network models in thermoacoustics - keele€¦ · 1 network models in thermoacoustics ph.d. camilo...

93
1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

Upload: vohanh

Post on 02-Jul-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

1

Network Models in Thermoacoustics

Ph.D. Camilo Silva Prof. Wolfgang Polifke

THERMODYNAMIKLehrstuhl für

Page 2: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

Entropy-Acoustics coupling

How to study combustion instabilities?

Why changing an injector position could make a flame unstable?

Can entropy couple with the flame through acoustic waves?

u0

�0 s0

Ac. wave ¯Q

+

+

Ac. wave

Stable flame

Acoustics flame coupling

Unstable flameUnstable flame

Acou

stic

BC

dow

nstre

am

Acou

stic

BC

ups

tream

Ai

r sup

ply

impe

danc

e Fu

el s

uppl

y im

peda

nce

!Q0

THERMODYNAMIKLehrstuhl für

2

Page 3: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

3

Experiments High fidelity CFD Network models

All together may be the best solution !!

How to study combustion instabilities?

Flame dynamics from experiments or CFD

Network Models

3D Acoustic Solvers

For example …

Helicopter Engine

THERMODYNAMIKLehrstuhl für

Page 4: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

4

All together may be the best solution !!For example …

How to study combustion instabilities?

Network Models

or Network Models

Helicopter Engine

Flame dynamics from experiments or CFD

Experiments High fidelity CFD Network models

THERMODYNAMIKLehrstuhl für

Page 5: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

5

Full System Understand the System

What we want to study?

Of longitudingal, transversal, azimuthal or radial acoustic waves?

ThermoacousticsX

THERMODYNAMIKLehrstuhl für

Page 6: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

6

Full System Understand the System

What we want to study?

Of longitudinal plane acoustic waves

ThermoacousticsX

X

Of short or long wavelengths?

THERMODYNAMIKLehrstuhl für

Page 7: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

7

Full System Understand the System

What we want to study?

Of longitudinal plane acoustic waves

ThermoacousticsX

X

Of long wavelengthsX

Main Assumption

Acoustic compactness in most elements of the thermoacoustic system

THERMODYNAMIKLehrstuhl für

Page 8: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

8

Thermoacoustic Network models

Full Thermoacoustic System

Decompose the System

Understand the System

THERMODYNAMIKLehrstuhl für

Page 9: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

9

Ducts Compact Flames Nozzles Joints …

Gray BoxBlack BoxWhite Box

Thermoacoustic Network models

Full Thermoacoustic System

Acoustic two-port element

White Box

Decompose the System

Understand the System

THERMODYNAMIKLehrstuhl für

Page 10: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

10

WHITE BOX

Q0 ⇢0 u0 p0 s0

Ducts Compact Flames Nozzles Joints …

Gray BoxBlack BoxWhite Box

Thermoacoustic Network models

Full Thermoacoustic System

Acoustic two-port element

Quasi 1D Conservation Equations

White Box

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Decompose the System

Understand the System

Model Acoustic and entropy waves

THERMODYNAMIKLehrstuhl für

Page 11: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

11

WHITE BOX

Q0 ⇢0 u0 p0 s0

Ducts Compact Flames Nozzles Joints …

Gather all elements in a single matrix and compute acoustic response of the ensemble.

Gray BoxBlack BoxWhite Box

Thermoacoustic Network models

Full Thermoacoustic System

Acoustic two-port element

White Box

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

Decompose the System

Understand the System

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Note that under a suitable treatment, tens of elements can reduce to a 4 x 4 matrix !

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 12: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

12

WHITE BOX

Q0 ⇢0 u0 p0 s0

Ducts Compact Flames Nozzles Joints …

Gather all elements in a single matrix and compute acoustic response of the ensemble.

STABILITY ANALYSIS.

