neacrp lmfbr benchmark calculation intercomparison for ... · neacrp lmfbr benchmark calculation...

109
NEACRP LMFBR BENCHMARK CALCULATION INTERCOMPARISON FOR FUEL BURN-UP * ENEAJCASACCIA S.P. Anguillarese Km 1+300 00060 - CASACCIA (Roma) ITALIE ** C.E.A. - DRNRISPCIlLEPh Centre dlEtudes Nucldaires de CADARACHE Bdte Postale NO1 13115 - SAINT-PAUL-LEZ-DURANCE FRANCE Cadarache, October 1984 92010001

Upload: truongdung

Post on 12-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

NEACRP LMFBR BENCHMARK CALCULATION

INTERCOMPARISON FOR FUEL BURN-UP

* ENEAJCASACCIA S.P. Anguillarese Km 1+300

00060 - CASACCIA (Roma) I T A L I E

** C.E.A. - DRNRISPCIlLEPh Centre dlEtudes Nucldaires de CADARACHE

B d t e Postale NO1 13115 - SAINT-PAUL-LEZ-DURANCE

F R A N C E

Cadarache, October 1984

92010001

"NEACRP LMFBR Benchmark Calculation

Intercomparison for fuel Burn-up"

ABSTRACT :

The present document summarizes the results and the

discussion relating to the burn-up benchmark exercise proposed

by NEACRP for a large LMFBR.

Nine different organisations participated and eleven

solutions were submitted.

The main results and their implications were discussed

at a meeting hold in Cadarache, April 28-30, 1982.

RESUME :

Ce document r6sume les r6sultats et les discussions

relatives A un Benchmark de calcul pour 1'6volution d'un

r6acteur rapide de grande taille.

Neuf organisations diff6rentes y ont particip6, et

1 1 solutions ont 6t6 soumises.

L'ensemble des principaux r6sultats et leurs implications

ont 6t6 discut6es 2 la r6union qui s'est tenue A Cadarache du 28 au 30.04.1982.

TABLE OF CONTENT

GENERAL COMMENTS......................................... 1

PART I : NUMERICAL RESULTS............................. 3

Tables 1-13 : Requested results . . . . . . . . . . . . . . 4

Tab les 14-44 : S e n s i t i v i t y c o e f f i c i e n t s

f o r r e a c t i v i t y loss. . . . . . . . . . . . 25

Tables 45-50 : S e n s i t i v i t y c o e f f i c i e n t s

f o r i s o t o p e build-up ........... 58

0 PART I1 : ANALYSIS OF THE DATA.......................... 66

- PART I11 : BEGINNING OF CYCLE PARAMETERS :

a) Comparison of p r e s e n t c a l c u l a t i o n s and

those r e p o r t e d i n t h e O r i g i n a l Benchmark

Study... ..............................a*.. 87

b ) I-group c r o s s - s e c t i o n s by zone............ 92

APPENDIX I : Proposa l f o r burn-up c a l c u l a t i o n s

a p p l i e d t o t h e NEACRP F a s t Breeder

Benchmark................................. 9 5

- ................ APPENDIX 11 : S o l u t i o n s and p a r t i c i p a n t s 105

.w

GENERAL COMMENTS

- The reactivity loss per cycle and its components. - The internal and external breeding gains. - The Pu balance for the different zones. - The sodium void effect variation. - The irradiated fuel composition after a given in-pile

residence time.

The aim of the exercLse wa3 tto ppovide a comparSson of the multigroup data used by various l;ahora,torfes and concernjng isotopes specifically involyed. in fuel burn-up problems, fission products (FP) and actinides.

The present comparison concerns calculations of integral

parameters according to an approach similar to the one previously

used for the "fresh core" study and which is summarized in the

Proceedings of the NEACRP/IAEA Specialist Meeting on the Inter-

national Comparison Calculation of a Large Sodium Cooled Fast

Breeder Reactor, Feb. 1978 (ANL-80-78, NEACRP-L-243). The quan-

tities of interest were, in the present case :

The results obtained and some supplementary sensitivity

studies, performed to improve the understanding of the main

tendencies, are given as Part I of the present document. In

Part 11, a summary is given of the analysis of these results,

which includes also the informations exchanged after the meeting

and which were requested in particular to clarify some main

points raised during the discussions. Finally Part 111 is

devoted to an up-date of the beginning-of-cycle(EOC) data. A.T,D

Butland provided a comparison of present calculations of BOC

parameters and those reported in the original benchmark study.

The basic data sets used are summarized in Appendix 11.

The main conclusions of the meeting were related to the

present state of lumped fission product cross-sections used for

LMFBR studies. There is evidence that the spread on these cross-

sections j.5 $till fqirly high,, due to the fact that the different

laboratories use different strategies to define this type of

cross-sections. IP particular, the role of the fission product

migration is still to be clarified and, from another side, global fission product cross-section adjustments, based on irradiated

fuel experiments, indicated significat bias on the calculated

lumped fission product cross-sections. Finally, part of the J

spread observed can also be traced back to spectral effects, to ?.

which fission product cross-sections are fairly sensitive.

As far as the reactivity loss due to the heavy isotope

density variations, it seems that the present data accuracies

(often inside the target specified bv the various laboratories)

are such that a not negligible uncertainty sLould be associated

to this data, of the order of + 0,s % A K / K or more. - *

Finally, for what concerns the higher actinide data and

the impact of their uiicertainties, it seems that no definite

suggestion can be n z ~ e m the need for higher accuracy. The problem of Np-237 (n, 2n) cross-section, leading t~ the lcroduction

of Pu-236, is more related to the reaction branching ratio, which

is presently being assessed by different laboratories. However,

comparison with experimental data (from irradiated fuel expe-

riments in particular) should confirm that the type of spread

observed in the benchmark, is also representative of the observed

calculation/experiment discrepancies. -

PART I

NUMERICAL RESULTS

The following tables summarize the results obtained.

Solution labels are defined in Appendix 11.

Tables 1-13 present the main requested results. For what

concerns their definition, see benchmark specifications in

Appendix I.

Tables 14-44 give some simplified sensitivity values related

to the reactivity loss, using one group data and 1D diffusion

perturbation calculations.

Tables 45-50 give the sensitivity coefficients for some

isotope build-up, to the data of the other isotopes.

For these last two series of tables, comments on their

use are given at the beginning of each series.

TABLES 1 - 13 u REQUESTED RESULTS

REACTOR TOTAL INNER CORE OUTER CORE

- - - - - - - - - EOC-BOC - - - - - - -

BOC . - - - - - - - -

-0,04581

-0.04557

-0.0392 1

-0.03983

-0.03413

-0.03042

-0.03255

-0.02186

-0.02562

-0.02709

-0,03355

- - - - - - - -.

-0,03415

0.:00784

. - - - - - - - -. EOC-BOC - - - - - - -

BOC . - - - - - - - - . -0.02403

-0,01933

-0.02546

-0.01547

-0.00544

-0.01211

-0.02019

-0.01144 I

- - - - - - - - EOC-BOC - - - - - - -

80C - - - - - - - -

-0.12080

-0.12464

-0. 12500

-0.12867

-0.12032

-0.09868

-0.09035

-0.07763

-0.07892

-0.08083

-0.09474

- - - - - - - - .

-0.10369

0.02046

. - - - - - - -.

ORGANIZ - - - - - - - - .

EOC

- - - - - - - - . 0.68447

0.69453

0.68900

0.69283

0.67600

0.67031

0.68861

0.67647

0.67500

0.67006

0.67300

- - - - - - - - - 0.68093

0.00917

- - - - - - - - -

- - - - - - - -

EOC

- - - - - - - -

0.25197

0.25402

0.23800

0.25361

.0.25150

0.25119

0.25612

0.25449

0.25526

0.25110

0.25800

- - - - - - - -.

0.28230

0.00524

. - - - - - - - -

ANL

AUSTRAL

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

TABLE 1 ; BREEDING RATIO

AXIAL BLANKET

ORGANIZ

BOC EOC

- - -. - - - - .

0 . 1 5 9 0 1

0 . 1 5 6 3 2

0 . 1 6 0 0 0

0 15873

0 . 1 5 0 9 0

0 . 1 6 1 $ 4

0 . 1 6 2 6 2

0. 16126

0 16537

0 . 1 6 3 5 4

O.161OO

0 . 1 5 9 9 9

0 . 0 0 3 8 9

EOC-BOC BOC

- - - -. . . -,

0 . 2 3 6 6 9

0 . 2 3 1 8 3

0 . 2 4 1 0 0

0 . 2 3 5 2 7

0 . 2 1 7 4 0

0 .23113

0 . 2 2 9 7 8

0 .22297

0 . 2 2 7 1 9

0 . 2 3 3 6 0

0 . 2 2 8 0 0

EOC EOC-BOC

BOC BOC

ANL

AUSTRAL

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - . . .

MEAN

S T . OEV

TABLE 1 ( c o n t i n u e d )

ORGANIZ

- - - - - - - - -

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - - -

MEAN

ST. OEV.

, - - - - - - - - -.

INTERNAL

EOC

. - - - - - - - -

-0.02990

-0.02618

-0.08710

-0,02571

-0.04620

-0.05010

-0.02906

-0.04536

-0.04330

-0.05323

-0.03410

- - - - - - - - .

-0.04275

0.01773

- - - - - - - . IOC-ROC . - - - - - -

BOC . - - - - - -.

).21522

). 10709

) ,25300

). 20279

).27586

) . 29635

).28740

).35959

1.34632

).32226

1.29253

- - - - - - -

I. 26895

b.07243

BLANKET

. - - - - - - - - .

EOC

. - - - - - - - - .

0.37300

0.36803

0.38160

0.37320

0.35240

0.37170

0.36496

0.36457

0.36722

0.37431

0.37080

- - - - - - - - -

0.36925

0.00740

- - - - - - - - -

TABLE 2 : BREEDING GAIN

BOC

0.378C

0.3845

0.3064

0.3856

0.3285

0.3386

0.3632

0.3259

0.3355

0.3318

0.3598

- - - - - - -

0.3488

0.0266

EOC

0.3431C

0.3418:

0.2945C

0.3475C

0.3062C

0.3216C

0.33589

0 .31921

0.32393

0.32109

0.33680

- - - - - - - -

0.32652

0.01642

C49/F49

...---..-.

BOC EOC

0 . 3 0 0 6 1 0 . 2 9 4 1 9

0 . 3 0 5 6 2 0 . 3 0 0 4 5

0 . 3 1 4 5 0 0 . 3 1 0 0 0

0 . 3 0 7 6 1 0 .29945

0 . 3 0 7 9 3 0 . 3 0 2 1 9

0 . 3 2 2 8 2 0 . 3 1 7 2 3

0 . 2 9 9 5 8 0 . 2 9 2 1 6

0 . 2 9 3 2 4 0 . 2 8 7 8 6

0.0 0.0

0 . 3 0 0 1 3 0 . 2 9 7 1 2

0 . 3 0 1 9 0 0 . 2 9 6 3 0

--..-----.

0 . 3 0 5 3 9 0 . 2 9 9 6 9

0 . 0 0 8 4 6 0 . 0 0 8 6 2

ORGANIZ . - -. . - - -.

BOC

.-.---...

EOC

..--.-...

0 . 1 6 3 4 9

0 . 1 6 6 6 8

0 . 1 6 2 0 0

0 . 1 6 5 9 4

0 . 1 6 1 5 0

0 . 1 6 1 2 1

0 . 1 6 3 1 8

0. 16366

0.0

0 , 1 5 9 3 7

0 1 6 1 4 0

.----..--

0 . 1 6 2 8 4

0 . 0 0 2 2 4

.---.-...

EOC-BOC - - - - - - -

BOC

----..----

EOC-BOC - . . . - - - BOC

--....----

- 0 , 0 0 5 9 6

- 0 , 0 0 4 7 8

0 . 0 0 0 6 2

- 0 , 0 0 8 4 8

- 0 , 0 0 5 4 8

- 0 , 0 0 4 4 5

0 . 0 0 3 8 8

0 . 0 0 4 4 2

0.0

-0.00400

- 0 . 0 0 1 8 6

-.....---.

