ndustrial wireless guidebook industrial... · 2016. 8. 15. · 1-1 overview ... 1-2 wlan...

58
www.moxa.com/iw AWK Series OnCell Series NPort Series Industrial IEEE 802.11 Wireless AP/Bridge/Client Industrial Cellular Solutions Wireless and ZigBee Device Servers I ndustrial Wireless Guidebook Reliable Networks Sincere Service

Upload: others

Post on 31-Dec-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

Moxa Sales and MarketingHeadquarters

Moxa Corporate Plaza601 Valencia Ave., Suite 200Brea, CA 92823, U.S.A.Toll Free: 1-888-669-2872Tel: +1-714-528-6777Fax: [email protected]

Moxa Design and EngineeringHeadquarters

Tel: +886-2-8919-1230Fax: [email protected]

Fl. 4, No. 135, Lane 235, Baoqiao Rd.Xindian Dist., New Taipei City,Taiwan, R.O.C.

The AmericasMoxa AmericasToll Free: 1-888-MOXA-USATel: +1-714-528-6777Fax: [email protected]

Moxa Brazil Tel: +55-11-2495-3555Fax: [email protected]

EuropeMoxa GermanyTel: +49-89-3700-399-0Fax: [email protected]

Moxa France Tel: +33-1-30-85-41-80Fax: [email protected]

Asia-PacificMoxa TaiwanTel: +886-2-8919-1230Fax: [email protected]

Moxa India Tel: +91-80-4172-9088Fax: [email protected]

Moxa RussiaTel: +7(495)287-09-29Fax: +7(495)269-09-29 [email protected]

ChinaMoxa ShanghaiTel: +86-21-5258-9955Fax: [email protected]

Moxa Beijing Tel: +86-10-6782-3959/61Fax: [email protected]

Moxa Shenzhen Tel: +86-755-8368-4084/94Fax: [email protected]

Moxa UK Tel: +44-1844-355-601Fax: [email protected]

© 2013 Moxa Inc. All rights reserved. The MOXA logo is a registered trademark of Moxa Inc. All other logos appearing in this document are the intellectual property of the respective company, product, or organization associated with the logo. P/N: 1900041301100

www.moxa.com/iw

AWK Series OnCell Series NPort Series

Industrial IEEE 802.11 Wireless AP/Bridge/Client

Industrial Cellular Solutions

Wireless and ZigBee Device Servers

Industrial Wireless Guidebook

Reliable Networks Sincere ServiceReliable Networks Sincere Service

Your Trusted Partner in AutomationMoxa is a leading manufacturer of industrial networking, computing, and automation solutions. With

over 25 years of industry experience, Moxa has connected more than 30 million devices worldwide

and has a distribution and service network that reaches customers in more than 70 countries. Moxa

delivers lasting business value by empowering industry with reliable networks and sincere service

for automation systems.

Page 2: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

About Moxa

Moxa: Your Trusted Partner in AutomationFounded in 1987, Moxa is now one of the leading manufacturers of industrial networking, computing, and automation solutions. Moxa provides thousands of hardware and software products and draws upon 25 years of accumulated expertise. Moxa’s products reflect our constant zeal for improvement, keen eye for innovation, and respect for proven solutions and expertise. We harness these qualities to create solutions that deliver a competitive edge for our customers and partners in adapting to fast-changing network and market environments.

Moxa delivers network-centric automation solutions that integrate automation and IT systems into a single network platform that simplifies management, reduces costs, and achieves greater reliability and efficiency.

A Leader and Partner in Automation SolutionsMoxa’s commitment to execution,

innovation, and collaboration with our

partners has fueled our transformative

journey to leadership as a solution

provider and partner in automation.

Mission and VisionAs a world-class leader and a trusted partner in industrial-grade device networking solutions for automation, Moxa proudly provides quality products and value-added service to establish win-win business relationships based on mutual trust and integrity. Moxa works closely with customers, channel-partners, and solution-partners to achieve and share success.

Delivering on CommitmentsMoxa’s talented design team, which is experienced in networking technology and solution development, offers quick, flexible, and comprehensive R&D service to meet customers’ specific expectations and exacting requirements. Moxa collaborates closely with customers to drive advancements and achieve a faster time-to-market, and these partnerships keep Moxa in touch with emerging technologies and ensure that new developments and successes are shared with all of Moxa’s partners.

Page 3: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

www.moxa.com

Integrating Automation by Enabling Convergence

Moxa offers a wide array of device networking products that feature an open Ethernet infrastructure, industry-proven standards, extended temperature tolerance, environmental protection, and network redundancy to ensure network availability and reliability. Product lines range from edge-to-core industrial Ethernet switches, industrial wireless devices, serial cards, serial device servers, and embedded device servers, to USB and fieldbus components. All of our products are designed to stand up to harsh environments and are ideal for deploying mission critical applications in fields such as maritime, oil and gas, power and utilities, rail, and factory automation.

Moxa’s industrial embedded solutions are used to construct powerful front-end controllers that can execute onsite data collection and control at widely distributed remote sites through industrial Ethernet or wireless backbones. All of the computers feature rugged reliability and fanless operations with a wide operating temperature range of -40 to 85°C. Our products feature a user-friendly environment that makes application development easy. Moxa provides prompt and extensive customization services in addition to a wide selection of ready-to-run products such as industrial computers, wireless computers, and wide temperature computers.

Moxa’s remote automation solutions empower control and monitoring systems in remote locations with the latest technology and industry expertise. Our product portfolio includes programmable RTU controllers, remote I/O devices, IP surveillance solutions, and easy-to-configure automation and video software. Both network and cellular communication interfaces are available to meet the needs of a variety of applications and to simplify long-range host-to-device communications around a standard industry protocol. Including Moxa’s SCADA-compatible IP surveillance solutions that enable your network video monitoring system, Moxa’s remote automation solutions enhance the safety and security of remote industrial facilities. With their robust, wide temperature design, all of the products can be used in harsh, industrial environments.

Industrial Networking Solutions Industrial Computing Solutions Remote Automation Solutions

Industrial automation users have long anticipated the integration of computer, controller, I/O, video, and audio systems into a single easy-to-manage network. This vision of network-centric automation is possible today, thanks to Moxa’s two decades of accumulated knowledge in industrial networking and wide selection of automation solutions that enable the convergence of I/O, audio, and video data over Ethernet networks. Improve the efficiency and reliability of your industrial process by transforming a hodgepodge of controller-centric operations into a single network-centric operation. Moxa provides communication interoperability across the full range of automation devices and modules to seamlessly integrate them with industrial Ethernet networks.

Page 4: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

3 Industrial Wireless Guidebook

About Moxa ......................................................................................................................1

Table of Contents ............................................................................................................3

Chapter 1 Wireless Landscape

1-1 Overview ................................................................................................................................................................5

•Introduction

•TechnologyMap

1-2 WLAN Basics ..........................................................................................................................................................6

•IEEE802StandardsintheOSIReferenceModel

•HistoryofWLANStandards

•WirelessSecurity

1-3 WWAN(Cellular) Basics ..........................................................................................................................................9

•Introduction

•EvolutionoftheCellularNetwork

1-4 WPAN Basics ........................................................................................................................................................14

•IEEE802.15StandardsforWPAN

•IEEE802.15.4LowRateWPAN

•ZigBee

•ZigBeeSolution

Chapter 2 Understanding Wireless Technology

2-1 Radio System Concepts .......................................................................................................................................17

•HowRadioWorks

•WhatYouNeedtoKnowaboutaRadioSystem

2-2 WLAN Antennas ...................................................................................................................................................25

•WhyUsingtheRightAntennaisImportant

•AntennaParameters

•AntennaTypes

2-3 Cables ...................................................................................................................................................................29

•RFCables

•EthernetCables

Table Of Contents

Table Of Contents

Page 5: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

4

www.moxa.com

2-4 Connectors ...........................................................................................................................................................32

•AntennaConnectors

•EthernetConnectors

Chapter 3 Industrial Wireless

3-1 Industrial Design Concepts .................................................................................................................................34

•Introduction

•IndustrialHazards

3-2 Robust Wireless Concepts ...................................................................................................................................36

•Introduction

•ConcernsforWirelessLocalAreaNetworks

•ConcernsforWirelessWideAreaNetworks

Chapter 4 Standards

4-1 IEEE 802 Standards ..............................................................................................................................................40

•IEEE802.3Ethernet

•IEEE802.11WirelessLocalAreaNetwork

•IEEE802.15WirelessPersonalAreaNetwork

4-2 Safety and Certifications .....................................................................................................................................43

Moxa’s Wireless Product Selection Guide ..................................................................45

Glossary .........................................................................................................................51

Page 6: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

5 Industrial Wireless Guidebook

Wireless Landscape

Wireless Landscape

IntroductionWirelesstechnologieshavebecomeincreasinglypopularin

industrialautomationasgrowingnumbersofsystemintegrators,

governmentagencies,andindustrialoperatorscontinuetoturnto

wirelesssolutionsfortheirapplications.Wirelessnetworkscanbe

quicklydeployedtotransmitdatatoareaswithoutexistingcable

infrastructures.Forhard-to-wirelocationsandworksitelandscapes

thatconstantlychange,wirelesstechnologiesareidealforproviding

highlyflexibleandefficientnetworkconnectivity.Inadditiontomobile

versatility,wirelesstechnologiescanofferreal-timecommunication

formission-criticalapplications,highbandwidthforvideo

transmission,andalowtotalcostofownership.

