protected]

1Institute of Applied Physics, RAS, 46 Ul`yanova st., 603950 Nizhny Novgorod, Russia2University of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), 40500 Jyväskylä, Finland 

Page 2: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Nizhny Novgorod

Page 3: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Outline

• Neutron generators• High current ECR ion sources• SMIS 37 ion source• D+ beam production at SMIS 37• Neutron production at SMIS 37• Perspectives and plans

Page 4: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Neutron sources for BNCT

• Nuclear reactors– High neutron flux– High running cost and complexity

• Accelerators– Satisfactory neutron flux– Lower cost– Safety

• Neutron generators– Low neutron flux– Small size, low cost– Easy to use

Page 5: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

“Low” energy D+ ion beams:» D + D --> 3He3 + n 3.26 MeV» D + T --> 4He3 + n 17.6 MeV

D-D and D-T neutron generators

Targets: TiD2, ZrD2, ScD2

Up to 1,8 D atoms per one sorbent atom

Page 6: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Ion sources for neutron generators

• Penning source• RF-driven plasma ion sources• ERC ions sources

– 2,45 GHz ECR• plasma density 1011 - 1012 cm-3

• Plasma flux density < 100 mA/cm2

– 37,5 GHz ECR• plasma density >1013 cm-3

• Plasma flux density > 1000 mA/cm2

Page 7: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Faraday cup

Gyrotron 37 GHz, 10-80 kW, 1ms/1Hz. Gasdynamic plasma confinement High plasma density >2*1013 cm-3

High collision rate -> Low plasma lifetime ~ tens of ms Plasma flux at the mirror point >10 A/cm2

Te ~ 20-300 eV -> close to 100% ionization

Ti ~ 1-5 eV + extraction in the area of low magnetic field -> excellent emittance

SMIS 37

Page 8: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Beam extraction

Plasma electrode aperture diameter from 5 to 10 mm

Page 9: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Beam current measurements

Page 10: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Beam current measurements

Page 11: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Ion spectrum (Hydrogen, Deuterium)

H+, D+ 94 %H2

+, D2+ < 6 %

Page 12: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Beam extraction summaryExtraction

systemFaraday cup current, mA

Normalized rms

emittance, π·mm·mrad

Extraction voltage, kV

d = 5 mm 80-140 0.06 45

d = 7 mm 300 0.18 45

d = 10 mm 500 0.07 45

H+, D+ 94 %H2

+, D2+ < 6 %

Page 13: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Ice target (D2 O)

Page 14: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

TiD2 target

Secondary-Ion Mass Spectrometry (SIMS) of the target

1 cm

Depth, a.u.

Sign

al, a

.u.

Page 15: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Neutron flux measurementsTwo 3He proportional counters were used in experiments

250 mA

Page 16: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Results (45 keV beam energy)Target Neutron flux

per 1 mА of D+ beam at 45 keV

Total neutron flux (300 mA of D+)

TiD2 2·106 6·108

D2O 3·106 109

Page 17: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Estimations

108 Neutrons per second for 1 mА D+ at beam energy 100-120 keV

Beam current: 500 – 1000 mА

Expected neutron flux:5·1010 – 1·1011 s-1 (5·1012 – 1·1013 s-1 T-target)

Expected neutron flux density: > 1010 s-1·cm-2

Page 18: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

• D+ beam at 100 keV

• High quality target

• Bigger target

• CW D+ beam production (24 GHz, 10 kW)

• Design of target cooling

Future plans

Page 19: Neutron Generator for BNCT Based on High Current ECR Ion Source with Gyrotron Plasma Heating V.A. Skalyga 1, I.V. Izotov 1, S.V. Golubev 1, A.V. Sidorov

Many thanks for your attention!