Gray BoxBlack BoxWhite Box

Thermoacoustic Network models

Full Thermoacoustic System

Acoustic two-port element

White Box

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

Decompose the System

Understand the System

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 13: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

13

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Gather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 14: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

14

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Gather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 15: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

15

Quasi 1D Conservation Equations

From full Navier-Stokes equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

AssumptionsNo viscous termsQuasi-1D

THERMODYNAMIKLehrstuhl für

Page 16: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

16

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

Momentum

From full Navier-Stokes equationsAssumptions

No viscous termsQuasi-1D

THERMODYNAMIKLehrstuhl für

Page 17: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

17

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

Momentum

Entropy

From full Navier-Stokes equationsAssumptions

No viscous termsQuasi-1D

THERMODYNAMIKLehrstuhl für

Page 18: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

18

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

Momentum

Entropy

Total Enthalpy

From full Navier-Stokes equationsAssumptions

No viscous termsQuasi-1D

THERMODYNAMIKLehrstuhl für

Page 19: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

19

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

From full Navier-Stokes equations

Total Enthalpy

AssumptionsNo viscous termsQuasi-1D

THERMODYNAMIKLehrstuhl für

Page 20: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

20

Quasi 1D Conservation EquationsAssumptions

No viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 21: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

21

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

Momentum

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 22: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

22

Quasi 1D Conservation Equations

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Mass

Momentum

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 23: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

23

Quasi 1D Conservation Equations

Mass

Momentum

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 24: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

24

Quasi 1D Conservation Equations

Momentum⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 25: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

25

Quasi 1D Conservation Equations

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

THERMODYNAMIKLehrstuhl für

Page 26: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

26

Quasi 1D Conservation Equations

Mass

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

THERMODYNAMIKLehrstuhl für

Page 27: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

27

Quasi 1D Conservation Equations

Mass

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

1

cp

Ds

Dt=

1

�p

Dp

Dt� 1

D⇢

Dt

2nd law thermodynamics

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

THERMODYNAMIKLehrstuhl für

Page 28: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

28

Quasi 1D Conservation Equations

Mass

Entropy

1

D⇢

Dt

= � 1

A

@

@x

(uA)

1

cp

Ds

Dt=

1

�p

Dp

Dt� 1

D⇢

Dt

2nd law thermodynamics

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

THERMODYNAMIKLehrstuhl für

Page 29: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

29

Quasi 1D Conservation EquationsAssumptions

No viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

MassEntropy

2nd law therm.

A

�p

Dp

Dt

+@

@x

(uA) =(� � 1)

�p

qA

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

THERMODYNAMIKLehrstuhl für

Page 30: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

30

Quasi 1D Conservation EquationsAssumptions

No viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

MassEntropy

2nd law therm.

A

�p

Dp

Dt

+@

@x

(uA) =(� � 1)

�p

qA

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

Not convenient … we have to reorganize somehow

THERMODYNAMIKLehrstuhl für

Page 31: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

31

Quasi 1D Conservation EquationsAssumptions

No viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

MassEntropy

2nd law therm.

A

�p

Dp

Dt

+@

@x

(uA) =(� � 1)

�p

qA

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

A

�p

@p

@t

+Au

�p

@p

@x

+@

@x

(uA) =(� � 1)

�p

qA

A

@ ln(p1/�)

@t

+1

p

1/�

@

@x

⇣p

1/�uA

⌘=

(� � 1)

�p

qA

THERMODYNAMIKLehrstuhl für

Page 32: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

32

Quasi 1D Conservation EquationsAssumptions

No viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

MassEntropy

2nd law therm.

Momentum ⇢

Du

Dt

= �@p

@x

⇢T

Ds

Dt

= q

Ap

1/� @ ln(p1/�)

@t

+@

@x

⇣p

1/�uA

⌘=

(� � 1)

�p

qAp

1/�

THERMODYNAMIKLehrstuhl für

Page 33: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

33

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Gather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

X

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 34: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