However,sincewirelesscommunicationsrelysolelyontheemission

ofelectromagneticwavestotransmitdata,networksecurity

Technology Selection

WWAN (Wireless Wide Area Network) WLAN (Wireless Local Area Network) WPAN (Wireless Personal Area Network)

Char

acte

ristic

s h Wideareacoverage h Longdistancecommunication h Hightransmissionlatency h Mediumtransmissionbandwidth h On-goingdatatransmissioncost h Basestationrestriction

h Localareacoverage h Long/mediumdistancecommunication h Lowtransmissionlatency h Hightransmissionbandwidth h InitialAPsetupcost

h Smallareacoverage h Shortdistancecommunication h Lowtransmissionlatency h Lowtransmissionbandwidth h Lowpowerconsumption

Appl

icatio

ns

h Highwaysignalingcontrolsystem h Remotemonitoringsystem h Nationwideenvironmentalmonitoring

h Traintogroundcommunicationformissioncriticaldata h Highthroughputforvideotogroundtransmission h Databridgingfordevicemonitoring

h Streetlightcontrol h Personneltracking h Shortdistancedataacquisition

Technology MapSincetheinventionofradiotransmission,manytypesof

wirelesstechnologiesandstandardshavebeendevelopedto

meettherequirementsofvariouswirelessapplications.Forthe

developmentofeverywirelessstandard,twomajorvariables

wereconsidered:coveragearea(distance)anddatarate

(bandwidth).

Wirelesstechnologiescanbedividedintothreecategories:

WWAN,WLAN,andWPAN.

isanimportantfactorforadministratorstoconsider.Another

majorconcerniselectromagneticinterference(EMI),whichcan

disruptdatatransmission,severelyreducedatathroughput,and

compromisenetworkreliability.Withover25yearsofindustrial

automationexperience,Moxaofferssecureandreliableindustrial

wirelesssolutions,suchascellular,Wi-Fi,andZigBeeformission-

criticalapplicationsthatdemanddependableanduninterrupted

systemoperation.

Wehopethisguidebookwillprovideyouwithamorecomprehensive

understandingofindustrialwirelesstechnologiesandserveasyour

mosttrustedguidetogettingun-wired.

It’stimetogowireless!

1-1 Overview

Coverage

Low Data Rate(>10 Mbps)

Glgabits(>1 Gbps)

Medium Data Rate(10 to 100 Mbps)

High Data Rate(100 Mbps to 1 Gbps)

Nationwide(> 1,000 m)

Local Area(500 m)

Short Distance(10 m)

WLAN

WWAN

WPAN

Data Rate

Satellite

RFID

BlueTooth

Zigbee

UWB

2G/2.XGGSM/GPRS/EDGE

Pre4G/4GLTE/WiMAX/LTE-A

3GUMTS/HSPA(+)CDMA2000 EV-DO

Cellular Technology

802.11b 802.11a/g 802.11n 802.11ac

802.11 Family (Commonly known as Wifi)

Page 7: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

6

www.moxa.comW

irele

ss La

nd

sca

pe

1

History of WLAN StandardsForWLANapplications,theIEEEfirstpublishedthe802.11standard

in1997.ThreeMACsub-layersandthreedifferentphysical(PHY)

layersareaddressedforthe802.11standard.FrequencyHopping

SpreadSpectrum(FHSS)andDirectSequenceSpreadSpectrum

(DSSS)aretwomethodsoffrequencyspreadingforthe2.4GHzISM

bandthatprovidedataratesof1and2Mbps.

IEEE802.11wasnotwidelyacceptedforuseuntiltherelease

of802.11a/bin1999.IEEE802.11ausesthe5GHzbandwith

orthogonalfrequency-divisionmultiplexing(OFDM)modulationto

providedataratesofupto54Mbps.IEEE802.11bstillusesthe2.4

GHzISMbandtoprovidedataratesofupto11MbpsusingDSSS

modulation,whichallowsintegrationofotherDSSS-basedIEEE

802.11systems.FHSS-based802.11systems,however,cannotbe

integrated.

Themostwidely-adoptedvariationoftheIEEE802.11protocolsuite

isIEEE802.11g,whichwasanimprovementupontheexistingIEEE

802.11bstandard.Usingthesame2.4GHzband,OFDMmodulation

allowsdataratesofupto54Mbps.

1-2 WLAN Basics

OSI Model

Layer Functions

(7)Application UserapplicationinteractionProcess-to-processcommunication

(6)Presentation Datatransformation/reformattingDatacompression/encryption

(5)Session EstablishcommunicationbetweenendsystemsManageuserconnections

(4)Transport Errordetection/recoveryNetworkconnectionflowcontrol

(3)Network ManagenetworkpathconnectionsDatarouting/relay

(2)DataLink Access/error/flowcontrolMACaddressing

(1)Physical Controlsrawbit-streamtransmissionElectricalsignaling

IEEE 802 Standards in the OSI Reference Model

IEEE802specificationsareonlyaddressedforlayer1(physical)

andlayer2(datalink)oftheOpenSystemsInterconnection(OSI)

referencemodelbytheInternationalOrganizationforStandardization

(ISO).Thedatalinklayeriscomposedof2sub-layers:MediaAccess

Control(MAC)andLogicalLinkControl(LLC).TheLLCsub-layer

manageserror/flowcontrolandisessentiallythesameforallIEEE

802standards.TheMACsub-layerisforphysicaladdressingand

managesmediaaccesscontrol.IEEE802.3specificationsreferto

accessforEthernetandIEEE802.11specificationsrefertoaccess

forwirelessLANs.

LLC 802.2

IEEE 802 WLAN 802.11

Ethernet802.3

TheIEEE802.11hstandardisanamendmentoftheIEEE802.11a

standard.TransmissionPowerControl(TPC)andDynamicFrequency

Selection(DFS)areappliedatthePHYlayertomeetEuropean

regulationsandallowcompatibilitywithotherstandardsinthe5GHz

band.

ThenewestspecificationtotheIEEE802.11protocolsuiteisIEEE

802.11ac,whichisbackwards-compatiblewithother802.11n

networksusingthe5GHzrange.ItprovidesWLANthroughput

ofgreaterthan1Gbpsonthe5GHzband,offersupto8MIMO

streamswithupto160MHzbandwidtheach,anduseshigh-density

modulationofupto256QAM.

Thetablebelowillustratesthedevelopmenthistoryof802.11and

thedifferencesbetweenthevariousversionsof802.11network

standards.

Page 8: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

7 Industrial Wireless Guidebook

Wireless Landscape

Wireless Security802.11networksuseradiosignalbroadcaststocommunicateand

anyonewithacompatiblewirelessnetworkinterfacecardcanaccess

theWLAN.SecuritymeasurestoverifyWLANaccessarecriticalto

preventunauthorizedaccesstonetworkdevicesandresources.

TwomaintypesofsecuritymeasuresareavailableforWLANs:

• Authentication:User/deviceidentityisverifiedbeforenetwork

accessisgranted.

• Encryption:DataexchangedbetweenWLANnodesshouldbe

encryptedtomakeintercepteddataunreadable.

Variouscombinationsofauthenticationandencryptionmethods

arecommonlyusedtoprovidedifferentlevelsofWLANsecurity.

InadditiontothreemajortypesofWLANsecurity(WEP,WPA,

andWPA2),theIEEE802.1Xprotocolalsoprovidesarobust

authenticationschemeforeverysingleWLANconnection.

WLAN Security Protocols

Security Protocol Features

WEP (WiredEquivalentPrivacy)

RC4dataencryptionNouser/passwordauthentication

WPA(Wi-FiProtectedAccess)

TKIP+802.1X+MICSupportsRADIUSauthenticationBackwardscompatiblewithallsystems

WPA2 WPA+AEScipher

802.11 Standards

Protocol Released Frequency (GHz) Bandwidth (MHz) Data Rate (Mbps) MIMO (max.) Modulation Compatibility

802.11 1997 2.4 20 1,2 1 DSSS,FHSS 802.11

802.11b 1999 2.4 20 1,2,5.5,11 1 DSSS 802.11b

802.11a 1999 5 20 6to54 1 OFDM 802.11a

802.11g 2003 2.4 20 6to54 1 DSSS,OFDM 802.11b/g

802.11n 2009 2.4&5 2040

6.5to28.813.5to600 4 OFDM 802.11a/b/g/n

802.11ac 2013 5

204080160

6.5to693.613.5to160029.3to3466.458.5to6933.6

8 OFDM 802.11ac/n

WEP

WiredEquivalentPrivacy(WEP)isalow-levelsecuritymeasure

toprovidedataconfidentialityforwirelesscommunication.Static

sharedkeys(fixed-lengthalphanumericstrings)areusedtoencrypt

dataandaremanuallydistributedtoallwirelessstationsonthe

wirelessnetwork.

In2001,WEPwasfoundtobehighlyvulnerabletopassiveattacks

thatcancompromisethe24-bitRC4encryptionkeyandisnot

recommendedforhigh-levelsecuritynetworks.Forwirelesssecurity

thatismorerobust,Wi-FiProtectedAccess(WPAorWPA2)offers

improveddataencryptionanduserauthentication.

WPA

Wi-FiProtectedAccess(WPA)wascreatedinresponsetothe

flawsfoundinWEP.Itwasdesignedasatemporarymeasureuntil

developmentsin802.11isecuritymeasureswereready.Whenused

withRADIUSandVPNauthenticationmethods,WPAisgenerally

acceptableasaneffectivemethodofWLANsecurity.

WPA2

WPA2isanupdatetotheencryptiontechnologyofWPA.WPA

usesTemporalKeyIntegrityProtocol(TKIP)for128-bitdata

encryption,whileWPA2usesAdvancedEncryptionStandard(AES),

asubstitution-permutationnetworkencryptiondesignthatissuitable

forWLANsthatrequirehighly-secureaccesscontrol.