- 0 0 0 2 3 1

0 : 0 0 4 3 0

I --,...---. 1

EOC-BOC -. . - - -.

BOC

ANL

AUSTRAL

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

TABLE 3 : CENTRAL REACTION RATE RATIOS

O R G A N I Z

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

----------

MEAN

S T . OEV.

----------

SODIUM V O I D

EOC

O R G A N I Z .

ANL

A U S T R A L .

C E A - 2

E N E A

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEP

U S S R

MEAN

S T . O E V .

GKEFF ( 1 ) : g l o b a l r e a c t i v i t y l o s s p e r . c y c l e GKEFF (2 ) : r e a c t i v i t y g a i n due t o Pu build-up i n t h e b l a n k e t s GKEFF (3 ) : r e a c t i v i t y l o s s due t o FP bui ld-up GKEFF ( 4 ) : r e a c t i v i t y v a r i a t i o n due t o t h e c o r e heavy i s o t b p e

burn-up

* A l l Np-239 decays t o Pu-239 (Data o b t a i n e d wi th no Np-239 decaying t o Pu-239, a r e a l s o a v a i l a b l e )

3

. ORGANIZ. - - - - - - - - - - C ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST. DEV

. - - - - - - - -

RU- 1.01

. - - - - - - - -

0.74899

0.57165

0.67600

0 .82270

0 .57280

0 .76060

0.73740

0.73398

0 . 0

0.0

0.78300

RH- 103

. - - - - - - - -

0.72620

0.76572

0.67600

0.68680

0.76270

0.72290

0.70999

0 .66391

0.0

0.0

0.70700

- - - - - - - - . 0.71347

0.0354 1

- - - - - - - -.

. - - - - - - - - .

SM- 149

- - - - - - - - .

2.50820

1 ,67200

2.25000

2.87470

1.63410

2.35150

2.44010

2.349 10

0.0

0.0

3.37000

- - - - - - - - -

2.38330

0.53864

- - - - - - - - -

TABLE 6 : FISSION-PRODUCT ONE GROUP CROSS-SECTION

* KFK-1 : In this table correspond to KARLSRUHE-4

** KFK-2 : In this table correspond to KARLSRUHE-5

O R G A N I Z

-..--...-.

A N L

AUSTRAL

C E A - 2

E N E A

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

U S S R

---..-----

MEAN

ST DEV

-....-----

TABLE 6 : (Con t inued)

ORGANIZ.

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

NO- 143

0 .35102

0 .33300

0 .23900

0 .35520

0 .35040

0 .32970

0 .33290

0 .33710

0 . 0

0 . 0

0 .32200

. - - - - - - - - .

MO- 100

. - - - - - - - - .

0.09188

0 .09100

0 .09680

0 .09617

0 .08960

' 0 .09470

0 .08950

0 .10670

0.0

0.0

0 .07500

- - - - - - - - -

0.09237

0 .00840

TABLE 6 : (Continued)

F.P. : Pseudo F i s s i o n Product one group c ros s - sec t ion - ( a ) Based on t h e main 2 3 f i s s i o n produc t i s o t o p e s , which

r e p r e s e n t s 22 mass c h a i n s by us ing cumulat ive y i e l d s

O R G A N I Z .

ANL

AUSTRAL

CE A - 2

ENEA

E I R - 1

J A E R I

KFK- 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . O E V .

TABLE 7 CORE CENTER AVERAGE ONE GROUP FISSION CROSS-SECTION OF

MAJOR ACTINIDES

.A:

O R G A N I Z .

. - - - - - - -. . .

A N L

A U S T R A L .

C E A - 2

E N E A

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

U S S R

M E A N I

TABLE 7 : (Continued)

O R G A N I Z

. ANL

AUSTRAL

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

U S S R

..........

M E A N

S T O E V .

TABLE 8 : CORE CENTER AVERAGE ONE GROUP CAPTURE CROSS-SECTION

OF MAJOR ACTINIDES

ORGANIZ .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

K F K - 2

K F K - 3

UKAEA

USSR

----------

MEAN

S T . D E V .

TABLE 8 : (Continued)

O R G A N I Z .

..........

A N L

A U S T R A L .

CE A-2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

U S S R

MEAN

S T . O E V

TABLE 9 : Pu BALANCE AT END OF CYCLE ( 6 Kg)

INNER CORE

* Pu 238 v a l u e s a r b i t r a r i l y set t o zero-Np-239

v a l u e s a v a i l a b l e and i n c l u d e d i n Pu-239

- ANL

AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

KFK- 1

K F K - 2

K F K - 3

UKAEA

USSR

----------

MEAN

S T . D E V .

TABLE 1 0 : Pu BALANCE AT END OF CYCLE ( 6 Kg)

OUTER CORE

* see T a b l e 9

O R G A N I Z .

ANL

A U S T R A L .

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . D E V .

TABLE 1 1 : Pu BALANCE AT END OF CYCLE ( 6 Kg)

AXIAL BLANKET

* see T a b l e 9

..-. , % '&GANIZ. . .

- - - - - - - - -

- - ANL , .' , -AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

KFK- 1

K F K - 2

K F K - 3

UKAEA

USSR

- - - - - - - - -

MEAN

S T . D E V .

TABLE 12 : Pu BALANCE AT END OF CYCLE (6 Kg)

RADIAL BLANKET

* see Table 9

O R G A N I Z

.......

ANL

AUSTRAL

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - I

K F K - 2

K F K - 3

UKAEA

U S S R

.......

MEAN

S T . OEV

.......

TABLE 13 : IRRADIATED FUEL COMPOSITION AT EOC ( INNER CORE ZONNE 1 )

QRGANIZ.

- - - - - - - - -

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

S T . DEV

TABLE 13 : (Continued)

O R G A N I Z

ANL

A U S T R A L .

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

U S S R

MEAN

S T . OEV

TABLE 1 3 : (Continued)

SENSITIVITY COEFFICIENTS FOR REACTIVITY LOSS

In the following tables, some sensitivity calculation

results are summarized, relevant to the reactivity loss

break down.

Reactivity loss was recalculated in 1D first order pertur-

bation using 1 group cross-section o and v u f (constant for a all zones) for Pu239, Pu240, Pu241 and U238 and oc of FP and

the 6N (number of nuclei) obtained from tables 9-10 and 12 2 (Pu isotopes), and FP nuclei successively supplied .

Table 14 is the reactivity summary. These results should

be compared to those of table 5 (KEFF(1) values) having in

mind that :

a) no axial blanket contribution is present,

b) (n, 2n) effects have been negleeted and,

C) FOP calculations are shown instead of direct

calculations.

Tables 15 - 44 presents a reactivity breakdown by isotope and cross-section type with respect to each individual solution.

For each isotope, the following reactivity variation

components are provided :

where index o indicated each partecipant taken as reference

and index i indicates all the other partecipants.

. . ./. . . * 6N of U238 was assumed to be constant (CEA value) for all participant.

m 7

ORGANIZ - - - - - - - -

ANL

AUSTRAL

CEA-2

ENEA

EIR-1

dAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - - .

FIS PROD

- - - - - - - - - -0.02383

-0 .02168

-0,01875

-0.02339

-0 .01720

-0 ,021 10

-0.02491

-0.02484

-0.02477

-0.02252

0.0

- - - - - - - - -

-0 .02230

0.00265

. - - - - - - - - .

SUM

. - - - - - - - - .

-0,01684

-0.01338

-0 ,01481

-0.01694

-0.01297

-0 ,01499

-0.01972

-0.02234

-0.02192

-0 .01640

0 . 0

- - - - - - - - -

-0.01703

0 .00331

TABLE 14 : BREAKDOWN BY ISOTOPE CONTRIBUTION OF KEFF (1 )

VALUES (see remark paq 1

- - - - . - - -

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

S T . D E V .

DELTA N

0.0

0.0

0.0

0 .0

0 .0

0.0

0 .0

0 .0

0.0

0.0

0 .0

U-238 DATA EFFECTS

TOT. EFF .

-. . - - - - - -

0.0

0.00042

-0.00066

0.00032

0.00018

-0.00039

-0.00019

-0.00010

-0.00005

-0.00066

0.0

PU-239 DATA EFFECTS

DELTA N

-. - -. . -. -

0.0

0.00166

-0.00242

0.00010

-0.00201

-0.00362

-0.00218

-0.00146

-0.00116

0.00107

0.0

TABLE 15 : A p WITH RESPECT TO ANL SOLUTION

ORGANIZ.

- - - - - - - - -

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - - - .

MEAN

ST. DEV.

---------.

U-238 DATA EFFECTS

TABLE 16 : A

- - - - - - - - . TOT. EFF.

- - - - - - - -.

-0.00042

0 .0

-0.00109

-0.00010

-0.00025

-0.0008 1

-0.0006 1

-0.00053

-0.00047

-0.00108

0 .0

- - - - - - - - -

-O.OOO6O

0.00034

PU-239 DATA EFFECTS

DELTA N

. - - - - - - - - .

-0.00165

0.0

-0.00406

-0.00156

-0.00366

-0.00526

-0.00383

-0.003 1 1

-0.0028 1

-0.00058

0.0

- - - - - - - - -

-0.00295

0.00146

. - - - - - -.

DEL.FI5

. - - - - - - -

0. OOOC

0.0

0.001C

0.0002

-0.0002

-0. OOOC

-0.0003

-0.0002

-0.0002

0.0002

0.0

- - - - - - -

0.0000

0.0004

- - - - - - -

WITH RESPECT TO AUSTRALIAN SOLUTION

TOT. EFf

. - - - - - - .

-0.001€

0.0

-0.004:

-0.0017

-0.003:

-0.005i

-0.0035

-0.0028

-0.0025

-0.0006

0.0

- - - - - - -

-0.0029

0.0015

D R G A N I Z .

ANL

AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . D E V .

. . - - - -. -

DELTA N

EFFECTS

. - - - - - - - -. .

0 E L . F I S S

0.00006

-O.OOOO7

0.0

- 0 . 0 0 0 1 5

- 0 . 0 0 0 2 2

0 . 0 0 0 3 5

0 . 0 0 0 3 0

0 . 0 0 0 1 7

0 . 0 0 0 1 5

0 . 0 0 0 2 2

0.0

0.00009

0 . 0 0 0 2 0

. - - - -. - -. . .

P U - 2 3 9 DATA EFFECTS

TABLE 1 7 : A p WITH RESPECT TO CEA-2 SOLUTION

,-: . , ORGANIZ.

----------

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST. DEV

138 DATA EFFECTS

DEL. S I G C

. - - - - - - - -.

-0.00019

0.00016

-O.OOO8O

0.0

-0.00019

-0.0004 1

-0.00022

-0.00018

-0.00013

-0.00075

0.0

TOT. EFF . - - - - - - - - . -0.00032

0.00010

-0.00098

0.0

-0.00014

-0.00071

-0.0005 1

-0.00042

-0.00037

-0.00098

0.0

-0.00048

0.00036

PU-239 DATA

DELTA N

. - - - - - - - - .

-0.00010

0.00154

-0.00248

0.0

-0.00208

-0.00366

-0.00225

-0,00154

-0.00124

0.00096

0 .0

EFFECTS

- - - - - - -.

DEL.FI$

- - - - - - - -

-0.0001

-0.000:

0.000E

0 .0

-0.0004

-0.0042

-0.0005

-0.0005

-0.0005

-0. OOOC

0.0

- - - - - - - -

-0.0002

0.0003

- - - - - - - -

TOT. EFF.

TABLE 18 : A p WITH RESPECT TO ENEA SOLUTION

U - 2 3 8 DATA EFFECTS P U - 2 3 9 DATA EFFECTS

O R G A N I Z .