34

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Zx2

x1

@

@t

(⇢ht

A) dx+

Zx2

x1

@

@x

(⇢uht

A) dx =

Zx2

x1

Aq dx�Z

x2

x1

A

@p

@t

dx

THERMODYNAMIKLehrstuhl für

Page 35: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

35

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Zx2

x1

@

@t

(⇢ht

A) dx+

Zx2

x1

@

@x

(⇢uht

A) dx =

Zx2

x1

Aq dx�Z

x2

x1

A

@p

@t

dx

(x1 � x2) = �x ⌧ �

Compact element if

THERMODYNAMIKLehrstuhl für

Page 36: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

36

Its inside quantity is bounded

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Zx2

x1

@

@t

(⇢ht

A) dx+

Zx2

x1

@

@x

(⇢uht

A) dx =

Zx2

x1

Aq dx�Z

x2

x1

A

@p

@t

dx

Compact assumption means to neglect those integral terms for which

(x1 � x2) = �x ⌧ �

Compact element if

THERMODYNAMIKLehrstuhl für

Page 37: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

37

Its inside quantity is bounded

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Zx2

x1

@

@t

(⇢ht

A) dx+

Zx2

x1

@

@x

(⇢uht

A) dx =

Zx2

x1

Aq dx�Z

x2

x1

A

@p

@t

dx

Compact assumption means to neglect those integral terms for which

(x1 � x2) = �x ⌧ �

Compact element if

0 0

THERMODYNAMIKLehrstuhl für

Page 38: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

38

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Total Enthalpy

Zx2

x1

@

@t

(⇢ht

A) dx+

Zx2

x1

@

@x

(⇢uht

A) dx =

Zx2

x1

Aq dx�Z

x2

x1

A

@p

@t

dx

0 0

[⇢uht

A]x2

x1= Q

Q =

Zx2

x1

qAdxwhere

THERMODYNAMIKLehrstuhl für

Page 39: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

39

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D Total Enthalpy [⇢uh

t

A]x2

x1= Q

Compactness

MassEntropy

2nd law therm.

Ap

1/� @ ln(p1/�)

@t

+@

@x

⇣p

1/�uA

⌘=

(� � 1)

�p

qAp

1/�

THERMODYNAMIKLehrstuhl für

Page 40: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

40

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D Total Enthalpy [⇢uh

t

A]x2

x1= Q

Compactness

MassEntropy

2nd law therm.

Ap

1/� @ ln(p1/�)

@t

+@

@x

⇣p

1/�uA

⌘=

(� � 1)

�p

qAp

1/�

Zx2

x1

Ap

1/� @ ln(p1/�)

@t

dx+

Zx2

x1

@

@x

⇣p

1/�uA

⌘dx =

Zx2

x1

(� � 1)

�p

qAp

1/�dx

THERMODYNAMIKLehrstuhl für

Page 41: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

41

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D Total Enthalpy [⇢uh

t

A]x2

x1= Q

Compactness

MassEntropy

2nd law therm.

Ap

1/� @ ln(p1/�)

@t

+@

@x

⇣p

1/�uA

⌘=

(� � 1)

�p

qAp

1/�

Zx2

x1

Ap

1/� @ ln(p1/�)

@t

dx+

Zx2

x1

@

@x

⇣p

1/�uA

⌘dx =

Zx2

x1

(� � 1)

�p

qAp

1/�dx

0

hp

1/�uA

ix2

x1

=

Zx2

x1

(� � 1)

�p

qAp

1/�dx

THERMODYNAMIKLehrstuhl für

Page 42: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

42

Spatial integration and the compact assumption

AssumptionsNo viscous termsQuasi-1D Total Enthalpy [⇢uh

t

A]x2

x1= Q

Compactness

MassEntropy

2nd law therm.

hp

1/�uA

ix2

x1

=

Zx2

x1

(� � 1)

�p

qAp

1/�dx

THERMODYNAMIKLehrstuhl für

Page 43: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

43

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

Gather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XX

CONNEXIONS

THERMODYNAMIKLehrstuhl für

Page 44: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

44

Linearization of Equations

[] = [] + []0 +O20

THERMODYNAMIKLehrstuhl für

Page 45: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

45

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D Total Enthalpy [⇢uh

t

A]x2

x1= Q

CompactnessLinear acoustics

THERMODYNAMIKLehrstuhl für

Page 46: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

46

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D [⇢uh

t

A]x2

x1= Q

CompactnessLinear acoustics

Total Enthalpy

THERMODYNAMIKLehrstuhl für

m h0t

|x2

x1=

˙Q0or

⇢01⇢1

+

u01

u1+

T 0t2 � T 0

t1¯Tt2 � ¯T

t1=

˙Q0

¯Q

Page 47: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

47

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D [⇢uh

t

A]x2

x1= Q

CompactnessLinear acoustics

Total Enthalpy

THERMODYNAMIKLehrstuhl für

m h0t

|x2

x1=

˙Q0or

⇢01⇢1

+

u01

u1+

T 0t2 � T 0

t1¯Tt2 � ¯T

t1=

˙Q0

¯Q

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

where

� =

✓1 +

� � 1

2M2

◆and � =

T2

T1

Page 48: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

48

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D

Total Enthalpy

CompactnessLinear acoustics

MassEntropy

2nd law therm.