Page 9: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

8

www.moxa.comW

irele

ss La

nd

sca

pe

1

802.1X

802.1Xisaport-basedauthenticationmethodthatprevents

unauthorizedaccesstothenetwork.ItisusedwithWPAtoforma

completeWLANsecuritysystem.Onmanywirelesssystems,users

canlogintoindividualaccesspointsbutcannotgetfurtherwithout

Method Client Support Considerations

Open Nospecialrequirement h Canbeinstalledandusedquickly h Bringshighriskandmaydamagethenetworksecurity

WEP Built-insupportforall802.11a,802.11b,and802.11gdevices h Providesweaksecurity h Requiresmanualkeymanagement

WPA RequiresWPA-enabledsystemandnetworkcarddriver

h Providesdynamicallygeneratedkeysthatareperiodicallyrefreshed

h Providessimilarsharedkeyuserauthentication h Providesrobustsecurityforsmallnetworks

WPA2 RequiresWPA-enabledsystemandnetworkcarddriver

h Providesrobustsecurityforsmallnetworks h Requiresmanualmanagementofpre-sharedkey h Wirelessstationsmayrequirehardwareupgradetobe WPA2-compliant

802.1X RequiresWPA-enabledsystemandnetworkcarddriver

h Providesdynamicallygeneratedkeysthatareperiodicallyrefreshed

h RequiresconfiguredRADIUSserver h ProvidesbackwardscompatibilitywiththeoriginalWPA

Choosing the Right Level of WLAN Security

Therightbalancebetweensecurity,transparency,andcost

effectivenessisimportantwhendeterminingthetypeofsecurityto

implementontheWLAN.Factorssuchasthetargetenvironment,

compatibletypesofsecuritylevels,andthepossibleimpacton

networkperformancewhenusingmoresophisticatedsecurity

methodsshouldallbetakenintoconsideration.

HereareafewkeyquestionsforevaluationofWLANsecurityoptions:

• Doestheenvironmentrequirehigh-levelsecurity?IftheWLAN

willtransmitinformationsuchasmedicalrecords,thehighest

levelofsecurityshouldbeapplied.However,iftheWLANwill

onlybeusedtocommunicateenvironmentalmonitoringdata,

alowerlevelofsecurityshouldbeappliedtooptimizeWLAN

performance.

• Whatlevelsofsecuritycanthenetworkenvironmentsupport?

WPAandWPA2encryptiontechnologiesprovidereliablesecurity,

butcantheclientdevicessupportthem?Also,if802.1X

authenticationistobeimplemented,isaRADIUSserveravailable

ontheWLAN?

• Willhigh-levelsecurityhaveanundesirableimpactonthe

performanceoftheWLAN?Howwilltheperformanceofwireless

devicesontheWLANbeaffectedifencryptionisenabled?

Encryption/decryptioncanrequiresignificantCPUresourcesfor

processing.CanallWLANdevices,includingthedeviceservers,

handletheadditionalloadfordataprocessing?

Thefollowingtablesummarizestheconsiderationsfor

implementationandclientrequirementsforWLANsecuritymethods.

additionalauthentication.802.1Xrequiresuserstoauthenticate

withthewirelessnetworkitself,nottoindividualAPsoraVPN

connection.ThisprovideshigherWLANsecurity,asunauthorized

trafficcanbedeniedrightattheAP.

Open•Applies no wireless

security

•Provides quick deployment and easy-to-use access

•Makes the entire network system vulnerable

•Can be augmented with VPN in enterprise and high-traffic environments

WEP•Supported by most

existing hardware

•Offers sufficient security for home use, but may be cracked in a few minutes

•Can be augmented with VPN in enterprise and high-traffic environments

WPA2•Adopts the final 802.11i

standard (2004)

•Uses the new AES cipher

• Provides pre-authentication and PMK caching

•Most products are backwards compatible with WPA

WPA•Replaces WEP by using

TKIP for encryption

•Provides a standard handshake procedure for determination/ transmission of the session key

• Incorporates key features of pre-802.11i

Low Security Level High

Page 10: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

9 Industrial Wireless Guidebook

Wireless Landscape

IntroductionAWWAN(wirelesswide-areanetwork)canincludevarioustypes

ofmobilecommunicationnetworks,suchastraditionalmicrowave

transmission,satellitecommunication,andnowadayscellular

networktechnology.Allofthesenetworksofferawidecoverage

areaandcanevenbeusedforglobaltransmissionofdigitaldata.

Incellularcommunication,3Gnetworksservedmorethan1.5

billionsubscribersin2013andthenumberofusersisforecasted

toincreaseto3.5billionby2015.However,LTEtechnology(4G)is

showingrapidgrowthandisexpectedtoreplace3Gtechnologyas

theleadingstandardfornextgenerationcellularcommunication.

Majorconcernsregardingtheuseofcellularnetworksfordata

exchangeincludebandwidth,IPmanagement,andhighoperational

cost(suchassatellitecommunication).However,astechnologies

advancetoprovidemoreefficientservice,cellularnetwork

infrastructurescanbedeployedatlowercoststopotentially

replacetraditionalmicrowave,RF(radiofrequency),andsatellite

communications.

Evolution of the Cellular Network

1-3 WWAN (Cellular) Basics

Technology Multislot Class TDMA Timeslots allocated DL+UL (Active TS)

Coding Schemes (Kbps per slot) Download (Kbps) Upload (Kbps)

GPRS 10 4+1(5) CS-4(20Kbps) 4slots(80Kbps) 1slots(20Kbps)

GPRS 10 3+2(5) CS-4(20Kbps) 3slots(60Kbps) 2slots(40Kbps)

EDGE 10 4+1(5) MCS-9(59.2Kbps) 4slots(236.8Kbps) 1slots(59.2Kbps)

EDGE 10 3+2(5) MCS-9(59.2Kbps) 3slots(177.6Kbps) 2slots(118.4Kbps)

P.14

LTE-A

HSPA+(UMTS)

2G 2.XG 3G 4G

GSM GPRS

W-CDMA(UMTS)

HSPA(UMTS)

EV-DO/Rev A/Rev B

(CDMA2000)CDMAOne 1x

(CDMA2000)

LTE

WiMAX

EDGE

Evolution of Digital Cellular Standards

Page 11: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

10

www.moxa.comW

irele

ss La

nd

sca

pe

1

2G/2.XG Technology

Circuit-Switched Data for GSM Networks

GSM(GlobalSystemforMobileCommunications)isasetof

standardsformobilephonecommunicationon2Gdigitalcellular

networks.GSMwasdevelopedbytheEuropeanTelecommunications

StandardsInstitute(ETSI)andbecamethedefactostandardfor

mobilecommunicationtoreplacefirstgeneration(1G)analog

cellularnetworks.GSMusescircuit-switcheddata(CSD)forfull

duplexvoicetransmissionandthetechnologywasexpandedover

timetointroducedatacommunication—firstviacircuit-switched

transmission,whicheventuallyevolvedintopacket-switched

technologies—andthenbyGPRS(GeneralPacketRadioServices)

andEDGE(EnhancedDatarateforGSMEvolution)fortransmitting

dataviaGPRS(GeneralPacketRadioServices)andEDGE(Enhanced

DataratesforGSMEvolution).

GPRS

GeneralPacketRadioService(GPRS)isapacket-switchedservice

forGSMtransmissionon2G/2.5Gnetworkstoallowsimultaneous

voiceanddatatransmissions.GPRScanbeusedforservices,

includingSMS,MMS,email,andinternetaccess.GPRSwasfirst

developedbytheEuropeanTelecommunicationsStandardsInstitute,

andisnowmaintainedbythe3rdGenerationPartnershipProject

(3GPP).

EDGE

EnhancedData-ratesforGSMEvolution,alsoknownasEnhanced

GPRS(EGPRS),IMTSingleCarrier(IMT-SC),orEnhancedDatarates

forGlobalEvolution,isanextensionofGSM.EDGEisapre-3Gdigital

mobilephonetechnologythatallowshigherdataratesthanGPRS,

withtransmissionratesofupto384kbps.

Additional Information

Thefollowingfiguregivesaroughideaofthroughputimprovement

overtimewithdifferent2Gtechnologies.

Furthermore,GSM,GPRS,andEDGEoperateonfourcommonGSM

bands:850MHz,900MHz,1800MHz,and1900MHz.However,

sincedifferentregulationsareusedindifferentcountries,acommon

GSMfrequencyisnotusedaroundtheworld.Theaccompanying

tablegivesabriefoverviewoftheGSMbandsusedinanumberof

countries.

Continent Country 850 MHz

900 MHz

1800 MHz

1900 MHz

America

Brazil

Canada

UnitedStates

Europe

France

Germany

UnitedKingdom

Africa SouthAfrica

Asia

China

India

Russia

Taiwan

OceaniaAustralia

NewZealand

Note1:Forthelatestbandusage,pleasecontactlocalcarriers. Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheck“CarrierApproval”withyourcellulardevicevendor.

GSM Frequency Band Usage Overview (Based on major carriers)

1990 Timeline 20132003

GSMCircuit-Switched Data

GPRSUL:20kbpsDL:80kbps

EDGEUL:59.2kbpsDL:236.8kbps

Page 12: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

11 Industrial Wireless Guidebook

Wireless Landscape

3G Technologies

3GPP—From UMTS to HSPA+

UMTS

TheUniversalMobileTelecommunicationsSystem(UMTS)isaGSM-

based3Gtechnologyformobilecellularnetworksdevelopedbythe

3rdGenerationPartnershipProject(3GPP).UMTSusesWideband

CodeDivisionMultipleAccess(W-CDMA)andcombinesboth

wirelessandsatellitecellulartechnologiestotransmitupto2Mbps

ofdatatoprovidegreaterspectrumefficiencyandbandwidth.