T O T . EFF .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

KFK-2

K F K - 3

UKAEA

USSR

MEAN

S T . D E V .

TABLE 1 9 : A p WITH RESPECT TO E I R - 1 SOLUTION

ORGANIZ.

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - - - .

MEAN

ST. OEV.

DEI

. ---.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

. ----

0.

0.

,

U-238 OATA EFFECTS

OEL. SIGC

. - - - - - - - -,

0 . 0 0 0 2 2

0 . 0 0 0 5 7

- 0 . 0 0 0 3 8

0 . 0 0 0 4 1

0 . 0 0 0 2 2

0.0

0 . 0 0 0 1 9

O.OOO23

0 . 0 0 0 2 8

-0 .00034

0.0

- - - - - - - -.

0 . 0 0 0 1 6

O.OOO32

TOT. EFF . - - - - - - - - .

0 . 0 0 0 3 9

0 . 0 0 0 8 1

-0 .00028

0 . 0 0 0 7 1

0 . 0 0 0 5 6

0.0

0 . 0 0 0 2 0

0 .00028

O.OOO34.

- 0 . 0 0 0 2 7

0.0

- - - - - - - - -

0 . 0 0 0 3 0

0 . 0 0 0 3 8

PU-239 OATA EFFECTS

. - - - - - - - - . DELTA N

. - - - - - - - - .

0 . 0 0 3 5 8

0 .00522

0 . 0 0 1 1 9

0 .00368

0 . 0 0 1 5 9

0.0

0 . 0 0 1 4 2

0 . 0 0 2 1 3

0 . 0 0 2 4 3

0 . 0 0 4 6 4

0.0

- - - - - - - - - 0 .00287

0 . 0 0 1 4 6

- - - - - - - - -

TABLE 2 0 : A p WITH RESPECT TO J A E R I SOLUTION

IDT. EFF .

O R G A N I Z .

ANL

A U S T R A L .

C E A - 2

ENEA

E I R - 1

J A E R I

KFK- 1

K F K - 2

K F K - 3

UKAEA

USSR

U - 2 3 8 OATA E F F E C T S

TABLE 21

P U - 2 3 9 OATA E F F E C T S

DELTA N

. - - - - - - - -

I E L . F I S S

: A p WITH RESPECT TO KFK-1 SOLUTION

I O T . E F F .

ORGANIZ

- - - - - - -

ANL

AUSTRAL

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - -.

MEAN

S T . OEV.

- - - - - - - -

OEL. F I S S

- - - - - - - -. - 0 . 0 0 0 1 1

-O.OOOZ4

- 0 . 0 0 0 1 7

-O.OOO32

- 0 . 0 0 0 3 9

0 . 0 0 0 1 8

0 . 0 0 0 1 3

0 .0

- 0 . 0 0 0 0 2

0 . 0 0 0 0 5

0.0

PU-239 DATA EFFECTS

OELTA N

0 . 0 0 1 4 9

0 . 0 0 3 1 8

- 0 . 0 0 0 9 7

0 . 0 0 1 5 9

-0.OOOS6

- 0 . 0 0 2 1 9

- 0 . 0 0 0 7 4

0 . 0

0 . 0 0 0 3 1

0 . 0 0 2 5 8

0 .0

- - - - - - - - -

0 . 0 0 0 5 2

0 . 0 0 1 7 9

VITH RESPECT TO KFK-2 SOLUTION

DRGANIZ

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

----------

MEAN

ST. OEV.

----------

DELTA N

U-238 DATA PU-239 DATA

- - - - - - - - -

DELTA N

- - - - - - - - -

-0 .00107

0 . 0 0 0 5 8

-0 .00346

-0 .00097

- 0 . 0 0 3 0 6

-0 .00466

- 0 , 0 0 3 2 4

-0 .00252

-0 .00222

0.0

0.0

- - - - - - - - - - 0 . 0 0 2 2 9

0 . 0 0 1 5 8

- - - - - - - - -

FFECTS

- - - - - - - - .

DEL.FISS

- - - - - - - - -

-0 .00020

- 0 . 0 0 0 2 7

0 . 0 0 0 7 1

0 .00001

- 0 . 0 0 0 4 8

-0 .00028

-O.OOO56

-0 .00054

- 0 . 0 0 0 5 4

0.0

0.0

- - - - - - - - -

-0 .00024

0 . 0 0 0 4 1

- - - - - - - - -

TABLE 24 : A p WITH RESPECT TO UKAEA SOLUTION

FFECTS P U - 2 4 1 DATA EFFECTS P U - 2 4 0 DATA

- - - - - - - - -

TOT. E F F .

- - - - - -. . .

0.0

0 . 0 0 0 1 5

0 . 0 0 0 1 1

- 0 . 0 0 0 2 4

0 . 0 0 0 1 3

-O.OOOO9

-0. 0 0 0 2 9

0 . 0 0 1 0 2

0.00095

- 0 . 0 0 0 1 1

0.0

DELTA N

- -. . . - - - -

0.0

0 . 0 0 0 0 5

0.00006

0 . 0 0 0 0 5

0 . 0 0 0 0 5

0 . 0 0 0 0 3

-0.0000 1

0.00008

0.00006

- 0 . 0 0 0 0 2

0.0

- - -. . - - - -

0 . 0 0 0 0 4

0 . 0 0 0 0 3

DELTA N TOT. EFF .

ANL

AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . D E V .

TABLE 2 5 : A p WITH R E S P E C T TO ANL S O L U T I O N

ORGANIZ.

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST. O E V .

- - - - - - - -

PU-240 DATA EFFECTS

- - - - - - - -

TOT. EFF . - - - - - - - - -0.00015

0.0

-O.OOOO4

-0.00039

-0.00002

-0.00023

-0.00043

0.00087

0.00080

-0.00025

0.0

- - - - - - - - .

0.00002

0.00048

- - - - - - - - .

PU-241 DATA EFFECTS

- - - - - - - -.

DELTA N

- - - - - - - - - 0.00067

0.0

0.00062

0.00005

-0.00010

0.00052

0.00135

-0.00360

-0.00352

-0.00047

0.0

- - - - - - - - -

-O.OOO5O

0.00181

- - - - - - - - -

. - - - - - - - - .

DEL .S IGC

- - - - - - - - . -O.OOOO3

0.0

-0.00003

0.00005

0.00002

0.00013

0.00005

0.00054

0.00055

0.00053

0.0

- - - - - - - - -

0.00020

0.00026

- - - - - - - - -

TABLE 26 : A p WITH RESPECT TO AUSTRALIAN SOLUTION

a

. - - - - - - - -

TOT. EFF . . - - - - - - - -

0.00086

0.0

0.00131

0.00034

-0.00023

0.00059

0.00151

-0.00331

-0.00325

-0.0002 1

0.0

P U - 2 4 0 DATA EFFECTS P U - 2 4 1 DATA EFFECTS

O R G A N I Z .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - I

J A E R I

K F K - I

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . DEV

DELTA N

- - - - - - - - .

-O.OOOO7

- 0 . 0 0 0 0 2

0.0

- 0 . 0 0 0 0 2

- 0 . 0 0 0 0 2

-O.OOOO3

-O.OOOO8

0 . 0 0 0 0 2

0.00000

-O.OOOO9

0.0

. . . . - - - -.

-O.OOOO3

0 . 0 0 0 0 4

TABLE 2 7 : i p WITH

----------

DELTA N D E L . S I G C

-----.-..-

0 . 0 0 0 0 5 -0.00000

-0.00060 0 . 0 0 0 0 3

0.0 0.0

- 0 . 0 0 0 5 5 0 . 0 0 0 0 8

- 0 . 0 0 0 6 9 0 . 0 0 0 0 6

- 0 . 0 0 0 0 9 0 . 0 0 0 1 6

0 . 0 0 0 7 1 0 . 0 0 0 0 8

- 0 . 0 0 4 0 7 0 . 0 0 0 5 5

- 0 . 0 0 3 9 9 0 . 0 0 0 5 6

- 0 . 0 0 1 0 5 0 . 0 0 0 5 5

0.0 0.0

-...-.--..

- 0 . 0 0 1 1 4 0 . 0 0 0 2 3

0 . 0 0 1 7 1 0 . 0 0 0 2 5

?ESPECT TO CEA-2 SOLUTION

>-3

ORGANIZ.

- - - - - - - - -

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK-1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST . DEV.

----------

P U - 2 4 0 DATA EFFECTS

DELTA N

. - - - - - - - -

- 0 . 0 0 0 0 2

- 0 . 0 0 0 0 0

0 . 0 0 0 0 1

0.0

- 0 . 0 0 0 0 0

- 0 . 0 0 0 0 1

-O.OOOO3

0 . 0 0 0 0 2

0 . 0 0 0 0 1

-O.OOOO3

0.0

TABLE 2 8 :

PU-241 DATA EFFECTS

IELTA N

. - - - - - - - -

0 . 0 0 0 6 1

- 0 . 0 0 0 0 5

0 . 0 0 0 5 6

0.0

. 0 . 0 0 0 1 5

0 . 0 0 0 4 6

0 . 0 0 1 2 8

.O. 0 0 3 6 0

0 . 0 0 3 5 2

O.OOO52

0.0

WITH RESPECT TO ENEA SOLUTION

P U - 2 4 0 DATA EFFECTS P U - 2 4 1 DATA EFFECTS

O R G A N I Z . - - - - - - - -.

DELTA N

. . - -. - - - -

O.OOO77

0 . 0 0 0 1 0

O.OOO72

0 . 0 0 0 1 5

0.0

0 . 0 0 0 6 2

0 . 0 0 1 4 6

- 0 . 0 0 3 5 3

- 0 . 0 0 3 4 4

- 0 . 0 0 0 3 8

0.0

DELTA N

- - - . . - -. .

-O.OOOO5

-0.00000

0 . 0 0 0 0 2

0.00000

0.0

-0.0000 1

-O.OOOO7

0 . 0 0 0 0 4

0 . 0 0 0 0 2

-O.OOOO7

0.0

TOT. E F F .

. - - - - - - - -

- 0 . 0 0 0 1 3

0 . 0 0 0 0 2

- 0 . 0 0 0 0 2

- 0 . 0 0 0 3 7

0.0

- 0 . 0 0 0 2 1

- 0 . 0 0 0 4 1

0 . 0 0 0 8 9

0 . 0 0 0 8 2

-O.OOOZ3

0.0

- - -. . . . . .

ANL

AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN / - 0 . 0 0 0 0 1

S T . OEV.

TABLE 2 9 A p W I T H RESPECT TO E I R - 1 SOLUTION

ORGANIZ.

- - - - - - - - .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK-1

KFK-2

KFK-3

UKAEA

USSR

t

P U - 2 4 0 DATA EFFECTS

DELTA N

-O.OOOO3

0 . 0 0 0 0 1

0 . 0 0 0 0 2

0.00001

0 . 0 0 0 0 1

0.0

-O.OOOO4

0 . 0 0 0 0 4

0 . 0 0 0 0 2

-O.OOOO4

0.0

- - - - - - - - -

0.00000

0 . 0 0 0 0 3

. - - - - - - -

DEL .F IS

. - - - - - - -

-0. OOOC

0. OOOC

0 . 0 0 0 3

0 . 0 0 0 4

0.0000

0.0

0 . 0 0 0 1

-0.0000

-0.0000

0.0000

0.0

- - - - - - -

0 . 0 0 0 1

0 . 0 0 0 1

PU-241 DATA EFFECTS

TABLE 30 : A p WITH RESPECT TO J A E R I SOLUTION

ORGANIZ .