hp

1/�uA

ix2

x1

=

Zx2

x1

(� � 1)

�p

qAp

1/�dx

THERMODYNAMIKLehrstuhl für

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 49: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

49

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D CompactnessLinear acoustics

MassEntropy

2nd law therm.

hp

1/�uA

ix2

x1

=

Zx2

x1

(� � 1)

�p

qAp

1/�dx

A lot of mathematical treats implemented so that after linearizing we get …

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

THERMODYNAMIKLehrstuhl für

⇡ = p2/p1where

Total Enthalpy

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 50: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

50

Linearization of Equations

AssumptionsNo viscous termsQuasi-1D

Total Enthalpy

CompactnessLinear acoustics

MassEntropy

2nd law therm.

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

THERMODYNAMIKLehrstuhl für

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Now we can start doing some simplifications

Page 51: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

51

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXX

THERMODYNAMIKLehrstuhl für

Page 52: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

52

Assumptions

Further assumptions

No viscous terms Quasi-1D Compactness Linear acoustics

Isentropic flow

Total Enthalpy

MassEntropy

2nd law therm.

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

Total Enthalpy

MassEntropy

2nd law therm.

THERMODYNAMIKLehrstuhl für

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 53: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

53

1

1 + ��12 M2

1

✓M1

u01

c1+

p01�p1

+s01cp

◆=

1

1 + ��12 M2

2

✓M2

u02

c2+

p02�p2

+s02cp

Assumptions

Further assumptions

No viscous terms Quasi-1D Compactness Linear acoustics

Isentropic flow

Total Enthalpy

MassEntropy

2nd law therm.

Total Enthalpy

MassEntropy

2nd law therm.

A1

✓⇢1u

01 + M1

p01c1

◆= A2

✓⇢2u

02 + M2

p02c2

THERMODYNAMIKLehrstuhl für

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 54: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

54

1

1 + ��12 M2

1

✓M1

u01

c1+

p01�p1

+s01cp

◆=

1

1 + ��12 M2

2

✓M2

u02

c2+

p02�p2

+s02cp

Assumptions

Further assumptions

No viscous terms Quasi-1D Compactness Linear acoustics

Isentropic flow

Total Enthalpy

MassEntropy

2nd law therm.

Total Enthalpy

MassEntropy

2nd law therm.

A1

✓⇢1u

01 + M1

p01c1

◆= A2

✓⇢2u

02 + M2

p02c2

◆C. F. Silva, I. Duran, F. Nicoud and S. Moreau. Boundary conditions for the computation of thermoacoustic modes in combustion chambers. AIAA Journal, 52(6): 1180–1193, 2014.

THERMODYNAMIKLehrstuhl für

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 55: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

55

Assumptions

Further assumptions

No viscous terms Quasi-1D Compactness Linear acoustics

Total Enthalpy

MassEntropy

2nd law therm.

Total Enthalpy

MassEntropy

2nd law therm.

(Non-Isentropic flow)Isobaric combustion Low Mach number

THERMODYNAMIKLehrstuhl für

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 56: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

56

Assumptions

Further assumptions

No viscous terms Quasi-1D Compactness Linear acoustics

Total Enthalpy

MassEntropy

2nd law therm.

Total Enthalpy

MassEntropy

2nd law therm.