HSPA (HSDPA/HSUPA/HSPA+)

HighSpeedPacketAccess(HSPA)isthetermforUMTS-based

3GcellularnetworksthatsupportbothHSUPA(HighSpeedUplink

PacketAccess)andHSDPA(HighSpeedDownlinkPacketAccess)

datatocommunicateviaW-CDMAprotocolstoprovidedownload

ratesofupto14.4Mbpsanduploadratesofupto5.8Mbps.A

newerversion,EvolvedHSPA(alsoknownasHSPA+),wasreleased

in2008andiscapableofprovidingdataratesofupto42Mbpsfor

downloadingand22Mbpsforuploading.

2001 Timeline 2013

UMTSUL:64kbpsDL:2Mbps

HSPAUL:5.8MbpsDL:14.4Mbps

HSPA+UL:22MbpsDL:42Mbps

HSDPADL:14.4Mbps

HSUPAUL:5.8Mbps

Additional Information

Thefollowingfiguregivesaroughideaofthethroughputimprovementovertimewithdifferent3G-UMTStechnologies.

Furthermore,thereare5commonlyusedUMTSfrequencies:800,850,900,1900,and2100.TheUMTSfrequencyusageisdifferentfordifferent

operators.ThefollowingtablegivesaroughoverviewoftheUMTSbandselectionforseveralmajoroperatorsaroundtheworld.

Continent Country 850 MHz 900 MHz 1700 MHz 1900 MHz 2100 MHz

America

BrazilTIMBR Vivo

CanadaBellMobility RogersWireless

UnitedStatesAT&TMobility T-MobileUS

Europe

FranceOrange SFR

GermanyO2 Vodafone

UnitedKingdomT-Mobile Vodafone

Africa SouthAfricaMTNSA Vodacom

AsiaChina ChinaUnicom Taiwan ChunghwaTelecom

OceaniaAustralia Telstra

NewZealandTelecomNZ VodafoneNZ

Note1:Forthelatestbandusage,pleasecontactlocalcarriers. Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheck“CarrierApproval”withyourcellulardevicevendor.

UMTS Frequency Band Usage Overview (Based on major carriers)

Page 13: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

12

www.moxa.comW

irele

ss La

nd

sca

pe

1

3GPP2—From CDMA2000 to EV-DO

CDMA2000,alsoknownasIMTMulti-Carrier(IMT-MC),isanIMT-

2000-basedstandardofCode-DivisionMultipleAccess(CDMA)that

wasdevelopedbytheITUforsendingdatabetweenmobilephones

andcelltowers(orBST,BaseTransceiverStation).CDMA2000and

W-CDMAarecompetingstandardsinthecellularcommunication

networkmarket.

CDMA2000actuallydenotesafamilyofstandardsthatrepresentthe

successive,evolutionarystagesoftheunderlyingtechnology.The

differentvariationsareallapprovedradiointerfacesforIMT-2000

andarelistedbelowinchronologicalorder:

4G Technologies

Pre-4G vs. True 4G

Today'soperatorsrefertoLTEandWiMAXtechnologiesasfourth

generationcellulartechnologies(4G).However,accordingtothe

InternationalTelecommunicationUnion,“True4G”technology

shouldprovideGigabit-leveldatarateswhenstationary,andapeak

rateof100Mbpsforhighlymobileapplicationsandothercriteria

(detailsgivenbelow).Thissectiongivesabriefintroductiontopre-4G

technology(LTE),andtrue-4Gtechnology(LTE-A).

Requirements of IMT-Advanced (4G)• ThecandidateRadioInterfaceTechnology(RIT)shallbebasedon

anIP-basedpacketswitchednetwork.

• ThecandidateRITshallprovideanominaldatarateof100Mbps

whentheclientisphysicallymovingathighspeedsrelativetothe

basetransceiverstation(BST),and1Gbpsforlow-speedmobility

orrelativelyfixedpositions.

• ThecandidateRITshallbeabletodynamicallyshareandusethe

networkresourcestosupportmoresimultaneoususerspercell.

• ThecandidateRITshallbeabletousedifferentbandwidth

allocationstosupportascalablebandwidthofupto(and

including)40MHz.

• ThecandidateRITshallhaveaminimumdownlinkpeakspectral

efficiencyof15bits/s/Hz,andaminimumuplinkpeakspectral

efficiencyof6.75bits/s/Hz.

• Forindoorenvironments,thecandidateRITshallhaveacell

spectralefficiencyofupto3bits/s/Hz/cellfordownlinkand2.25

bits/s/Hz/cellforuplink.

• ThecandidateRITshallprovideseamlesshandoversandglobal

roamingacrossmultipleheterogeneousnetworks.

• ThecandidateRITshallofferahighqualityofservicefornext

generationmultimediaservices.

2000 Timeline 2013

CDMA20001XUL:153kbpsDL:153kbps

1xEV-DORel.0UL:153kbpsDL:2.4Mbps

1xEV-DORev.AUL:1.8MbpsDL:3.1Mbps

EV-DORev.BUL:5.4MbpsDL:14.7Mbps

DOAdvancedUL:12.4MbpsDL:32Mbps

1XEnhancementsEVRC-B+QLIC+QQFUL:153kbpsDL:153kbps

1XAdvancedNEWCHANNELCARDUL:307kbpsDL:307kbps

Page 14: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

13 Industrial Wireless Guidebook

Wireless Landscape

LTE Data Speeds

LTE

PeakDownload 100Mbps

PeakUpload 50Mbps

Long Term Evolution (LTE)

Thepre-4G3GPPLongTermEvolution(LTE)technologyisoften

branded“4G-LTE”,butthefirstLTEreleasedoesnotfullycomply

withtheIMT-Advancedrequirements.LTEhasatheoreticalnetbit

ratecapacityofupto100Mbpsinthedownlinkand50Mbpsin

theuplinkifa20MHzchannelisused,andmoreifmultiple-input

multiple-output(MIMO),i.e.,antennaarrays,areused.Thefollowing

tablegivesatheoreticalmeasurementoftheLTEdatarate.

LTE Advanced Data Speeds

LTE Advanced

PeakDownload 1Gbps

PeakUpload 500Mbps

Additional Information

LTEin2013isstillagrowingtechnology,andfrequencyusageorregulationisstillevolvingovertime.ThefollowingtablegivesasnapshotofLTE

frequencyusagein2013.ForthelatestinformationpleasecontactyourlocalLTEserviceprovider.

Continent Country 700 MHz 800 MHz 850 MHz 900 MHz 1700 MHz 1800 MHz 2100 MHz 2300 MHz 2600 MHz

America

Brazil

Canada

UnitedStates

Europe

France

Germany

UnitedKingdom

Africa SouthAfrica

AsiaJapan

SouthKorea

OceaniaAustralia

NewZealand

Note1:Forthelatestbandusage,pleasecontactlocalcarriers. Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheck“CarrierApproval”withyourcellulardevicevender.

Long Term Evolution Advanced (LTE-A)

LTE-Advanced(LongTermEvolutionAdvanced)wasformally

submittedbythe3GPPorganizationtoITU-Tinfall2009asa

candidatefortheIMT-Advancedstandardandisexpectedtobe

releasedin2013.LTE-Advancedisessentiallyanenhancement

totheexistingLTEtechnologyformobilenetworks.LTEandLTE-

Advancedalsomakeuseofadditionalspectrumsandmultiplexingto

allowhigherdataspeeds.CoordinatedMulti-pointTransmissionwill

alsoallowmoresystemcapacitytohelphandletheenhanceddata

speeds.Release10ofLTEisexpectedtoachievethedata-speed

requirementsofIMT-Advanced.Release8currentlyprovidesup

to300Mbpsofdatadownload,whichisstillinadequateforIMT-

Advancedstandards.

LTE Frequency Band Usage Overview (Based on major carriers)

Page 15: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

14

www.moxa.comW

irele

ss La

nd

sca

pe

1

1-4 WPAN Basics

IEEE 802.15 Standards for WPAN WPAN(WirelessPersonalAreaNetwork)technologies,alsoknown

asIEEE802.15,weredevelopedbytheIEEEforpersonal-area

communicationacrossashort-distancewirelessnetwork,which

IEEE 802.15.4 Low Rate WPAN IEEE802.15.4(LowRateWPAN)providesanuncomplicatedmethod

forlowdataratecommunicationbutwithaverylongbatterylife(low

powerconsumption).Thestandarddefineslayer1(physical)and

layer2(datalink)oftheOSIreferencemodel.Severalstandardized

andproprietaryprotocolscanbeusedforcommunicationon

802.15.4networks,suchasIEEE802.15.5,ZigBee,ISA100.11a,

6LoWPAN,andWirelessHART.

includeswirelesscommunicationbetweenmobilecomputers,and

devicessuchascellphones,laptops,andPDAs.Thetablebelow

compareskeyfactorsforvarioustypesofWPANtechnology.

SPAN (IEEE) Technology Data Rate Distance

IEEE802.15.1 Bluetooth 1Mbps 10m(Class3)100m(Class1)

IEEE802.15.2 CoexistenceMechanismsbetweenWLANandWPAN

IEEE802.15.3 HighRateWPAN(UWB) 11,22,33,44,55Mbps 30to50m

IEEE802.15.3a Alternate15.3PHY >100Mbps 10m

IEEE802.15.4 LowRateWPAN(ZigBee) 250kbps 1to100m

IEEE802.15.4a LowRateAlternativePHYof802.15.4(UWB) 5Mbps <1000m

IEEE802.15.4b RevisionsandEnhancementsIEEE802.15.4

Upper layers

802.15.4 Architecture

ZigBee

802.15.4

IEEE 802.15.4 LLC

IEEE 802.15.4 MAC

IEEE 802.15.4 868/915 MHz PHY

IEEE 802.15.4 2400 MHz PHY

IEEE 802.2 LLC, Type 1

}

}

Page 16: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

15 Industrial Wireless Guidebook

Wireless Landscape

ZigBeeDevelopedforlowcostandlowpowerconsumption,ZigBeeisa

globalstandardbasedonIEEE802.15.4formachine-to-machine

(M2M)networkcommunicationusingunlicensedbands(868MHz

inEurope,900MHzintheUS,and2.4GHzglobally).Therelatively

lowcostallowsZigBeetobewidelydeployedinwirelesscontrol

andmonitoringapplications,anditslowpowerrequirementsallows

nodestooperateformonths,andevenuptoafewyears,atatime

withouthavingtoreplacethebatteries.Meshnetworkingprovides

highreliability,extensivecoverageareas,andnetworkflexibility.Data

transmissionratescanrangefrom20kbps(868MHz)to250kbps

(2.4GHz).