- - - - - - - - - .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

1

PU-240 DATA EFFECTS

. . . - - - - - -

DELTA N

. -. - . - - - - ,

- 0 . 0 0 0 2 1

- 0 . 0 0 0 1 0

- 0 . 0 0 0 0 5

-O.OOOO9

-0 .00009

- 0 . 0 0 0 1 2

- 0 . 0 0 0 2 5

0.0

-0. 0 0 0 0 5

-0 .00025

0.0

- - - - - - - - -

-0 .00013

0 . 0 0 0 0 8

PU-241 DATA EFFECTS

- - - - - - - -

DELTA N

- - - - - - - -

0 . 0 0 4 2 1

0 . 0 0 3 5 6

0 . 0 0 4 1 7

0 . 0 0 3 6 1

0 . 0 0 3 4 6

0 . 0 0 4 0 7

0 . 0 0 4 8 9

0.0

0 .00008

0 . 0 0 3 0 9

0.0

. - - - - - - - -

0 . 0 0 3 4 6

0 . 0 0 1 3 7

. - - - - - - - -

TABLE 32 : A p WITH RESPECT TO KFK-2 SOLUTION

O R G A N I Z .

ANL

AUSTRAL.

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

- - - - - - . .

MEAN

S T . OEV

P U - 2 4 0 OATA EFFECTS P U - 2 4 1 OATA EFFECTS

- - - - - - - - -

DELTA N

...-..---

- 0 . 0 0 0 1 7

- 0 . 0 0 0 0 5

-0.00000

- 0 . 0 0 0 0 5

- 0 . 0 0 0 0 5

- 0 . 0 0 0 0 8

- 0 . 0 0 0 2 0

0 . 0 0 0 0 4

0.0

- 0 . 0 0 0 2 1

0.0

-----..--

- 0 . 0 0 0 0 8

O.OOOO9

----.-...

DELTA N

- - - -------

0 E L . S I G C

----.---..

-0.00080

- 0 . 0 0 0 6 8

- 0 . 0 0 0 5 8

- 0 . 0 0 0 6 6

-0.00068

-0.00089

- 0 . 0 0 0 9 6

0.00000

0.0

- 0 0 0 0 9 6

0.0

---------.

- 0 . 0 0 0 6 9

0 . 0 0 0 2 9

---------.

TABLE 33 : A p WITH RESPECT TO K F K - 3 SOLUTION

. - - - - - - - -

TOT. E F F .

I

I *

I PU-240 DATA EFFECTS

DRGANIZ. ---------

- - - - - - - - - .

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK-1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST. DEV

DELTA N

. - - - - - - - -

0.00001

0.00005

0.00006

0.00005

0.00005

0.00004

0.00000

0.00008

0.00007

0.0

0 .0

, - - - - - - - -.

DEL. S I G C

- - - - - - - -.

0.00014

0.00024

0.00033

0.00025

0.00024

0.00005

-0.00000

O.OOO82

0.00082

0 .0

0 .0

- - - - - - - - -

0.00032

0.00030

I PU-241 DATA EFFECTS

TOT.EFF. DELTA N

---------- ----------

0.00011 0.00113

0.00025 0.00047

0.00022 0.00108

-0.00013 0.00052

0.00023 0.00037

0.00002 0.00098

-0.00018 0.00180

0.00112 -0.00309

0.00106 -0.00300

0.0 0 .0

0.0 0.0

--------- ----------

0.00030 0 .00003

0.00047 0.00180

--------- ----------

TABLE 34 : A p WITH RESPECT TO UKAEA SOLUTION

ORGANIZ.

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEhN

ST. OEV.

FIS. PROD. OATA EFFECTS

DELTA N

- - - - - - - - -

0.0

-O.OOOO4

0.00054

0.00101

0.00023

0.00328

0.00005

0.00017

0.00028

0.00016

0.0

- - . - - - - - -

0.00063

0 0 0 1 0 4

TOT. EFF.

TABLE 35 : A p WITH RESPECT TO ANL SOLUTION

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK-1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - - - .

MEAN

ST. DEV.

. - - - - - - - -

DELTA N

. - - - - - - - -

0 . 0 0 0 0 4

0.0

0 . 0 0 0 5 2

0 . 0 0 0 9 5

0 . 0 0 0 2 4

0 . 0 0 3 0 2

0 . 0 0 0 0 8

0 . 0 0 0 1 9

0 . 0 0 0 2 9

0 . 0 0 0 1 8

0 .0

- - - - - - - - ,

0 . 0 0 0 6 1

0 . 0 0 0 9 4

- - - - - - - - .

F I S . PROD. DATA EFFECTS

. - - - - - - - -

DEL. SIGC

. - - - - - - - -

- 0 . 0 0 2 1 9

0.0

0 . 0 0 2 4 7

- 0 . 0 0 2 7 7

0 . 0 0 4 2 9

- 0 . 0 0 2 8 3

- 0 . 0 0 3 3 2

- 0 . 0 0 3 3 7

- 0 . 0 0 3 4 2

- 0 . 0 0 1 0 3

0.0

TABLE 36 : A p WITH RESPECT TO AUSTRALIAN SOLUTION

ORGANIZ.

ANL

AUSTRAL.

CE A-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

- - - - - - - -.

MEAN

ST. DEV.

F I S . PROD. DATA EFFECTS

TOT. EFF.

..----.-.

DELTA N

---------

- 0 . 0 0 0 4 3

- 0 . 0 0 0 4 6

0 .0

0 . 0 0 0 3 8

- 0 . 0 0 0 2 5

0 . 0 0 2 2 1

- 0 . 0 0 0 3 9

- 0 . 0 0 0 3 0

- 0 . 0 0 0 2 0

- 0 . 0 0 0 3 0

0.0

----..-..

0 . 0 0 0 0 3

0 .OOO86

---------

TABLE 37 : A p WITH RESPECT TO CEA-2 SOLUTION

.---.---.-

DEL.SIGC

----.-----

-0.00454

- 0 , 0 0 2 4 1

0 .0

- 0 . 0 0 5 1 1

0 , 0 0 1 7 7

- 0 . 0 0 5 1 7

- 0 0 0 5 6 5

- 0 . 0 0 5 7 0

- 0 , 0 0 5 7 5

-0 .00341

0.0

---..---..

- 0 . 0 0 4 0 0

0 . 0 0 2 4 4

----------

F I S . PROD. DATA EFFECTS

DRGANIZ.

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

MEAN

ST. DEV

- - - - - - - - -

DELTA N

. - - - - - - - -

- 0 . 0 0 1 0 3

- 0 . 0 0 1 0 7

- 0 . 0 0 0 4 8

0.0

-O.OOO8O

0 . 0 0 2 3 3

- 0 . 0 0 0 9 8

- 0 . 0 0 0 8 6

- 0 . 0 0 0 7 4

- 0 . 0 0 0 8 6

0.0

- - - - - - - - .

- 0 . 0 0 0 5 0

0 . 0 0 1 0 8

- - - - - - - -.

. - - - - - - - -,

OEL. SIGC

. - - - - - - - -.

0 . 0 0 0 5 6

0 . 0 0 2 6 5

0 . 0 0 5 0 1

0 . 0

0 . 0 0 6 7 5

- 0 . 0 0 0 0 5

- 0 . 0 0 0 5 2

- 0 . 0 0 0 5 7

-O.OOO62

0 . 0 0 1 6 7

0.0

TAE - ILE - IH RESPECT TO ENEA SOLUTION

I F I S . PROD. DATA EFFECTS

DELTA N

ANL

AUSTRAL

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . DEV

TOT. E F F .

TABLE 39 : A p WITH RESPECT TO EIR-1 SOLUTION

'

F I S . PROD. DATA EFFECTS

----------

ANL

AUSTRAL.

CEA-2

ENEA

E IR-1

JAERI

KFK-1

KFK-2

KFK-3

UKPiEA

USSR

----------

MEAN

ST. DEV.

----------

- - - - - - - - . DELTA N

- - - - - - -. . -0 ,00337

- 0 . 0 0 3 4 1

-0 .00282

- 0 . 0 0 2 3 4

- 0 . 0 0 3 1 4

0.0

- 0 . 0 0 3 3 2

- 0 . 0 0 3 2 0

- 0 . 0 0 3 0 8

-O.OO3ZO

0.0

- - - - - - - - -

- 0 . 0 0 3 1 0

0 . 0 0 0 3 4

- - - - - - - - -

- - - - - - - -.

DEL. F I S S

' a

. - - - - - - - - .

TOT. EFF . - - - - - - - - .

-0 .00273

-O.OOO!i8

0 . 0 0 2 3 5

- 0 . 0 0 2 2 8

0 . 0 0 3 9 0

0.0

-0 .0038 1

-0 .00374

- 0 . 0 0 3 6 6

- 0 . 0 0 1 4 1

0.0

- - - - - - - - -

-0 .00133

0 . 0 0 2 7 8

TABLE 4 0 : A p W I T H RESPECT TO J A E R I SOLUTION

F I S . PROD. DATA EFFECTS

ANL

AUSTRAL

C E A - 2

ENEA

E I R - 1

J A E R I

K F K - 1

K F K - 2

K F K - 3

UKAEA

USSR

MEAN

S T . OEV.

D E L T A N TOT. EFF .

- - - - - - - -.

0 . 0 0 1 0 8

0 . 0 0 3 2 3

0 . 0 0 6 1 6

0 . 0 0 1 5 2

0 . 0 0 7 7 1

0 . 0 0 3 8 1

0.0

0 . 0 0 0 0 7

0 . 0 0 0 1 4

0 . 0 0 2 3 9

0.0

TABLE 41 : A p WITH RESPECT TO KFK-1 SOLUTION

<-

DRGANIZ.

- - - - - - - - .

ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

I

F I S . PROD. DATA EFFECTS

DELTA N

TABLE 42 : A p WITH RESPECT TO KFK-2 SOLUTION

ORGANIZ.

ANL

AUSTRAL.

CE A-2

ENEA

E I R - 1

J A E R I

KFK-1

KFK-2

K F K - 3

UKAEA

USSR

MEAN

S T . D E V .

F I S . PROD. DATA EFFECTS

DELTA N

TABLE 4 3 : A p WITH RESPECT TO K F K - 3 SOLUTION

4 , DRGANIZ.

- - - - - - - - -

ANL

AUSTRAL.

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UKAEA

USSR

----------

MEAN

ST. DEV.

--------.-

. - - - - - - - -

DELTA N

-0.00015

-0.000 19

0.00036

0.00080

0.00006

0.00297

-0.0001 1

0.00000

0.00011

0.0

0.0

F I S . PROD. DATA EFFECTS

TOT. EFF . - - - - - - - -

-0.00131

0.00083

0.00377

-0.00087

0.0053 1

0.00141

-0.00239

-0.00232

-0.00225

0.0

0.0

- - - - - - - - . 0.00024

0.0028 1

- - - - - - - -.

TABLE 4 4 : A p WITH RESPECT TO UKAEA SOLUTION

TABLES 4 5 - 50

SENSITIVITY COEFFICIENTS FOR ISOTOPE BUILD-UP

In the following tables sensitivity coefficients are

provided for the zero-dimensional burn-up calculation (see

table 131.

The following isotopes build-up was considered : Np237,

Pu236, Pu238, Am243, Cm242 and Cm244.

ij The sensitivity coefficients Sk for reaction k of isotope

j on isotope i build-up, can be exploited in the following way :

i j where the Sk coefficients are given in tables 45-50.

Finally, it should be noted that the coefficients were

obtained with the hypothesis of constant flux during the cycle.