(Non-Isentropic flow)Isobaric combustion Low Mach number

p02 = p01

A2u02 �A1u

01 =

(� � 1)

�pQ0

THERMODYNAMIKLehrstuhl für

A2⇡��

✓M2c2p02

�+ p2u

02

◆= A1

✓M1c1p01

�+ p1u

01

◆+ �Q0

✓1 +

(1� ⇡�)

2⇡�

� �2

p1¯Q

1 +

1

(↵+ 1)

⇣p02⇡

�(�+1) � p01

⌘�

(��1 � �2)

✓(� � 1)M2

u02

c2+ (� � 1)

p02�p2

+s02cp

◆=

Q0

Q+

(��1 � �2)

✓(� � 1)M1

u01

c1+ (� � 1)

p01�p1

+s01cp

◆� p01

�p1� u0

1

u1+

s1cp

Page 57: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

57

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

THERMODYNAMIKLehrstuhl für

Page 58: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

58

Definition of acoustic waves

D

2p

0

Dt

2� c

2 @2p

0

@x

2= 01D Convective acoustic

Wave equation

Solution is the sum of two functions f gand

THERMODYNAMIKLehrstuhl für

Page 59: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

59

Definition of acoustic waves

D

2p

0

Dt

2� c

2 @2p

0

@x

2= 01D Convective acoustic

Wave equation

Solution is the sum of two functions f gand

are recognized as Riemann invariantsf gand

THERMODYNAMIKLehrstuhl für

Page 60: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

60

Definition of acoustic waves

D

2p

0

Dt

2� c

2 @2p

0

@x

2= 01D Convective acoustic

Wave equation

Solution is the sum of two functions f gand

are recognized as Riemann invariants

()0 = ()ei!t and () = Bei�

f gand

Knowing that harmonic oscillations are defined as

THERMODYNAMIKLehrstuhl für

Page 61: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

61

Definition of acoustic waves

D

2p

0

Dt

2� c

2 @2p

0

@x

2= 01D Convective acoustic

Wave equation

Solution is the sum of two functions f gand

are recognized as Riemann invariants

()0 = ()ei!t and () = Bei�

f gand

Knowing that harmonic oscillations are defined as

can be defined asf gand

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

◆and

THERMODYNAMIKLehrstuhl für

Page 62: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

62

Definition of acoustic waves

D

2p

0

Dt

2� c

2 @2p

0

@x

2= 01D Convective acoustic

Wave equation

Solution is the sum of two functions f gand

are recognized as Riemann invariants

()0 = ()ei!t and () = Bei�

f gand

Knowing that harmonic oscillations are defined as

can be defined asf gand

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

◆and

Downstream Travelling wave

Upstream Travelling wave

THERMODYNAMIKLehrstuhl für

Page 63: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

63

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

X

THERMODYNAMIKLehrstuhl für

Page 64: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

64

f2 = f1e�i!(x2�x1)/c(1+M)

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

◆and

Downstream Travelling wave

Upstream Travelling wave

Isentropic ducts

x1 x2B�= constant

B+= constant

Therefore

g2 = g1ei!(x2�x1)/c(1�M)

THERMODYNAMIKLehrstuhl für

Page 65: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

65

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

XX

THERMODYNAMIKLehrstuhl für

Page 66: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

66

Boundary Conditions

Acoustic flux through a boundary is given by

m0h0t =

✓p0

c2u+ ⇢u0

◆✓uu0 +

p0

THERMODYNAMIKLehrstuhl für

Page 67: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

67

Boundary Conditions

Acoustic flux through a boundary is given by

If acoustic energy it is not dissipated through the boundaries then

m0h0t =

✓p0

c2u+ ⇢u0

◆✓uu0 +

p0

m0h0t = 0

THERMODYNAMIKLehrstuhl für

Page 68: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

68

Boundary Conditions

Acoustic flux through a boundary is given by

If acoustic energy it is not dissipated through the boundaries then

m0h0t =

✓p0

c2u+ ⇢u0

◆✓uu0 +

p0

m0h0t = 0

f(1 + M)� g(1� M) 0f(1 + M) + g(1� M) 0

Open inlet Closed inleth0t 0 m0 0f

gInlet

THERMODYNAMIKLehrstuhl für

= 0

= 0

= 0

= 0

Page 69: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

69

Boundary Conditions

Acoustic flux through a boundary is given by

If acoustic energy is not dissipated through the boundaries then

m0h0t =

✓p0

c2u+ ⇢u0

◆✓uu0 +

p0

m0h0t = 0

f

g

f

g

Inlet

Outlet

THERMODYNAMIKLehrstuhl für

f(1 + M)� g(1� M) 0

f(1 + M) + g(1� M) 0

Open inlet/outlet

Closed inlet/outlet

h0t 0

m0 0

= 0

= 0

= 0

= 0

Page 70: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

70

Boundary Conditions

Acoustic flux through a boundary is given by

If acoustic energy it is not dissipated through the boundaries then

m0h0t =

✓p0

c2u+ ⇢u0

◆✓uu0 +

p0

m0h0t = 0

If acoustic energy it is no acoustic energy enters the system then

f

g

f

g

Inlet

Outlet

Rin =f

g

f

g

Rout

=g

ff

g

THERMODYNAMIKLehrstuhl für

Rin =(1� M)