TheZigBeenetworklayersupportsstar,tree,andmeshnetwork

topologies.Everynetworkmusthaveatleastonecoordinatordevice.

Withinstarnetworks,thecoordinatormustbethecentralnode.Both

treeandmeshnetworktopologiesallowtheuseofZigBeeroutersto

extendcommunicationatthenetworklevel.

Thespecificationgoesontocompletethestandardbyaddingfourmaincomponents:networklayer,applicationlayer,ZigBeedeviceobjects

(ZDOs),andmanufacturer-definedapplicationobjects,whichallowforcustomization,andfavortotalintegration.

ZigBeeisnotdesignedforpowerlinenetworkingbutisoftenusedinapplicationssuchasbuildingautomation,lightingcontrols,HVACcontrol,

medicaldevices,andwarehouseapplications.ZigBeenodesarehighlycosteffectiveandcanrecoverfromsleepmodeinlessthan30

millisecondstoprovidelowlatencynetworkcommunication.

Star Tree Mesh

Mobility L M H

Distance 100m 500m 1000m

Stability H M L

Efficiency H M L

StarCoordinatorRouterEnd Device

Tree Mesh

Application (APL) LayerApplication Framework

Application Support Sublayer (APS)

SecurityServiceProvider

ZD

O M

anag

emen

t Pla

ne

Medium Access Control (MAC) Layer

Physical (PHY) Layer

ZigBee Device Object(ZDO)

Application Object 240

APSDE-SAP

APS SecurityManagement

SecurityManagement

2.4 GHz Radio 868/915 MHz Radio

RoutingManagement

NetworkManagement

MessageBroker

APS MessageBroker

ReflectorManagement

AP

SD

E-S

AP

NLDE-SAP

IEEE 802.15.4 defined

ZigBee Alliance defined

End manufacturer defined

Layer function

Layer interface

NLME-SAP

MLME-SAP

PLME-SAP

NLM

E-S

AP

PD-SAP

Endpoint 1APSDE-SAP

Endpoint 0APSDE-SAP

ZD

O P

ublic

In

terf

aceApplication

Object 1

Page 17: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

16

www.moxa.comW

irele

ss La

nd

sca

pe

1

TheIEEE802.15.4standardforZigBeenetworksisidealforWPANcommunicationinindustrialapplications.ZigBeenetworksprovidesimpleand

low-costwirelesscommunicationforserialdevices,suchassensors,meters,anddisplays,toprovideflexibledatacommunicationwithminimal

cablingrequired.AdditionalZigBeenetworkbenefitsinclude:

• ZigBeemeshnetworkscanextendupto120nodes

• ConfigurableinStar,Tree,andMeshtopologies

• Easyinstallationandlowpowerconsumptionreducestotalcostofownership

ZigBee SolutionTheZigBeeprotocolhasbeenacceptedbyover300companies

(knownastheZigBeeAlliance)acrosstheglobeasareliableopen

standardtoprovidealow-costpersonal-areainfrastructureforlow

data-ratecommunication.

AZigBeenetworkconsistsofthreetypesofdevices/nodes;the

ZigBeecoordinator(ZC),ZigBeerouter(ZR),andZigBeeenddevice

(ZED).

ZigBee Coordinator

EveryZigBeenetworkhasonecoordinatorfornetworkmanagement

anddatarouting.Thecoordinatorshouldbemains-poweredbecause

ZigBeenetworkcommunicationreliesontheZC.

ThefollowinggraphillustratesatypicalZigBeenetworktopology,

whichgenerallyincludesthreedevicetypes.Serialdevicescanbe

connectedtoanyZigBeedevicetypetoexchangedataviathePAN.

Autilityisusuallyprovidedbythedevicemanufacturertoconfigure

theZigBeenetwork.

ZigBeedevicesthatareconfiguredasthecoordinator(ZC)canhave

anEthernet-enabledinterfacetoprovideaccesstoanotherdevice,

Ethernet-basednetwork,ortheInternet.Thefollowinggraphshows

twosucharchitectures.

ZigBee Router

Routersforwarddataacrossthenetworkthroughmulti-hoprouting

andareusuallymains-powered.Otherthanconnectingtorouters,

enddevicescanalsoconnectdirectlytothecoordinator.

ZigBee End Device

ZigBeeenddevicesaregenerallyconnectedtothenetworkthrough

routers.Inadditiontorelyingonmains-power,enddevicescan

bebattery-poweredtoobecauseoftheirlow-powerconsumption.

Mostly,enddevicessleeptoconservebatterypowerandwakeup

regularlytocollectandtransmitdata.

Coordinator Router End Device Coordinator Router End Device

Internet

Connection to a Host Uplink to a Network

Page 18: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

17 Industrial Wireless Guidebook

Understanding Wireless Technology

2-1 Radio System Concepts

How Radio Works

Electromagnetic Waves

DataistransmittedthroughtheairwithElectromagnetic(EM)waves,

whichareformedbyanalternatingcurrentthatisrapidlychanging

directiononaconductivematerial.Therapidoscillationofelectric

andmagneticfieldsaroundtheconductorprojectselectromagnetic

wavesintotheair(seetheaccompanyingfigure).Inorderforcurrent

toberadiatedintotheairintheformofelectromagneticwaves,

afewfactorsarecritical;namely,thelengthoftheconductor

andfrequencyoftheACcurrent.Ahigherfrequencyreducesthe

requirementforconductorlength.

Anantenna(alsocalledanaerial)isaconductordevicedesigned

totransmitand/orreceiveelectromagneticwavesduringwireless

communication.

Tx & Rx

Everyradiosetupincludestwomajorcomponents:

• Transmitter(abbreviatedasTx)

• Receiver(abbreviatedasRx)

Electromagneticwavesareradiatedfromatransmittertoareceiver.

Thetransmitterencodesvoice,video,anddataontoasinewave,

andtransmitsitviaradiowaves.Thereceiverreceivestheradio

wavesanddecodesthewavestoretrievetheinformation.Boththe

transmitterandreceiveruseantennastoradiateandcaptureradio

signals.Thefollowingfigureisanexampleofthesystemarchitecture

andblockdiagramofanIEEE802.11aradiounit.Youcanseethat

thetransmitterandreceiverarebothfeaturedinthesameradio

unit.Theupperpath,fromtheantennaside(left)toadatastream

(right),showshowtheradiosignalistransferredtoadatastreamvia

areceiverandseveralfunctionalblockswhilethelowerpathshows

howtransmissionworks.Amultiplexerisusedtoselectapathfor

transmissionorreception.

Understanding Wireless Technology

Magnetic field

Electric field

Propagationdirection

Wavelength (λ)

I & QModulator

SymbolShaping

FECEncoder

FECDecoder

GuardIntervalAddition

GuardInterval

Removed

Interleavingand

mapping

Demappingand

Deinterleaving

IFFT

FFT

MultiplexerAntennaSwitch

AutomaticFrequency

ControlClock Recovery

I & QDemodulator

Receiver Level Determination

11010111

01001011

Automatic Gain ControlAmplifier

Mixer

AmplifierMixer

Low Noise Amplifier

Thesize(orlength)oftheantennaisdirectlyproportionaltoits

desiredtransmission/receptionfrequency.

Page 19: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

18

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

Propagation

AsEMwavespropagatethroughtheair,theyexperiencethe

followingtypesofalterationsastheyencounterdifferenttypesof

obstacles:

Diffraction (Shadow Fading)

Signalstrengthisreducedafterexperiencingdiffraction.Obstacles

causingdiffractionusuallyhavesharpedgessuchastheedgesof

buildings.WhenEMwavesencounteranobstaclewithsharpedges

thatcannotbepenetrated,theEMwaveswraparoundtheobstacle

toreachthereceiver.

Scattering

WhenEMwavesencountermanysmallobstacles(smallerthanthe

signalwavelength),theEMwavesscatterintomanysmallreflective

wavesanddamagethemainsignal,causinglowqualityoreven

MIMO

MIMO(MultipleInput/MultipleOutput,commonlypronounced“my-

mo”)isatechnologythatusesmultipletransmittersandreceivers

(withmultipleantennas)toimprovetheperformanceofwireless

communication.Thefollowinglettersareusedtodescribesuch

aradiosystem:M=Multiple;S=Single;I=Input;O=Output.

TheM,S,I,andOrelatetowhatisdoneintheair,notthedevice.

Forexample,regardingaMIMOradiosystem,MI(multipleinputs)

meansmultipletransmitterssendmultipledatastreams“into”the

air.MO(multipleoutputs)meansmultiplereceiversacquiremultiple

datastreams“outof”theair.Notethatthetermsinputandoutput

refertotheradiochannelcarryingthesignal,nottothedeviceswith

antennas.

Whenmultipletransmittersandmultiplereceiversareused,simulta-

neousdatastreamscanbesent,whichincreasethedatarate.Inad-

dition,multiplereceiversallowgreatercoverageandlongerdistances

betweendevices.TheIEEE802.11nstandardusesMIMOtoincrease

speedto100Mbpsandbeyond.MIMOtechnologyisalsousedin

LTEandotherwirelessstandards.