BENCHMARK BURN-UP

TABLEAU DES S E N S I B I L I T E S DE N P - 2 3 7

' N * I S O T * NBE ATOMES * NBE ATDMES * PS * S E N S I B I L I T E S * * I N I T I A L + F I N A L F I N * TOTALE * L BETA - + L BETA * * L ALFA * S I G CAPT ' S I G N . 2 N * S I G F I S S *

TABLE 4 5

BENCHMARK BURN-UP

TABLEAU DES SENSIBILITES DE PU-236

* N * ISOT * N8E ATDMES * NEE ATOMES * PS * SENSIBILITES * * t * I N I T I A L * FINAL * F I N * TDTALE * L BETA - * L BETA + * L ALFA * SIG CAPT * SIG N.2N * S I G F ISS *

* 19 * PU40 " 2 ,20800-04 * 2 .61720-04 * 0.0 * 3 .71860-04 * 0.0 * 0.0 * 3 .30D-04 * 4 . 7 1 0 - 0 5 * - 6 . 2 2 0 - 0 9 * - 5 . 2 3 D - 0 6 * ' 2 0 ' PU41 + 1 .16500-04 * 8 . 4 1 2 3 0 - 0 5 * 0 .0 * 9.9820D-04 * 1.14D-03 * 0.0 * 0.0 *-2.36D-05 * - 7 . 6 1 0 - 0 8 * - 1 . 2 0 0 - 0 4 * * 2 1 * PO42 * 2 .79000-05 * 3 .19500-05 * 0.0 * 1.78281)-08 * 0.0 * 0.0 * 2 .370-09 * -2 .46D-11 * 1.56D-08 * - 1 . 4 5 D - 1 0 * * 22 * PU43 * 0.0 * 2.8227DL09 * 0.0 * 1.93250-12 * 1.93D-12 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0 t

* 23 ' PU44 * 0.0 * 3 .7589D-10 * 0.0 * 9 . 9 3 7 3 0 - 2 0 * 0.0 " 0.0 * 1.01D-19 * 0.0 * 0.0 * - 1 . 8 8 0 - 2 1 * ................................................................................................................................

* 24 * AM41 * 0.0 * 3 .67660-06 * 0.0 * 1.0510D-03 * 0.0 * 0 .0 * 1.16D-03 *-9.91D-05 * -5 .57D-08 ' -1 .470-05 * * 25 * AM42 * 0 .0 * 2 .66410-09 * 0.0 * 8 . 2 2 8 7 0 - 0 9 * 1 .080-07 * -9.97D-08 * 0.0 * 0.0 * 0.0 * 1 . 1 0 0 - 2 3 * + 26 * AM2M * 0.0 * 1.1002D-07 * 0.0 * 9 .5854D-11 * 0.0 * 1 .060-10 * 0.0 * - 1 . 5 4 0 - 1 2 * 0.0 * -8 .60D-12 '

\O * 27 ' AM43 * 0.0 * 2 .76570-06 * 0.0 * 3 .75330-10 * 0.0 * 0.0 * 4 .45D-13 * 3 .77D-10 * 0.0 * -1 .81D-12 * * 2 8 ' AM44 * 0.0 * 1 .24720-09 * 0.0 * 3.8925D-12 * 3.89D-12 * 0.0 * 0.0 * 0.0 * 0.0 * 0.0

20 I*+*t*tt***************,***********t****************L**********************************f***************************************:

* 2 9 * CM42 * 0.0 * 2.6028D-07 * 0.0 * 4 .70830-07 * 0.0 * 0.0 * 5 .070-07 *-8.090'09 * -2 .03D-14 * - 2 . 8 1 0 - 0 8 * + 3 0 T C M 4 3 * 0 .0 * 8 .89390-09 * 0.0 * 1.0559D-13 * 0.0 * 0.0 * 5 .160-14 * 6 .10D-14 * 0.0 * - 6 . 9 5 0 - 1 5 * * 3 1 ' CM44 * 0.0 * 3 .50660-07 * 0.0 * 3.7737D-10 * 0.0 * 0.0 * 3 .89D-10 * 0.0 * -1 .16D-15 * - 1 , 1 8 0 - 1 1

0 ................................................................................................................................

0 0\ P TABLE 46

BENCHMARK BURN-UP

TARLEAU OES S E N S I B I L I T E S OE P U - 2 3 8

* N + I snr + NEE ATOMES * NBE ATOMES * PS * SENSIBILITES * I N I T I A L + F I N A L " F I N * TDTALE ' L BETA - * L BETA + * L ALFA * S I G CAPT + S I G N . 2 N * S I G F I S S *

TABLE 47

BENCHMARK BURN-UP

TABLEAU DES S E N S I B I L I T E S DE C M - 2 4 2

* N * I S D T ' NBE ATDMES * NBE ATDMES * PS * S E N S I B I L I T E S w I N I T I A L * F I N A L * F I N * TDTALE ' L BETA - + L BETA + ' L ALFA * S I G CAPT * S I G N . 2 N * S I G F I S S *

TABLE 4 9

BENCHMARK BURN-UP

TABLEAU DES S E N S I B I L I T E S DE CM-244

* N * I S D T * NSE ATDMES * NBE ATDMES * PS * S E N S I B I L I T E S * * * * I N I T I A L * F INAL * F I N * TDTALE * L BETA - * L BETA + * L ALFA * S I G CAPT * S I G N . 2 N * S I G F I S S *

TABLE 5 0

PART I1

ANALYSIS OF THE DA'I'A

1 - INTRODUCTION

. Some major f e a t u r e s of t h e resu1t.s p r e s e n t ~ d i n PART I a r e

ana lysed i n what fo l lows . Reference 1 g i v e s t h e s p e c i f i c a t i o n s

of t h e burn-up e x e r c i c e and Reference 2 g i v e s t h e g e n e r a l

s p e c i f i c a t i o n s of t h e LMFBR benchmark model.

I n p a r t i c u l a r , t h e r e a c t i v i t y l o s s f o r t h e proposed f u e l

c y c l e (320 d a y s ) , and t h e i s o t o p e build-up have been ana lysed ,

by means of some s i m p l i f i e d s e n s i t i v i t y c a l c u l a t i o n s . The sp read

of t h e r e s u l t s ob ta ined i s compared t o same t a r g e t accuracy

requirements . When p o s s i b l e , b a s i c d a t a accuracy i s ana lysed ,

u s ing t h e one-group averaged c r o s s - s e c t i o n s , provided by t h e

benchmark p a r t i c i p a n t s .

I n t e r n a l b reed ing g a i n and sodium void e f f e c t e v o l u t i o n

from t h e beginning t o t h e end-of-cycle va lue a r e a l s o b r i e f l y

ana lysed .

2 - REQUIREMENTS OF DATA ACCURACY

Before ana lys ing t h e benchmark c a l c u l a t i o n r e s u l t s it i s

u s e f u l t o r e c a l l some of t h e d a t a caccuracy requirements t h a t

have been made f o r t h e so -ca l l ed major and minor a c t i n i d e s i n

t h e These requirements have been made i n g e n e r a l w i th

r e s p e c t t o c o r e i n t e g r a l parameter t a r g e t accuracy requirements

( s e e e . g . r e f /3/ and / 4 / , bu t t hey have been s p e c i f i e d a l s o

d i r e c t l y i n connect ion wi th f u e l burn-up requierements / 4 , 5 , 6 , 7 /

Moreover, t h e p r e s e n t s t a t e of t h e a r t has been reviewed

i n d e t a i l i n r e f . /8/ and /9 / . For what concerns f i s s i o n produc t

d a t a , t h e proceedings of t h e S p e c i a l i s t s meeting on neu t ron

c r o s s - s e c t i o n s of f i s s ion -p roduc t n u c l e i , he ld i n BOLOGNA,

December 12-14, 1979, r e f . / lo/ , summarize most of t h e p r e s e n t

s t a t e of t h e a r t . For what concerns t h e heavy i s o t o p e d a t a ,

t a b l e 11.1 sumnarizes some of t h e r e q u i r e d a c c u r a c i e s , some i n d i -

c a t i o n s of t h e p r e s e n t u n c e r t a i n t i e s and t h e spread of t h e

one-group d a t a s u p p l i e d by t h e benchmark p a r t i c i p a n t s . The c ros s -

s e c t i o n s t aken i n t o account a r e t h e cap tu re and f i s s i o n c r o s s -

s e c t i o n s . The (n ,2n) d a t a w i l l be p re sen ted s e p a r a t e l y . Some

of t h e b a s i s f o r t h e d a t a accuracy requirements a r e a l s o pre-

s e n t e d i n t a b l e 11.1, a s they s t a t e d by d i f f e r e n t a u t h o r s . Table 11.2

summarized s i m i l a r d a t a concerning t h e pseudo- f i s s ion produc t

c r o s s - s e c t i o n d a t a .

3 - REACTIVITY LOSS RESULTS

The model and t h e d e s c r i p t i o n of t h e burn-up problem have

been s p e c i f i e d i n r e f . /1/ and /2/.

One f o r t h e requirement f o r t h e p a r t i c i p a n t s was t o supply

t h e r e a c t i v i t y l o s s breakdown i n t o t h e components :

p1 : r e a c t i v i t y v a r i a t i o n due t o c o r e heavy i s o t o p e concen-

t r a t i o n v a r i a t i o n ,

p 2 : r e a c t i v i t y l o s s due t o f i s s i o n produc t bu i l -up ,

p 3 : r e a c t i v i t y g a i n due t o heavy i s o t o p e bui ld-up i n t h e

b l anke t s .

Obviously, t h e t o t a l r e a c t i v i t y l o s s p i s given by :

The r e s u l t s of t h e benchmark c a l c u l a t i o n a r e given i n

t a b l e 11.3.

. . ./. . .

To analyse these results, a simplified one-group sensitivity

calculation was performed, based on perturbation theroy at

first order.

3.1 - Reactivity variation due to core heavy isotopes

The simplified sensitivity study was based on the

following expression :

(only U-238, Pu-239 and Pu-241 were considered in

the sum over the isotope index i). To analyse the origin of

the spread of the results of table 11.3,the following expression

was used :

i i The bF and ba are straightforward coefficients.

i i i i The 6 (vof) /vof and &(aa) /aa values can be obtained

from the data in table I. The 6(6Ni)/6Ni values can be related

to data uncertainties by means of time dependent perturbation

expressions /11/ :

Where the build-up of isotope i is affected by the

uncertainties of cross-sections type K of isotope j.

The main sensitivity coefficients s.. relevant to 1 l k

the U-238, Pu-239 and Pu-241 isotope density variations were

calculated and are given in table 11.4.

Usinq expression (2), and the one-group data spread

of table I, we were able to reproduce fairly well the standard

deviation obtained using the direct Keff calculation results

of table 11.3 : - + 0.4 % AK/K against the - + 0.5 % AK/K value of table 11.3.

It was possible to point out the relative contribution

of the different data uncertainties to the overall data uncer-

tainty. The results are given in table 11.5.

For the benchmark data, the major role is played by

U-238 oc and Pu-240 oc spread, followed by the of spread of

Pu-241 and Fu-239. To check if the data of the benchmark where

representative of a more general situation, we also used the

required data accuracies of table I. In this case, the standard

deviation on p l would have been similar by slightly higher

(2 0.5 % A K / K ) , and the relative contribution of separate data

would have been different, as it is indicated in table V. The

major role is played by oc of U-238 and, complementary, by

Pu-239 of and it seems that a very stringent requirement is

actually needed only for the of of Pu-241, but that a semewhat

more relaxed requirement (+ - 5 + 8 % ) is needed for the o& of

Pu-240 and Pu-241.

We have made a further test on the fuel burn-up

reactivity effect p l in a large LMFBR of the SUPER PHENIX type,

with a fuel cycle of 480 days and using two different hypothesis

on the origin of the Plutonium (gas-graphite or PWR reactors).

Using the two set of uncertainties on data, one from benchmark

data spread and the other from the most severe data accuracy

requirements of table I, we obtained the results of table VI,

which confirm the results of the benchmark calculations and

the conolusions drawn above.

In summary, even stringent data requirements on heavy

isotopes, cannot reduce the uncertainty of the componen of

the reactivity loss due to heavy isotope concentration variations

to less than s - + 0.5 + 0.7 % AK/K. To reduce this uncertainty,

it would be essential a further reduction on the oc of U-238

accuracy requirements, wich seems at present difficult to be

met.

3.2 - Reactivity loss due to FF build-up

One of the fairly surprising result of the benchmark

calculations, is related to the relatively high spread of the

results for the FF componentof the reactivity loss, p2.