(1 + M)Rin = � (1� M)

(1 + M)

Rout

= � (1 + M)

(1� M)R

out

=(1 + M)

(1� M)

Close end Open end

Page 71: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

71

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

XXX

THERMODYNAMIKLehrstuhl für

Page 72: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

72

ˆQ¯Q= F(!)

u1

u1

Modeling Flame Dynamics

where F(!) = G(!)ei'(!)

CFD or Experiments

?

THERMODYNAMIKLehrstuhl für

Page 73: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

73

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

XXXX

THERMODYNAMIKLehrstuhl für

Page 74: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

74

In this case, the Mach number is considered zero.

Connexions

Turbulent combustion chamber

C. F. Silva, F. Nicoud, T. Schuller, D. Durox, and S. Candel. Combining a Helmholtz solver with the flame describing function to assess combustion instability un a premixed swirled combustion. Combust. Flame, 160(9): 1743-1754, 2013.

P. Palies, D. Durox, T. Schuller and S. Candel. Nonlinear combustion instabilities analysis based on the Flame Describing Function applied to turbulent premixed swirling flames. Combust. Flame, 158: 1980-1991, 2011.

THERMODYNAMIKLehrstuhl für

Page 75: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

75

In this case, the Mach number is considered zero.

Connexions

Turbulent combustion chamber

CFD

THERMODYNAMIKLehrstuhl für

Page 76: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

76

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Outlet

Turbulent combustion chamber

CFD Network Models

0

12

34

5

Boundary Condition: Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

THERMODYNAMIKLehrstuhl für

Page 77: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

77

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

THERMODYNAMIKLehrstuhl für

Page 78: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

78

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

THERMODYNAMIKLehrstuhl für

Rin =f0g0

Rout

=g5

f5

Page 79: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

79

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

f1 = f0e�i!(x1�x0)/c

g1 = g0ei!(x1�x0)/c

f5 = f4e�i!(x5�x4)/c

g5 = g4ei!(x5�x4)/c

c

c

THERMODYNAMIKLehrstuhl für

Page 80: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

80

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

f1g1

�=

e�i!(x1�x0)/c 0

0 ei!(x1�x0)/c

� f0g0

f5g5

�=

e�i!(x5�x4)/c 0

0 ei!(x5�x4)/c

� f4g4

�c

c

THERMODYNAMIKLehrstuhl für

Page 81: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

81

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Duct (cold)

Duct (cold)

Duct (hot)

(f4 + g4) = (f3 + g3) ⇠

(f4 � g4) = (f3 � g3)↵ [1 + ✓F(!)]Cross section change +!Flame

THERMODYNAMIKLehrstuhl für

Page 82: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

82

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Duct (cold)

Duct (cold)

Duct (hot)

f4g4

�=

1

2

⇠ + ↵+ ↵✓F(!) ⇠ � ↵� ↵✓F(!)⇠ � ↵� ↵✓F(!) ⇠ + ↵+ ↵✓F(!)

� f3g3

�Cross section change +!Flame

THERMODYNAMIKLehrstuhl für

Page 83: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

83

In this case, the Mach number is considered zero.

Connexions

Boundary Condition: Open outlet

Network Models

0

12

34

5

Boundary Condition: Closed Inlet

Cross section change

Duct (cold)

Duct (cold)

Duct (hot) f4g4

�= F

f3g3

f1g1

�= D1

f0g0

f5g5

�= D3

f4g4

f3g3

�= D2

f2g2

f2g2

�= C

f1g1

Cross section change + Flame

THERMODYNAMIKLehrstuhl für

Page 84: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

84

In this case, the Mach number is considered zero.