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

Tx Rx

RxTx

brokenlinks.Suchobstaclesincluderoughsurfaces,rocks,sand,

dust,treeleaves,streetlights,etc.

Reflection

WhenEMwavesrunintolargeobstaclessuchastheground,walls,

orbuildings,theyreflectandchangetheirdirectionandphase.Ifthe

reflectedsurfaceissmooth,thereflectedsignalwilllikelyrepresent

theinitialsignalandnotbescattered.

Alloftheabovephenomenaresultinmultipathpropagationsonot

allsignalswillarriveatthereceiverantennaatthesametimedue

toobstaclesthatchangethesignalpaths.Whetheryouaresetting

upanoutdoororindoorapplication,multipathcanseverelyaffect

receivedsignalqualitybecausethedelayedsignalsaredestructiveto

themainsignal.Themultipathissuecanusuallybecompensatedby

antennadiversityattheRFleveland/orbyOFDMatthebasebandlevel.

The various systems are illustrated below:

•Single-inputsingle-output(SISO)

•Multiple-inputsingle-output(MISO)

•Single-inputmultiple-output(SIMO)

•Multiple-inputmultiple-output(MIMO)

Page 20: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

19 Industrial Wireless Guidebook

Understanding Wireless Technology

Transmit Power and Received Sensitivity

Whenaradiosignalisbeingtransmittedthroughtheair,itwill

experienceagreatlossinsignalstrength,knownasattenuation,

whilepropagatingthroughfreespace.Therefore,whenevaluating

awirelesssystem,oneneedstobeawareofthesignalpowerlevel

atthetransmitterendandatthereceiverend.Thesignalpower

receivedcannotbesoweakastobreakthecommunicationlink,or

toostrongastosaturatethereceiver’samplifiers.

Theseconcernscallforestimatingthe“powerbudget”ofawireless

system.Powerbudgetestimationswillgiveanideaofhowfarto

extendthewirelesslinkwithoutlosingcommunication.Notethatthe

followingcalculationsaretheoreticalestimatesthatarenotmeantto

guaranteecommunicationdistance.TheformulascomefromtheFriis

Equationandarebasedontheideaof“FreeSpaceLoss”.

TheFriisTransmissionFormulaenablesustocalculatethepower

received(Pr)giventhataknownpower(P

t)isradiated.Friisassumes

thatbothantennasareisotropic,and“Freespace”impliesthatthere

arenoobjectspresenttoaffectpropagation.Thetheoreticalformula

maylooklikethis:

whereGtandG

rarethegainofthetransmittingandreceiving

antennas,λisthewavelength,andRisthedistancefromtheradiator.

Sinceλ=c/F, where cisthespeedoflight(3x108m/s)andFis

thefrequencyinHz,wecansimplifytheformulaandrepresentthe

effectivetransmissiondistancer(inkm)asfollows

wherefisthefrequencyinMHz,ptandp

rareindBm,andg

tandg

r

areindBi.

Theseparametersareeasytoobtainfromthedesignortheproduct

specifications.Pluginthevaluesfortheseparameterstogetthe

effectivedistance.Inreality,duetosystemlossortheuseofnon-

isotropictransmittingandreceivingantennas,weusuallydivide

thetheoreticalresultbyafactorof4toobtainamorereasonable

distance.Infact,factorsof8orhighermaybeusedifthesystemand

environmentalconditionsarenotcontrollable.

(pt + gt + gr _ pr ) /20 10r=

41.88 fx

=GtGrPP ( )

2λ4πR

r

t

Signal Power

Radiosignalsaretransmittedatacertainpowerlevel,withpower

measuredinwatts.However,powerratingsforaWLANareusually

measuredinmilliwatts(mW).AcommercialwirelessAPtransmits

between30to100mWofpower,andabout50mWforwireless

adaptors(clients).Certainapplicationswillrequirehighertransmit

power(orTxpower)andmayattempttousepowerboostersor

customizedhigh-powermodulestoamplifythetransmitpower.

However,suchattemptsmustbeperformedwithcautionaspower

amplificationmaycausethesystemtoexceedthecountry’sradio

emissionregulations(i.e.,FCCregulations).

PowermeasuredinmWishardonthemathwhendealingwith

extremelysmallpowerlevelsatthereceiverend.Therefore,instead

ofusingabsolutevalues(milliwatts)weoftenconverttheminto

dBm.TheunitofdBmisalogarithmicrepresentationofmW.The

conversionsareasfollows:

What You Need to Know about a Radio System

ThedBmisanabsoluteunitwhichisreferencedtothemilliwatt.0

dBmequals1milliwatt.TheunitdBmisusedforameasurementof

absolutepower.Bycomparison,thedecibel(dB)isadimensionless

unit,usedforquantifyingtheratiobetweentwovalues.Roughly

speaking,a3-dBincreaserepresentsroughlydoublingthepower,

whilea3-dBdecreasemeansthatthepowerisreducedbyabout

onehalf.Hereisaquicktableshowingunitconversions:

dBm mW dBm mW dBm mW-3 0.5 9 8 21 126

-2 0.6 10 10 22 158

-1 0.8 11 13 23 200

0 1.0 12 16 24 250

1 1.3 13 20 25 316

2 1.6 14 25 26 398

3 2.0 15 32 27 500

4 2.5 16 40 28 630

5 3.2 17 50 29 800

6 4 18 63 30 1000

7 5 19 79 33 2000

8 6 20 100 36 4000

dBm logPmWP = 10

mWP = 10dBmP

10( )

Page 21: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

20

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

Spread-spectrumtechniquesaremethodsfortransmittinga

radiosignaloverabandwidththatisconsiderablylargerthanthe

frequencycontentoftheoriginalinformation.Spread-spectrum

techniquesprovidethebenefitsofsecurecommunications,better

resistanceagainstinterference,noise,andjamming,andlimiting

thepowerfluxdensity.Tosimplifythisdiscussion,onlyspread-

spectrumtechniquesthatpertaintotheradio-basedphysicallayers

inthe802.11standard,namelyFHSS,DSSS,andOFDM,willbe

discussed.

FHSS (Frequency Hopping Spread Spectrum, or FH)

Thisisoneofthemodulationtechniquesusedinspreadspectrum

signaltransmission.ItisalsoknownasFrequency-HoppingCode

DivisionMultipleAccess(FH-CDMA).Spreadspectrumenablesa

signaltobetransmittedacrossafrequencybandthatismuchwider

thantheminimumbandwidthrequiredbytheinformationsignal.The

transmitter“spreads”theenergy,originallyconcentratedinanarrow

band,acrossanumberoffrequencybandchannelsonawider

electromagneticspectrum.FHSShastheadvantagesofimproved

privacy,decreasednarrowbandinterference,andincreasedsignal

capacity.

DSSS (Direct Sequence Spread Spectrum, or DS)

DSSSdividesastreamofinformationtobetransmittedintosmall

pieces,eachofwhichisallocatedtoafrequencychannelacrossthe

spectrum.DSSSgeneratesaredundantbitpatternforeachbittobe

transmitted.Thisbitpatterniscalledachip(orchippingcode).Even

ifoneormorebitsinthechiparedamagedduringtransmission,

statisticaltechniquesembeddedintheradiocanrecovertheoriginal

datawithouttheneedforretransmission.Directsequencespread

spectrumisalsoknownasdirectsequencecodedivisionmultiple

access(DS-CDMA).Thismodulationtechniqueisofficiallyaccepted

andusedbytheIEEE802.11bandIEEE802.11gstandards.

Modulation and Spread Spectrum

Modulationistheprocessofconveyingamessagesignalbyvarying

oneormorepropertiesofaperiodicwaveform,calledthecarrier

signal,withamodulatingsignalthatencodestheinformationtobe

transmitted.Theactofextractingtheoriginalinformation-bearing

signalfromamodulatedcarrierwaveiscalleddemodulation.

TherearemanyRFmodulationtechniques.Theaccompanyingchart

categorizesdifferentdigitalmodulationtechniques.

Category Digital Modulation Technology

Phase-shiftkeying

BinaryPSK(BPSK)BinaryPSK(BPSK)QuadraturePSK(QPSK)DifferentialPSK(DPSK)DifferentialQPSK(DQPSK)Multi-phaseshiftkeying(M-aryPSKorMPSK)π/4–QPSK

Frequency-shiftkeying

Audiofrequency-shiftkeying(AFSK)Multi-frequencyshiftkeying(M-aryFSKorMFSK)Dual-tonemulti-frequency(DTMF)

ComplementaryCodeKeying ComplementaryCodeKeying(CCK)

Quadratureamplitude MultipleQuadratureamplitudemodulation(M-aryQAM)

ContinuousphaseMinimum-shiftkeying(MSK)Gaussianminimum-shiftkeying(GMSK)Continuous-phasefrequency-shiftkeying(CPFSK)

Frequency-divi-sionmultiplexing Orthogonalfrequency-divisionmultiplexing(OFDM)

Spread-spectrumDirect-sequencespreadspectrum(DSSS)Chirpspreadspectrum(CSS)Frequency-hoppingspreadspectrum(FHSS)

Theformulaalsoshowsthattherearemanyotherfactorsinvolved

thatwillaffecttransmissiondistance.Thereceiver’ssensitivityis

theminimumpowerlevelthatisrequiredforthereceivertoprocess

receiveddata.Thespecifiedsensitivityisnotthepowerdetectedby

thereceivingantenna,butthepowerpresentatthereceivermodule.