Table 11.2 indicates a standard deviation, with respect

to the mean value, of the one-group capture cross-section •’of - the pseudo-fission product of - + 16.2 %. The individual values

of the uEP of the pseudo FP are shown in table 11.7. In the same FP

table uc , weighted in a SPXl type spectrum are also presented.

'Ehese last values were requested to the participants

to provide 1 group data all weighted in the same spectrum. In

the same table data provided by M. Guppelaar and based both on

the RCN-2A library and on ENDF/B-V, are shown.

One the basis of these data, following comments can

be made :

- The pseudo fission product one group cross section depends on the criteria used to produce it. In fact several

procedures can be used, in particular for what concerns global

adjustments and the effect of FP migration (see table 1 1 . 8 ) .

In particular the global adjustment performed at CEA resulted FP

in a significantly (% 6 % ) lower u . C

a M. Gruppelaar evaluated that, assuming that the stable

and long-lived isotopes of Br, Kr, I and Xe have disappeared, a

uFP reduction of 5 % is found. This reduction increases to about C 12 % in the limit of immediate release of all gaseous and volatile

nuclides and their decay products (e.g. Cs-133, Cs-135).

- The origin of isolated FP data and yield values so play a role. However the yield origin is fairly constan

and comparisons shown at the Bologna Meeting /lo/ indicated that

large discrepancies on isolated isotopes often compensate to

a large extent.

- There are certainly spectral effects which also explain part of the observed discrepancies on the 1 group LFP

cross sections. In fact, we observe a discrepancy, between ANL

and CEA data, of 24,3 % if both calculations use their respective

spectrum and cross sections, which reduces to 17 % if the 1

group data are calculated using the same spectrum (see second

raw of table 11.7). This fact is related to the large sensiti-

vity of the 1 group LFP oEP to core cross sections, in particular

scattering and absorption data, as it is shown by the sensiti-

vity coefficients of table 11.9.

For what concerns the reactivity loss values, table

IT.3 results indicate a spread on the mean value of p2, corres-

pondig to a standard deviation of - + 16 %. Since in principale

the discrepancies of p2 should be attributed mainly to the

discrapancy in the oc of FP, this result seems consistent.

Howewer, a closer look to the data shows that the

discrepancy on the one-group oEP plays a role, and here again

there is evidence for important spectral effiects. For example,

the discrepancy between the ANL and the CEA-2 solutions on p2 FP is + 24 %. This effect is + 12.7 %, and the discrepancy on oc

can be due to :

1) pseudo-fission product cross-section characteristics

(sepctral shape of ozP , inelastic cross-sections) and low energy spectrum ; or,

2) to effects on p 2 due to the other cross-sections.

However sensitivity calculations based on generalized

perturbation theory indicate that, e.g. the effects on p 2 due

to U-238, Pu-239, Oxygen, stainless-steel and Na cross-sections

variations of 10 % should be of the following order of magnitude

(values of 6p2/p2 in percentage) :

These effects are fairly small and should not

contribute in a significant way to explain the above mentioned

effect. Further investigation would then be needed in this

field, in particular related :

Effect due to 10 % variation of :

.

a a a scatt.

1 ) to the spectral shape of the a FP used by the C

participants ;

2) possible effects due to FP inelastic cross-sections.

For what concerns this last effect, ANL indicated a 16 %

contribution to p2 due to inelastic FP cross sections, and the

corresponding value calculated at CEA was of 18 % in rather

good agreement. The UK result on this effect is % 23 % .

It is worth noting that, if the benchmark results are a

SS

- 0.5 + 1.2

. confirmed, they would show some differences with the conclusions

U-238

- 3.4

+ 1.0

of the BOLOGNA Meeting /lo/ and would cast same doubts on the

present ability to predict p 2 with an accuracy of - + 10 % .

Oxygen

0

+ 2.2

Pu-239

- 2.6 + 1.0

As a final remark, we think useful to remind that at

CEA, a - + 16 % uncertainty on p 2 is announced at present on design

calculations, based on the combination of the following main

uncertainties (partially correlated) :

Na

0

+ 1.0

yield : - + 8 %

migration of gaseous FP : - + 3 %

4 - SODIUM-VOID RESULTS

Sodium-void reactivity coefficient evolution with burn-up

is presented in table 11-10. The spread of the results at EOC is

very similar to that, already small, obtahned for BOC data

(a 8 % ) . In this way, the results of ref. /1/ are confirmed,

as it is confirmed the result of some integral experiment

analysis, in which the E-C/C on the sodium-void effect was

found independent from, e.g. the Pu-240 content of the core /12/

It is also confirmed that the oEP uncertainty affects the

Na void effect in a relatively small way (according to ref /13/,

+ 30 % on - FP c would produce - + 1.7 % on the non-leakage component

of the Na void in a large LMFBR) .

However, some remarks can ben made to explain some of the

most discrepant results.

The average percentage value of the increase of the Na

void effect is = + 22 %. Some solutions (CEA, JAERI) exibit a

lower value. This result could be correlated to a low ozP value.

In fact, this is the case only for the CEA solution. A further

explanation can be found in the hardening of spectrum at EOC

which makes the positive Na void component more positive.

Actually, the F8/F5 ratio shows the smaller increase, between

BOC and EOC, in the case of the CEA and JAERI solutions.

Furthermore, both solutions were characterized by a steep slope

of the adjoint function at high energies /I/. All these',factors

explain the lower increase of the Na void effect between BOC

and EOC.

5 - OTHER INTEGRAL PARAMETERS

For this preliminary analysis, we should indicate that other

integral parameters considered in the intercomparison, like

reactions rate ratios, were not affected strongly by burn-up

and no unforeseen supplementary uncertainties did show-up. As

an example, the internal breeding gain value, which was affected -

at BOC by an absolute spread of approximately - + 0.03, has a similar sprad at EOC (or slightly less).

b - ACTINIDE BUILD-UP

As a part of the benchmark exercise, a simplified burn-up

calculation was requested, concerning the higher transactinides.

Some of the results are summarized in table 11.10, where the

results obtained for the buil-up of Np-237, Pu-236, Pu-238,

Pu-242, Am-241, Am-243, Cm-242 and Cm-244, are compared.

The dispersion of the data obtained is often of the order

of magnitude of some target accuracy requirements /6,7/.

However, the case of Pu-236 is worth noting. The build-up

of this isotope is directly related to the 2 3 7 ~ p (n, 2n) data.

On this data, a large spread of values is presently

observed and this is reflected in the large dispersion obtained

among the benchmark results (.L - + 180 % ) . The branding ratio for

the 237~p (n, 2n) 2 3 9 ~ ~ reaction is certainly a source of uncer-

tainty, together with the (n,2n) cross section value.

For all the previously mentioned isotopes, a sensitivity

analysis was performed based on expressions of the type of ( 3 ) ,

and some results are shown in table 11.12.

Am-243

This data is strongly dependent on Pu-242 oc. A - + 20 %

dispersion on this data is observed among the benchmark parti-

cipants, and this correlates well with the s - + 22 % standard

deviation observed.

A - + 12 % contribution to the observed standard deviation

on the isotope buil-up ( % - + 26 % ) is due to Am-241 oc observed

dispersion among participants. A complementary role is played

by A B of Pu-241 (sensitivity coefficient s = 0.98), and ha of

Cm-242 (sensitivity coefficient s = 0.39).

Cm-244

The uncertainties on o of Pu-242 and wc of Am-243 are the C

most important contributors. If the observed spread of the

benchmark data (incomplete in the case of Am-243 a,) is used,

an approximate 24 % contribution of the total s 40 % observed

deviation is found. More complete data on oc of Am-243 would

be needed in this case.

Pu-238

In absence of detailed data on (n,2n) and h data, the

observed standard deviation (s - + 16 % ) is obtained if one uses

the supplied data dispersion for oc of N2237 (+ - 9 % ) , for oc

of Am-241 (+ 13 % ) , and estimated uncertainties of - + 30 % on

the (n,2n) values of U-238 and Pu-239 and - + 10 % on ha of

CM-242.

KEFERENCE S

Appendix I of the present document.

L.G. LESAGE et al, ANL-80-78 (NEACRP-L-243), ( 1 980).

J. ROWLANDS, Int. Conf. on Neutron Physics and Nucl.

Data Harwell, (1978) .

P. HAMMER, Int. Conf. Nucl. Data and Technology,

Knoxville (1979) .

P. HAMMER, Int. Conf. on Neutron Physics and Nucl.

Data, Harwell, (1978) .

B. PATRICK and H. SOWERBY,

NEANDC-174A, (1980).

L. USACHEV et al, Int. Conf. on Neutron Physics and

Nucl. Data, Harwell, (1978) .

H. KUSTERS, Int. Conf. Data and Technology,

Knoxville, (1979) .

J. HIROTA and H. MITANI.

Annals of Nucl. en. - 7, 439, (1980).

Proc. Spec. Meeting on Neutron Cross-Sections of

Fission Product Nuclei, Bologna, (1979). In particular,

Report of Working-Group 1.

See for example, A. GANDINI, M. SALVATORES and

L. TONDINELLI, Nucl. Sci. Eng. - 62, 339, (1977).

F. LYON et al, Int. Conf. on Fast Reactor Physics,

~ix-en-Provence (1 97 9)

A. BULTAND, Int. Conf.

Aix-en-Provence, (1979

on Fast Reactor Physics,

) .

Achie-red accuracy (present Spread of Benchmark one-group 3equired accurzcy ( l o ) uncer ta in ty) , (o f ten quoted da ta ( l o ) , ( ~ r o m references 11 I

a t i'u) 18; and 191)

I 0 f l 1 I I

( a ) J. ?o>:lends, E a r ~ e l l 1978, Ref. 131 ( b ) ?. e , iiarwell 1978, Ref. 1.51 ( c ) 3. Pe t r ick end H. Sowerby, MZANDC (174A), Ref. 161 ( 6 ) ?. Z x z e r , Knoxville 1979, Ref:14[ ( e ) L. Useci;ev, Harwell 1978, Ref. 171 (f) J. Hirota end H. M i t z n i , Annals of Nucl. En. 1, 439, 1980, Ref. 191 ( g ) H. KGsters, Yaoxville 1979, Ref. 181

TABLE TT. 1

1 I Achieved accuracy ( p r e s e n t S p e a d of Benchcark one-group I so tope Required accuracy ( l o ) u n c e r t a i n t y ) , ( o f t e n quoted d a t a ( l o ) , (i3-OX r e f e r e n c e s 1 1 1

et 10) !

( 2 ) Control-rod r e g i r e m e n t : 25% (+0.5% + 1% i n Kerf f o r i r r a d i a t e d . l f u e 1 ) . ~ e c a y h e e t : 2 + 5% ('9) ?5$ cn 6ecay h e a t ; i nhe ren t s o w c e t20% ; in terna l . b reed ing @ i n t0 .02 ( c ) ? r c h c t i o n of : ?u-236, h - 2 4 1 , Ax-243, Cm-242, Cn-244 : t 1 ~ 0 % ( 2 a ) . Production o f Pu-238 : -+20%. a decay b e e t : 25% (d) Z e z t i s - i t y l o s s p e r cyc le : +0.5$ AK/K ( i n c l u d i n g FP e f f e c t s ) . (Uncer t a in ty i n c o r e c r i t i c s -? mss f o r h ighe r

A , ,ransectinides : i 0 . 2 $ A K / X end t0.01)0 4 i n i n t e r n a l breeding &?.in)

( e ) ihilci-c;, r e ~ i r e m e n t s f o r : PU-236 t30% (iiron v a r i o u s f a s t r e a c t o r f u e l c y c l e ~ a r t i c d a r i t i e s ) ( t a r g e t accuracy) PJ-238 +20%

Pu-240 t 5 % h - 2 4 1 t 4% PG-242 t ~ c % h - 2 b l i 5 % 10.-243 +20% Cm-242 t20% CX-244 ~ 4 0 %

TABLE 11.1 ' ( f o l l o w e d )

ORGANIZ

Pseudo FP one-group

a C

ANL

AUSTRAL.