Connexions

Network Models

0

12

34

5 f5g5

�= T

f0g0

�where T = D3FD2CD1

THERMODYNAMIKLehrstuhl für

Page 85: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

85

In this case, the Mach number is considered zero.

Connexions

Network Models

f5g5

�= T

f0g0

�where T = D3FD2CD1

Final matrix

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f5

g5

3

775 =

2

664

0000

3

775

THERMODYNAMIKLehrstuhl für

Page 86: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

86

In this case, the Mach number is considered zero.

Connexions

Network Models

f5g5

�= T

f0g0

�where T = D3FD2CD1

Final matrix

det(M) = 0 ) T22

�Rout

T12

+Rin

T21

�Rin

Rout

T11

= 0

Solution comes by solving the characteristic equation

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f5

g5

3

775 =

2

664

0000

3

775

THERMODYNAMIKLehrstuhl für

Page 87: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

87

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

XXXX

THERMODYNAMIKLehrstuhl für

Page 88: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

88

Stability analysis

det(M) = 0 ) T22

�Rout

T12

+Rin

T21

�Rin

Rout

T11

= 0

Solving the characteristic equation

we obtain a value for ! (complex number)

Resonance frequency

Growth rate (Stable or unstable)

THERMODYNAMIKLehrstuhl für

! = !r + i!i

Page 89: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

89

Stability analysis

det(M) = 0 ) T22

�Rout

T12

+Rin

T21

�Rin

Rout

T11

= 0

Solving the characteristic equation

we obtain a value for ! (complex number)

Resonance frequency

Growth rate (Stable or unstable)

Growth rate

Freq.

Neg. Pos.

Unstable!Region

THERMODYNAMIKLehrstuhl für

! = !r + i!i

Page 90: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

90

Stability analysis

! = !r � i!i

Resonance frequency

Growth rate

Growth rate

Freq.

Neg. Pos.

Unstable!Region

a0 = aei!t

!i > 0 stability!i < 0 instability

Harmonic Oscillations a fluctuating quantity is expressed as

a0 = ae�!itei!rt.

Therefore

)

THERMODYNAMIKLehrstuhl für

Page 91: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

91

WHITE BOX

Q0 ⇢0 u0 p0 s0

@

@t

(⇢A) +@

@x

(⇢uA) = 0

@

@t

(⇢uA) +@

@x

�⇢u

2A

�= �A

@p

@x

@

@t

(⇢sA) +@

@x

(⇢usA) =A

T

q

@

@t

(⇢htA) +@

@x

(⇢uhtA) = Aq �A

@p

@t

CONNEXIONSGather all elements in a single matrix and compute acoustic response of the ensemble.

2

664

1 �Rin

0 00 0 �R

out

1T11

T12

�1 0T21

T22

0 �1

3

775

| {z }M

2

664

f0

g0

f3

g3

3

775 =

2

664

0000

3

775

STABILITY ANALYSIS. Study stability of the system

Growth rate

Freq.

Neg. Pos.

Unstable!Region

OUTLINE

Quasi 1D Conservation Equations

Model Acoustic and entropy waves

Spatial integration and the compact assumption

Linearization

Further Assumptions

Definition of waves

Boundary conditions

Isentropic ducts

Modeling of Flame dynamics

f = B+e�i!x/c(1+M) =1

2

✓p

⇢c+ u

g = B�ei!x/c(1�M) =1

2

✓p

⇢c� u

¯Q = ⇢1u1A1cpT1

✓T2

T1� 1

◆= u1A1

�p1(� � 1)

✓T2

T1� 1

XXXX

XXXX

THERMODYNAMIKLehrstuhl für

Page 92: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

92

The End

THERMODYNAMIKLehrstuhl für

Page 93: Network Models in Thermoacoustics - Keele€¦ · 1 Network Models in Thermoacoustics Ph.D. Camilo Silva Prof. Wolfgang Polifke THERMODYNAMIK Lehrstuhl für

93

ExercisesTHERMODYNAMIKLehrstuhl für

Boundary Condition: Outlet

0

12

34

5

Boundary Condition: Inlet

Cross section change

Cross section change + Flame

Duct (cold)

Duct (cold)

Duct (hot)

l1

l3

l2

d1

d2

d3

Open end

Closed end