Animportantpointtonotefromtheaboveequationisthatasthe

frequencyincreases,theeffectivedistancedecreases.Therefore,

the5GHzband-enabled802.11aand802.11nstandardswillyield

ashortercommunicationdistancethan2.4GHz-enabled802.11b/g

and802.11n.Userswhowishtocommunicateoverlongdistances

shouldthereforeselectthe2.4GHzbandandtake802.11b/g/nas

theiroperatingstandard.

Page 22: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

21 Industrial Wireless Guidebook

Understanding Wireless Technology

ISM and Unlicensed Bands

Unlicensedbandsarepartoftheradiospectrumthatcanbeused

byanybodywithoutapplyingforalicense.Awell-knownunlicensed

bandistheISM(industrial,scientific,andmedical)radioband,

whichisreservedinternationallyfortheuseofradiofrequency(RF)

energyforindustrial,scientific,andmedicalpurposesotherthan

communications.TheISMbandsaredefinedbytheITU-Rin5.138,

5.150,and5.280oftheradioregulations.ThreeISMbandsare

commonlyused:

• 902MHzto928MHz

• 2.400GHzto2.500GHz

• 5.725GHzto5.875GHz

Usageofthebandsdesignatedinthesesectionsmayvaryin

differentcountriesduetovariationsinnationalradioregulations.

IntheU.S.,ISMbandusageisgovernedbyFCC(Federal

CommunicationsCommission)Part18,andPart15contains

regulationsforunlicensedcommunicationdevices(eventhosethat

shareISMfrequencies).InEuropeancountries,theuseoftheISM

bandiscoveredbyShortRangeDevice(SRD)regulationsissuedby

theEuropeanCommission,basedontechnicalrecommendationsby

CEPTandstandardsbyETSI.

Regulatoryauthoritiesmayallocatepartsoftheradiospectrumfor

unlicensedcommunicationsthatmayormaynotalsobeallocated

asISMbands.Forexample,theFCCregulatestheusablefrequency

bandsandthemaximumallowablepowerinthesefrequencybands

fortheUnitedStates.From1997,ithasaddedadditionalbands

inthe5GHzrangeunderPart15.407,knownastheUnlicensed

NationalInformationInfrastructure(U-NII)bandsforWLANusage.

U-NII band a.k.a. Frequency Bandwidth Usage DFS Power Limitation

Max EIRP (with 6 dBi Ant.) Note

U-NII-1 U-NIILow 5.15to5.25GHz 100MHz Indooronly No 50mW 23dBm/

200mW

U-NII-2A U-NIIMid,U-NII-2 5.25-5.35GHz 100MHz Indoor&

Outdoor Yes 250mW 30dBm/ 1W

U-NII-2B U-NIIUpper 5.35to5.47GHz 120MHz - - - - Notdeterminedyet

U-NII-2C U-NIIWorldwide,U-NII-2e 5.47to5.725GHz 225MHz Indoor&

Outdoor Yes 250mW 30dBm/1W

Operationsonch120-128(5.6to5.65GHz)bandislimitedbecause

ofweatherradar

U-NII-3 U-NIIUpper 5.725to5.825GHz 100MHz Indoor&Outdoor No 1W 36dBm/

4W OverlapswiththeISMband

U-NII-4 U-NIIUpper 5.85to5.925GHz 75MHz - - - - Notdeterminedyet

OFDM (Orthogonal Frequency Division Multiplexing)

OFDMisamodulationschemethatdividesasingledigitalsignal

simultaneouslyacross1,000ormoresignalcarriers.Thesignals

aresentatrightangles(orthogonal)toeachothersotheydo

notinterferewitheachother.OFDMhastheabilitytoovercome

multi-patheffectsbyusingmultiplecarrierstotransmitthesame

signal.OFDMiscommonlyusedintheIEEE802.11aand802.11g

standards.Non/nearline-of-sightassociationscanalsobeachieved

byusingtheOFDMtechnique.

The802.11g(802.11bbackwardscompatible)standardisused

belowasanexampleforhowthetransmissiontypeofspread

spectrumandmodulationschemecorrespondstoeachdatarate:

Data Rate (Mbps) Transmission Type of Spread Spectrum Modulation Scheme

54 OFDM 64QAM

48 OFDM 64QAM

36 OFDM 16QAM

24 OFDM 16QAM

18 OFDM QPSK

12 OFDM QPSK

11 DSSS CCK

9 OFDM BPSK

6 OFDM BPSK

5.5 DSSS CCK

2 DSSS QPSK

1 DSSS BPSK

Page 23: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

22

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

Advantages and Disadvantages of Using Unlicensed Bands

ISMandU-NIIarebothunlicensedbands,whichallowanyoneto

transmitinthesebandswithoutalicensefromtheFCCorrelated

authorities.Itistheopeningoftheseunlicensedbandsthathas

allowedtheWLANbusinesstogrowinsmallbusinessesandhomes.

However,thefreedomoftheselicense-freebandsalsomeans

agreatnumberofun-licensedusersmaybesharingthesame

bandwidth.Thepowerfulemissionsofthesedevicescancreate

electromagneticinterferenceanddisruptradiocommunicationusing

thesamefrequency,sothesedeviceswerelimitedtocertainbands

offrequencies.Ingeneral,communicationsequipmentoperatingin

theseunlicensedbandsmusttolerateanyinterferencegeneratedby

otherequipment,anditalsomeansthatusershavenoregulatory

protectionfromdevicesoperatingonunlicensedbands.

Let’stakethe2.4GHzbandasanexample.Inthefollowingdiagram,

therearethreenon-overlappingchannelsforDSSSoperation(IEEE

802.11b).Whenchannel-bondingisappliedinIEEE802.11n,there

isonlyonenon-overlappingchannel(eitherch3orch11),which

meansthattheoperationofonedevicecaneasilyinterferewithother

devices,andviceversa.Thatiswhysomevendorsdonotprovide

channel-bondingfor2.4GHzbandoperation.

Inthefollowingsections,ourdiscussiononlyincludesthe2.4GHz

bandand5GHzbandbecausetheyarethemostcommonlyused

bandsinWLANapplications.InadditiontoIEEE802.11standards,

thetradeoffsbetweenthesetwobandsareusuallyconsideredwith

interference(almostentirelyinthe2.4GHzband)andrange(bigger

powerlossshortensthetransmissiondistanceinthe5GHzband).

902-928 MHz

2400-2500 MHz

U-NII-1 U-NII-2A U-NII-2B U-NII-3 U-NII-4U-NII-2C

ISM: 2.4 GHz

ISM: 900 MHz

ISM: 5.8 GHz

900

100 km

3 kHzincreasing wavelength

30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

10 km 1 km 100 m 10 m 1 m 10 cm 1 cm 1 mm

VLF

maritimenavigation

signals

navigationalaids

AM radio,maritime radio

shortwave radio VHF television,FM radio

UHF television,cellular phone,

GPS

space andsatellite

communications,microwavesystems

radio astronomy

LF MF HF VHF UHF SHF EHF

2400 2425 2450 2475

5100 5200 5300 5400 5500 5600 5700 5800 5900

2500

910 920 930 MHz

6000 MHz

MHz

increasing frequency

2.4 GHz

802.11b (DSSS) channel width 22 MHz

802.11n (OFDM) 44 MHz ch. width - 33.75 MHz used by sub-carriers

2.4835 GHz 2.5 GHz

Channel 12412 MHz

Channel 32422 MHz

Channel 112462 MHz

Channel 62437 MHz

Channel 112462 MHz

2.4 GHz 2.4835 GHz 2.5 GHz

ThefollowingdiagramshowsthespectrumoverviewoftheISMandU-NIIbands.

Page 24: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

23 Industrial Wireless Guidebook

Understanding Wireless Technology

Channel Number

Center Frequency

(MHz)

Regulatory Domain

US EU JP

8 2447 Yes Yes Yes

9 2452 Yes Yes Yes

10 2457 Yes Yes Yes

11 2462 Yes Yes Yes

12 2467 Yes Yes

13 2472 Yes Yes

14 2484 Yes*

ChannelNumber

Center Frequency

(MHz)

Regulatory Domain ChannelNumber

Center Frequency

(MHz)

Regulatory Domain

US EU JP US EU JP

36 5180 Yes Yes Yes 116 5580 Yes Yes Yes

40 5200 Yes Yes Yes 120 5600 No** Yes Yes

44 5220 Yes Yes Yes 124 5620 No** Yes Yes

48 5240 Yes Yes Yes 128 5640 No** Yes Yes

52 5260 Yes Yes Yes 132 5660 Yes Yes Yes

56 5280 Yes Yes Yes 136 5680 Yes Yes Yes

60 5300 Yes Yes Yes 140 5700 Yes Yes Yes

64 5320 Yes Yes Yes 149 5745 Yes Yes*** No

100 5500 Yes Yes Yes 153 5765 Yes Yes*** No

104 5520 Yes Yes Yes 157 5785 Yes Yes*** No

108 5540 Yes Yes Yes 161 5805 Yes Yes*** No

112 5560 Yes Yes Yes 165 5825 Yes Yes*** No

**Thesechannelshavebeeneliminatedfrom2010toavoidinterferencewithTerminalDopplerWeatherRadar(TDWR)systems.***ThesechannelsareonlyrelatedtotheuseofShortRangeDevices(SRD)with25mWpowerlimitation.

Channel Number

Center Frequency

(MHz)

Regulatory Domain

US EU JP

1 2412 Yes Yes Yes

2 2417 Yes Yes Yes

3 2422 Yes Yes Yes

4 2427 Yes Yes Yes

5 2432 Yes Yes Yes

6 2437 Yes Yes Yes

7 2442 Yes Yes Yes

2.4 GHz Band

802.11b/garethemostcommonlyusedWLANstandardstoday.The

2.4GHzISMbandissupportedbyalmosteverycountryworldwide.