CEA- 2

ENEA

EIR-1

JAERI

KFK-1

KFK-2

KFK- 3

UKAEA

USSR ------------- - MEAN

ST. DEV.

TABLE I I .2

Required accuracy Ref. /1/

+ 10 %(+5 % for future - - cores)

KEFF (2)

Spread of Benchmark one-group data (10)

- + 16.5 %

KEFF ( 3 )

~KEFF(~) global reactivity loss per cycle.

6KEFF(2) reactivity gain due to Pu build-up in blankets

6XBFF(3) reactivity loss due to FP build-up

6KEFF(4) reactivity variation due to core heavy isotope burn-up

TABLE 11.3

Sens i t i v i ty coe f f i c i en t s ' i j k Y according t o equation ( 3 )

TABLE 1 1 . 4

B u i l d - u p S e n s i t i v i t y t o

RELATIVE' C O I ~ T R I R U T I O N TO S T A I J D A R D D E V I A T I O N

.IIypothesiS da ta unce r t a in t i e s

(Table I )

From -benchmark da ta spread

Fro~n data accui-ac y requirements

( ) Contribution f o r cross-sect ion i defined a s :

and S t . dev. E A = ., dV

U-238

u C

.42

. 72

A = + 0.4% AK/K f o r benchmark da ta and 20.5% A K / K vhcn t h e most severe data accuracy rcouirements of Table I a r e used.

Pu-239 Pu-240

u C

. 314

.O1

u C

.03

.03

u f

.08

- 1 6

Pu-2111

u C

.02

. O I

u f

.ll

.07

Type o f f u e l

Gas-Graph

o r i g i n

o r i g i n

-

Hypothesis of d a t a uncc!rtain- tics (Table I)

From benchmark

Accuracy Req.

From benchmark

Accuracy Req. -

TABLE II,6

RELATIVE COI~TRIDUTION TO STANDARD DEVIhTION

( s e e f o o t n o t e t o Table V.

S t andard d e v i a t i o n s (depehding on h y p o t h c s i s o f d a t a u n c e r t a i n t i e s ) on I :

TABLE 11 .7

PSEUDO-FISSION PRODUCT 0 ( b n r n s / f i s s i o n ) - C-

( a ) w c i g l i t c d i n t h e b e n c h m a r k s p e c t r u m

( b ) v c i g h t c d i n a SPXl t y p e c e n t r a l spectrum.

( c ) P e t t e n d a t a p r o v i d e d b y M . GRUPPELAAR. The two v a l u e s p r o v i d e d a r e d e r i v e d f r o m RCN-2A a n d ENDF/B l i b r a r i e s f o r i s o l a t e d FP. The d a t a a p p l y t o f i s s i o n p r o d u c t s f r o m Pu-239 : t h e y i e l d s u s e d i n t h e b u r n - up c a l c u l a t i o n ( 4 1 MWdIkg) a r e t h e same as t h o s e a d o p t e d i n ENDF/B-V

ANL

AUSTRALIA

CEA-2

ENEA

EIR- 1

JAERI

KFK-4

USAEA

USSR

No of fission products

considered

Isolated FP cross section

adjustment

Origin on isolated FP

cross-sections

ENEA-CEA

ENE A

ENDFIB-4

JENDL- I

ENDFIB-v (c)

Bertram et al.

-

Yield Origin

Meek-Rider

Crouch EAC (1977) Atom. Data Nucl. Data Tables 19, 419 -

Meek-Rider

Meek-Rider

Meek-Rider

Meek-Rider

Meek-Rider

(e)

Meek-Rider

FP Migration correction

(a) Correction for migrating FP and for self-shielding due to nodules of U-Pu-FP. Moreover final adjustment on

global FP measurements (PHENIX fuel, STEK global FP sample).

(b) Only 23 major FP considered. The resulting macroscopic fission product cross-section divided by the total

number of fission/cm3 in zone 1 from t = 0 to t = 360 FPD.

(c) Cross-sections prepared by ECN-Petten. The corresponding, benchmark spectrum weighted oFP is 0.525 b. C

'Q (d) Only LFP data considered of interest.

to 0 (e) Flynn and Glendenin, ANL-7749 (Dec. 1970).

TABLE 11.8

T A B L E

S e n s i t i v i t y c o e f f i c i e n t s ( 6 R / R ) / ( 6 Z / Z ) f o r

- G r o u p s t r u c t u r e u p p e r b o u n d a r y : 1 4 . 5 M e V .

- G r o u p s t r u c t u r e w i d t h : Group ' 1 Au = 1 . 3 7 ; g r o u p s 2 - 2 0 ; A U = 0 . 5

g r o u p 2 1 Au = 1 ; g r o u p . 2 2 Au = I . 5 ; g r o u p s 2 3 - 2 4 Au = 2 ;

g r o u p 2 5 t h e r m a l .

DRGANIZ-.

- APJL

AUSTRAL.

CEA-2

E N C A

ETR-1

JAERI

KFK-1

K F K - 2

KFK-3

UKAEA

IIEAId

ST, CEV.

II i I IER CORT: SO1)IIII.I V O I D WORT11

( b K / K )

EOC-3OC ------- COC

0.26295

0.23297

6.15299

0.26255

0 .25412

0 .30074

O,ZL733S

0.23210

0.0

0 .22157

0 .22759

O.O3455

ORGANIZ . ANL

AUSTRAL.

CEA-2

ENEA

E I R - 1

J A E R I

KFK- 1

KFK-2

KFK-3

UK A 3 A

U S S R ----------- MEAN

S T . DEV.

TABLE 1 1 . 1 1

HIGHER A C T I N I D E BUILD-UP

Build- up of

Np-23'

Pu-23L

Pu-23t

-

Pu-2l12

lim-2111

hn-243

cm-2h2

cm-2104

( o b t a i n e d w i t h t h e h y p o t e s i s of cons t an t f l u x , no t power, dur ing t h e c y c l e )

TABLE 1 1 . 1 2

PART I11

BEGINNING OF CYCLE PAMETERS

a) Comparison of Present Calculations and those Reported

in the Original Benchmark Study by . . A.T.D. Butland

The results for the original benchmark were taken from

Reference 1.

The changes in the data libraries and processing programs

are summarised in Table 111.1. It will >be seen that most of the

organisations made some changes, the most significant being

the ANL change from ENDF/B-IV to ENDF/B-V, the CNEN change 2 2 from MC -1 to MC -2 and the change in the Japanese data

library.

The more important reactor parameters calculated have been

compared in Tables III.2/111.6.

The spread in the calculated breeding parameters has

increased somewhat, particularly for the breeding gain, where

the CEA value has decreased by 15 %. Nevertheless the new

situation is consistent with the generally quoted target

accuracies of - + 2 % on the total reactor breeding ratio and

+ 0.03 on the total reactor breeding gain. -

The spread in the calculated eigenvalue has not changed

very much, but the use of the ENDF/B-V library by ANL has

resulted in an increase of 0.94 %. At the time of the original

benchmark study ANL were recommending an increase of 1.5 % in

eigenvalues calculated using ENDF/B-IV, this recommended increase

is now about 0.5 %, so their final recommended value has not

changed. The reduction in the eigenvalue calculated by ENEA 2 2 with ENDF/B-IV results from the use of MC -2 as opposed to MC -1,

whilst the increase in the kfk-1 value results from the use of

new U238 inelastic data.

It was concluded at the time of the original benchmark

study that the main source of the spread in the predicted

eigenvalues was the calculated difference in U238 capture.

These data are tabulated relative to Pu239 fission in Table 5.

It can be seen that the changes in this calculated ratio have

matched the changes in the eigenvalue.

Ignoring those calculations using ENDF/B-IV data, and

applying the recommended bias of about + 0.5 % to the ANL

result, the spread in the calculated eigenvalue (1.00712 - 1.02199) is somewhat larger than might be hoped for with a

generally quoted target accuracy of - + 0.5 %.

The spread in the calculated inner core sodium void effect a

has increased fairly markedly due to the increase in the

Japanese result. But the Japanese have stated that their new

data library overestimates the sodium void effect by a 20 %

when compared with experiment. The Americans have also stated

that they make a reduction of 15 % in sodium void effects

calculated with ENDF/B-V. When these bias factor are applied

the spread in the new results for the benchmark is very

similar to that seen in the original results, which is con-

sistent with the - + 15 % target accuracy generally quoted for

the maximum positive sodium void effect, especially when

those results produced using ENDF/B-IV data are ignored.

It should be added that the new USSR values are generally

in the direction of reducing the spread of the calculated - results.

For what concerns Beff, the only significant revised data

concerns the the ANL calculation. Using the same fluxes and

cross-sections (from ENDF/B-V), the Beff calculated with ENDF/B-IV

and V are as follows : Beff (ENDF/B-V) = 3.7764-3

'eff (ENDF/B-IV) = 3.8725-3.

TABLE 111.1

BOC; DATA LIBRARIES USED

Organisa t ion

ANL

CE A

ENEA o r CNEN

EIR-I

JAERI-2

Kf K-I

KFK-2

UKAEA

USSR

The fol lowing cross-sec t ion s e t s have been ad jus t ed t o f i t i n t e g r a l experiments: - CARNAVAL-IV, JAERI-FAST-2, FGL5, BNAB-78

Or ig ina l Work

ENDFIB-IV MC~-2 processing program

CARNAVAL-IV

(ENDFIB-IV (MC~-1 processing program

ENDFIB-IV

JAERI-FAST-2 (adjus ted f o r heavy i so topes ) , prepared from JENDL-I

KEDAW

Kf KINR

FGL5

BNAB-70

New Work

ENDF I B-v Mc2-2 processing program

CARNAVAL-IV

(ENDFIB-IV ( I t a l i a n f i s s i o n product d a t a (McZ-2 processing program

(ENDFIB-IV, a p a r t from (heavy i so topes b u i l t up (during i r r a d i a t i o n where (ENDFIB-V was used

(JENDL-2, supplemented by (JENDL-I and ENDFIB-IV f o r ( a few nuc l ides

KEDAK3, but wi th new U238 i n e l a s t i c s c a t t e r i n g d a t a

KfKINR, supplemented by some KEDAK a c t i n i d e s and some ENDFIB-V d a t a

FGL5, bu t with new oxygen d a t a from ENDFIB-IV BNAB-78

TABLE I I1 .2

BOC; TOTAL REACTOR BREEDING RATIO

O r g a n i s a t i o n O r i g i n a l Va lue I ANL CEA-2 ENE A EIR-I JAERI KfK-I Kf K-2

TABLE 111.3

BOC; TOTAL REACTOR BREEDING GAIN

1 O r g a n i s a t i o n 1 O r i g i n a l Va lue I

ANL CEA-2 ENEA EIR-I JAERI KfK-I Kf K-2 UKAEA USSR

New Va lue

1.39877 I .3926O 1.40386 1 .34770 1.36046 1.38608 1 .35096 I .35911 1.371

% Change

New V a l u e I I Change

TABLE 111.4

BOC ; E IGENVALUE

O r g a n i s a t i o n I O r i g i n a l V a l u e I New Value 1 % Change I ANL CEA-2 ENEA EIR-1 JAERI-2 KfK-1 Kf K-2 UKAEA USSR 1

TABLE 111.5

BOC; (U238 C A P T U R E / P ~ ~ ~ ~ FISSION) CENTRAL REACTION RATE RATIO

I O r g a n i s a t i o n I O r i g i n a l Va lue 1 New Value I % Change 1

ANL 0.16650 / 0.16447 1 - 1.2% / CEA-2 1 0.16200 0.161 90 - 0.06% I ENE A EIR-I JAERI Kf K-I Kf K-2 UKAEA USSR

TABLE 111.6

BOC; INNER CORE SODIUM VOID EFFECT

O r g a n i s a t i o n

ANL CEA-2 ENEA EIR-I JAERI Kt- K-I Kf K-2 UKAEA USSR

O r i g i n a l Value

0.02360 0.02161 0.02282 0.02428 0.02359 0.02126 0.01 930 0.02047 0.01830

New Value % Change

b) 1-group cross-sections by zone

To improve the understanding of the difference on the

critical balance components, it was requested to the parti-

cipants to supply the breakdown by region of the 1-group flux

averaged cross-sections for the major fissile average isotope

reactions. A simplified 1-group diffusion coefficient by zone

was also requested, defined as :

The results are shown in tables111.7 and 111.8.

Inne r core I

.

ANL

CEA-2

EMEA

EIR-1

JAERI

KFK-2

UKAEA

O u t e r core

TABLE 1 1 1 . 7

- D

1 . 3 8 6

1 . 4 0 5

1 . 3 7 5

1 . 3 0 7

1 . 3 6 6

1 . 3 9 0

1 . 2 2

U-238

" c

0 . 3 0 9

(2.297

0 .311

0 . 3 0 5

0 . 3 0 2

0 . 3 0 9

0 . 2 9 6

ANL

CEA- 2

ENEA

EIR-1

J A E R I

KFK-2

UKAEA

R a d i a l B l a n k e t

TABLE 1 1 1 . 8

A x i a l B l a n k e t

APPENDTX I

PROPOSAL, FOR BURN-UP CALCULATIONS

APPLIED TO THE NEACRP FAST BREEDER BENCHMARK

1 - INTRODUCTION

According to what was decided at the 22nd NEACRP meeting

in Paris (October 1 9 7 9 ) , this paper presents a proposal for

simple burn-up calculations applied to the ANL fast breeder

Benchmark (1) .

The aim of such an exercise is to provide a comparison

of the multigroup data used by various laboratories for what

concerns isotopes specifically involved in fuel burn-up

problems : Fission Products P . and Actinides.

This comparison will be performed through calculations of

integral parameters according to an approach similar to the

one previously used for the "fresh core" study (1). The integral

quantities of interest in the present case are :

- core parameter variations due to the fuel burn-up, - irradiated fuel composition after a given in pile

residence t.ime.

As far as the core parameters are concerned, the following

characteristics will be investigated by comparing the end-of-

cycle values to the "fresh core" ones :

- reactivity loss per cycle,

- the internal and external breeding gains, - radial and axial fission rate distributions,

- Pu balance for the inner and outer cores and for the axial and radial blankets,

- sodium void effect corresponding to the inner core voiding.

2 - HYPOTHESIS

2.1 - Cycle characteristics

The calculations will concern successively :

-- the "fresh core" investigated in (l), - the end of cycle core.

The cycle length in 360 FEPD (Full Equivalent

Power Days). The reactor power is assumed to be at a constant

level during the whole cycle length : 3000 MWth. To determine

the corresponding flux level, it will be admitted that the

mean energy associated to one fission in the reactor in 208 XeV

This value includes the contribution of the fission itself,

the contribution due to the 238 U radiative capture and the

inelastic scattering component.

2.2 - Calculational methods

The calculational methods to be used are identical

to those used for the "fresh core" and described in (1)

- see p. 142 - :

- two dimensional ( R Z ) geometry with axial symmetry

about Z = 0,

- diffusion approximation,

- same spatial meshing and boundary conditions as the ones given in (1) and used throughout all the "fresh

core" spatial calculations (for the spatial meshing see

fig. 1.1 of "l"),

- multigroup data consistent with the data used for the fresh core conftyuration ca,l,culations, All the new isotopes

introduced with 'che burn-up calcuXations will be assumed to

be at llOO•‹K.

2.3 - Fresh core

The fresh core results, which are used here as

reference values with respect to the end of cycle core charac-

teristics, have already been calculated in (1). The results

which are needed for the present study are :

a) For the reference configuration (configuration 1

of (I), see p. 145 fig. A.l).

a.1 - Keff, a.2 - Reactor breeding ratio. as defined in

a.3 - Regional components of the (1) p. 156

breeding ratio,

a.4 - Internal breeding gain. as defined in (1)

a.5 - Blanket breeding gain. p. 161

a.6 - Total breeding gain. a.7 - Total radial and axial fission rate distri-

butions normalized such that the fission/cm3

sec is 1 at the core center.

a.8 - Radial and axial fission rate distributions for 239 Pu and 238 U separately with the same

normalization as for the total fission rate

distributions.

a.9 - Central reaction rate ratios. Per atom ratios of 238 capture to 239 Pu fission, 238 U

fission to 239 Pu fission, and 239 Pu capture

to 239 Pu fission at the core center.

b) Inner core sodium void worth (configuration 2

results, see (1) p. 147).

2.4 - End of cycle core

2.4.1 - End of cycle compositions -

The end of cycle core and blanket compositions will . be calculated according to the following procedure :

- the reactor will be divided into 25 zones according to the fig. 1,

- for each reactor zone, the end of cycle composition will be determined with 0 dimension calculations using the

spectrum and level corresponding to the flux averaged over

the zone and calculated for the fresh core reference configuration,

- for the end of cycle core parameter calculations, the isotopes the concentrations of which must be calculated

are :

. the pseudo fission product which represents the global capture due to the F.P. for fast breeders using

the mixed oxide fuel,

. the following heavy isotopes : 235 U, 236 U, 237 Np, 238 Pu,

238 U, 239 Np, 239 Pu, 240 Pu, 241 Pu, 242 Pu,

241 Am.

For the sake of simplicity, it will be admitted

here that all the 238 Pu obtained is issued only from the

235 U chain.

2.4.2 - Required results

- Using the fresh core flux spectrum at the core center, one will determine the one group cross-sections for

the following isotopes :

- F.P. (capture cross secti,on$) i 105 Pd, 101 Ru, 103 Rh,

99 Tc, 107 Pd, 149 Sm, 151 Sm, 147 Pn, 97 Mo, 145 Nd,

133 Cs, 135 Cs, 109 Ag, 103 Ru? 102 Ru, 153 Eu, 143 Nd,

104 Ru? 95 Mo, 100 Mo, 141 Pr, 155 Eu, 93 Zr.

- Pseudo fission product (capture cross section).

Heavy isotopes (capture and fission cros sections) :

235 U, 236 U, 237 Np, 238 Pu, 238 U, 239 Np, 239 Pu,

240 pu, 241 Pu, 242 Pu, 241 Am.

- The spatial calculations will be performed using the end of cycle compositions determined as described in •˜ 2.4.1 ;

but without recalculating nex multigroup data for the sake of

simplicity, excepted for the sodium void effect (see hereafber).

The results to be edited are :

Keff (1) corresponding to the end of cycle compo-

sitions for the whole reactor,

Keff (2) corresponding to the fresh core compositions

for the core zones and the end of cycle blanket compositions

for the blanket zones,

Keff (3) corresponding to the fresch core composi-

tions as to the heavy isotopes and including the pseudo P.F.

build up of each core zone, and to the fresh blanket compositions

for the blanket zones,

Keff (4) corresponding to end of cycle heavy isotope

composition for each core zone but without pseudo F.P. and to

the fresh:.:.blanket composition for the blanket zones.

These Keff values will provide :

The global reactivity loss per cycle :

'eff (1) - K~~~ for configuration 1

Keff for configuration 1

The reactivity ga$n due to the Pu build-up in the

blankets ;

'eff (2) - K~~~ for configuration 1 Keff for conflguration 1

The reactivity loss due to the F.P. build-up :

Keff ( 3 ) - Keff for configuration 1 Keff for configuration 1

The reactivity loss due to the core heavy isotope

burn-up :

Keff ( 4 ) - K~~~ for configuration 1

Keff for configuration 1

The same results as those calculated for the fresh

core and quoted in 2.3.

- The end of cycle Pu balance for each core zone : . end of cycle composition for each reactor zone, . Pu balance for the inner and outer cores, and

for the axial and radial blankets.

The end of cycle flux spectrum at the core center,

to be compared to the fresh core one.

b) In order to calculate the inner core sodium void

worth for the multi-group corresponding to the end of cycle

situation will have to be calculted for the inner core zones

(1 to 6, see fig. 1) for the two following situations : Na in,

Na out according to the same procedure as the one used for deter-

mining the cross sections sets of the fresh core (see(1) p. 154).

The i n n e r c o r e $odium void e f f e c t corresponding t o end

of c y c l e s i tua t%.on j;$ then c a l c u l a t e d accord ing t o t h e same

procedure a s t h e one used f o r t h e f r e s h c o r e ( s e e (1) p.157) ,

3 - IRRADIATED FUEL COMPOSITION -

For t h e i n n e r c o r e zone 1 ( s e e f i g . 1) a complete 0 . dimon- - s i o n c a l c u l a t i o n of t h e a c t i n i d e concen t r a t i on ( i . e . i n c l u d i n g

a l l t h e a c t i n i d e i s o t o p e s from 232 U t o 244 cm) a t t h e end 05

c y c l e w i l l be made us ing t h e zone 1 f r e s h co re averaged f l u x

(spectrum and l e v e l ) . The f i n a l c o n c e n t r a t i o n s of t h e s e i s o t o p e s

w i l l be d d i t e d . A t y p i c a l example of t h e a c t i n i d e cha in wich

can be used i s given on f i g . 2 .

a

(1) Proceedings of the NFACRPIXAEA Specfalists Meeting on the

Tnternational Comparfson Calculation df a Large Sddium-

Cooled F'ast Breeder Reactor at Argonne National Laboratory

on February 7-9, 1978.

L.G. LESAGE, R.D. Mc KNIGHT, D.C. WADE, K.E. FREESE, and

P.J. COLLINS.

Solution ,Label

ANL

AUSTRALIA

CEA-2

ENEA

EIR-1

JAERI

KFK- 1

KFK-2

KFK-3

UDAEA

USSR - -

APPENDIX XI

SOLUTIONS AND PARTICIPANTS

Country

USA

Australia

France

Italy

Switzerland

Japan

Federal Republi~ of Germany

id

id

United kingdom

USSR

Belgium

OECD

Data set (a)

ENDF/B-V

ENDF/B-IV

ARNAVAL IV

ENDB/B-IV

ENDF/B-IV

JENDL-1

KEDAK-3 (C,<

XFKINR

KFKINR (a)

FGL-5

BNAB-78 - -

Adjusted Solutfon author! and Meeting Attendees

H.HENRYSON, 11, J.R. LIAW

G.S. ROBINSON

L . MART IN-DEIDIEF G. PALMIOTTI, B. RUELLE, M. SALVATORES

P. AZZONI, R. MARTINELLI M. MARVASI, D. CEPRAGA M. PANINI

P. STILLER, W. HEER

M. NAKAGAWA H. YOSHIDA

C. BROEDERS, S SKI

A.T.D.BUTLAND, J. ROWLANDS, C.J. DEAN, C. R. EATON

Yu. KAZANSKIJ

K. DE WOUTERS

M.L. BARGELLINI

(a) FP data set origin given in table VIII, Part 11.

(b) Oxygen from ENDF/B-IV

(c) Revised KEDAK-3 values, slightly modified with respect to solution reported in ANL-80-78.

(d) see following table.

Library group number -

KFKINR

X

- X

-- --

Basic library data additional data:

KBDAK actinides

KEDAK fission products 2 )

ENDFIB-V group constants 3)

(R-2)-calculation Group number

KFKINR KFKINR

One-group calculations -- Spectrum zone-averaged Group number

Spectrum fundamental mode calculations for inner core Group number

Collapsed data: macroscopic group constants. Group number

Collapsed data: differential data from KEDAR

Applied code MIGROS 3 DXBURN DXBURN DXRURN

I) The KAlUSRUHE-I Solution in ANL-80-78is not identical with this library. The normalized inelastic scattering matrix of $38 has been recalculated. ,

2) K E D M evaluations by ECN-Petten 1

3) Group constant calculations by ECN-Petten

Summary of Karlsruhe solutions