Noteverycountrysupportsthesamechannelsinthe2.4GHzISM

band,sousersneedtomakesurethatthewirelessAPmatches

thesamestandardthatisbeingusedinthatcountry.Thefollowing

chartshowschannelsthataresupportedinthe2.4GHzISMband

5 GHz Band

802.11a/h/j/n/acusethe5GHzband.Comparedwiththe2.4GHz

band,the5GHzbandisconsideredtohavemoreclearoptions:

afullchannelwidthreservedwithoutoverlap,andlessnon-Wi-Fi

interferenceandtightercellpackingforhighercapacity.However,

everycountryappliesitsownradioregulationstoallocatethe

allowablechannelsandmaximumpowerlevelswithinthe5GHz

band.Networkoperatorsshouldconsultlocalauthoritiesasthese

regulationsaresubjecttochangeatanytimeandmaybeoutof

date.Seebelowforchannelssupportedinthe5GHzbandforthe

threeregulatorydomains.

fordifferentregulatorydomains.AlthoughtheISMbandisopen

between2.4to2.5GHz,IEEE802.11b/gstandardsonlyuse2.400

to2.4835GHz.Theminormismatchisduetochannelspacingand

providesabuffertopreventpowerfromleakingintothelicensed

bands.

*Ch14isvalidonlyforDSSSandCCKmodesinJapan.

Page 25: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

24

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

900 MHz Band

Deployinglongdistancecommunicationisusuallyexpensivefor

industrialapplicationsthatrequireafastandreliableconnection.

Moxa’sAWK-3191wirelessAP/bridge/clientnotonlyeliminatesthe

wiringexpense,italsogivesusersfieldtested900MHzwireless

communicationata6Mbpsdatarateoveradistanceof30km,

providinganexcellentalternativetoexpensivemicrowaveradios.

Unliketraditionalpoint-to-point900MHzdevices,theAWK-3191

supportsbothmaster/slaveandAP/clientoperationmodestoenable

bothpoint-to-pointandpoint-to-multi-pointcommunicationfor

thekindofline-of-sightapplicationsrequiredbyawiderangeof

applications,includingopen-pitmining,offshoredrilling,pipeline

monitoring,andoilandgas.

TheAWK-3191followsthe802.11standardtoprovidereliable

andsecurewirelesscommunication,andusesfrequency-shifting

technologytoallowadvanceduserstoadjustthecentralfrequency

andcommunicationbandwidthtoavoidsignalinterference.Together

withMoxa’sindustrialdesign,whichincludesawideoperating

temperatureof-40to75°Candpowerandantennaisolation,the

AWK-3191istrulythebestlongrangewirelesssolutionforindustrial

applications.

900MHzwireless AWK-3191

Antenna 12dBiYagi

Connection Point-to-Point

Distance 30km

TransmissionPower 24dMb

Throughput 6to7Mbps30 km

Field Test: Proven performance and reliability over a distance of 30 km

Page 26: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

25 Industrial Wireless Guidebook

Understanding Wireless Technology

2-2 WLAN Antennas

Why Using the Right Antenna is Important

Antenna Parameters

Frequency

Anantennaisatransducerthatisdesignedtotransmitand/or

receiveelectromagneticwaves.Itislikeaconverterthatconverts

backandforthbetweenelectromagneticwavesandelectrical

currents.Differentwirelessdevicesusedifferentantennastooperate

indifferentfrequenciesandtoachieve,forexample,adesired

range.Themostimportantparameterofanantennaisitsworking

frequency.Forexample,a2.4GHzantenna’swavelengthistooshort

tousewithIEEE802.11acommunicationandusinganantennawith

amismatchedfrequencywilllikelycauseaverypoorperformanceon

bothsignalradiationandactualdatathroughput.

Thetransmissionspeedofawirelessconnectionissignificantly

relatedtotheradiosignalstrengthofthetransmission.Selectingthe

appropriateantennasfortheapplicationenvironmentisthemost

importantsteptoensureastrongwirelesslink.

Thefigurebelowisasimpleillustrationofthewirelesssignal

transmission.Afterthedigitalsignalsgetconvertedintoanalog

LessDense

LessDense

MoreDense

MoreDense

IncidentPulse

TransmittedPulse

ReflectedPulse

form,thesignalgetsmixed,filtered,amplified,andfinallyreleased

totheatmosphere.Themainfunctionoftheantennaistocontrol

howtheenergyisreleasedandwhatkindofenergyfielditis

forming.Thischapterintroducesthekeyparametersforselecting

therightantennaforyourapplication,suchasantennafrequency,

impedancematching,voltagestandingwaveratio(VSWR),gain,and

polarization.

Impedance Matching

Maximumpowertransferfromthetransmittertotheantenna

requiresimpedancematchingoftheantennasystem.Thefigure

belowdemonstratesthereflectioneffectwhentheimpedance

doesn'tmatchbetweentwomediums.Mismatchedimpedance

willcauseenergylossandriskcircuitdamagefromthereflected

energypulse.Transmittersgenerallyhaveanoutputimpedanceof

50ohmsandthatneedstobematchedacrossthetransmission

linetotheantennainordertomaximizeoverallefficiency,eliminate

linevariationwithanequalvoltagestandingwaveratio(VSWR),and

reducetransmissionlinelosses.

BasebandInput

Amplifier Amplifier

RFOutput

MixerFilter

VCO

BasebandOutput

Amplifier Amplifier

RFInput

MixerFilter

VCO

Page 27: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

26

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

Polarization

Polarizationreferstothedirectioninwhichtheelectricfieldlines

pointasthesignalradiatesawayfromtheantenna.Thesimplest

andmostcommontypeislinearpolarization.Animproperantenna

installationwilldecreasesignalreceptionquality.Forexample,a

perfectlyalignedhorizontal(sidetoside)antennawillnotreceiveany

signalssentfromaperfectlyalignedvertical(upanddown)antenna.

Gain

Thegainofeachantennaspecifiesitsdirectivityandelectrical

efficiency.Ingeneral,thelowerthegain,themoreevenlydistributed

inalldirectionstheradiationwillbe.Highgainantennas,onthe

otherhand,emitradiationinamorespecificdirection.Thegain

definesitspowergainordirectivegainintermsoftheratioofthe

intensity,orpowerperunitsurface.Ingeneral,whenwechoose

anantenna,thelongerthetransmissiondistance,thehigherthe

antennagainmustbe.Atthesametime,wemustsacrificeomni-

directionalcoverage.

Anantennaata45°alignment(skewpolarization)however,can

receivesignalssentfrombothhorizontalandverticalantennas,

butatreducedsignalstrengths(dB).Itisimportanttoknowthe

polarizationoftheantennasintheWLANtomakesurethatsignals

arebeingsentandreceivedunderoptimalconditions.Thefigures

belowarethevisualizationofthehorizontalandverticallinear

polarizations.

HorizontalLinearPolarization VerticalLinearPolarization

030

60

90

120

150180

210

240

270

300

330

-

030

60

90

120

150180

210

240

270

300

330

Useofdirectorsmakesanglesmallerandgainhigher

Page 28: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

27 Industrial Wireless Guidebook

Understanding Wireless Technology

H-Plane

E-Plane

Antenna Radiation Patterns (E-plane and H-plane)

HPBW

Half-powerbeamwidth,alsocalledthe3-dBbeamwidth,istheangular

measurementofthemainlobedirectivityontheantennaradiationpattern

wherethesensitivity(gain)isone-half(or-3dB)ofthemaximumvalue.

SometimesitisalsocalledFWHM(thefullwidthofthebeamathalfits

maximumintensity).The3-dBbeamwidthmeasurementiscommonlyused

todefinetheverticalandhorizontalanglesofaparticularantenna.

Asasidenote,anantennaisapassivecomponent,whichmeansitdoesnot

increasetheoverallinputenergyinanyway.Inordertoachievelongerdistance

transmission,itcompressestheenergyfieldtomakeitleanerandlonger.

Therefore,ahighergainantennatendstocomewithanarrowerbeamwidth.

VSWR

Thevoltagestandingwaveratio(VSWR)istheratioofthemaximum

voltagetotheminimumvoltageonthetransmissionline(cable)used

tomeasureantennaefficiency.Whenthetransmittersendssignals

forwardthroughthetransmissionlinetotheantenna,aportionofthe

signalwillbouncebackacrossthetransmissionlineiftheantennais

atadifferentimpedance,andmixwithoncomingforwardsignalsto

createavoltagestandingwavepattern.

A1:1VSWR(orjust1)indicatesthatpowerisbeingfullyabsorbed

bytheantenna(becauseantennaimpedanceisalsothesameasthe

impedanceonthetransmissionline)andnopowerisbeingreflected

backtothetransmitter,butthisisverydifficulttoachieve.For

example,a50-ohmradiowithanantennaimpedanceof75ohmswill

haveatheoreticalVSWRof1.5:1onthetransmissionline.Fortypical

antennasystems,aVSWRof1.2:1canbeconsideredtobemore

thanacceptable.AVSWRof2:1,whichiscommonformanyantenna

systems,meansthatroughly10%oftheforwardsignalsarebeing

reflectedfromtheantenna.AhigherVSWRmeanslowertransmission

efficiencyandcanresultinheatedtransmissionlinesanddamaged

transmitters.

Mainlobemaximumdirection

Mainlobe

1.0

0.5

Half-powerpoint(right)

Half-powerpoint(left)

Minorlobes

Half-powerbeamwidth(HP)

Muchaboutanantenna’sperformancecanbelearnedfrom

itsradiationpattern.Theantennaradiationpatternisathree-

dimensionalillustrationofhowtheantennaemitsandreceivesradio

signals(seefigureontheright)duringcommunication.

Aradiationpatternisessentiallytheelectromagneticfield,which

consistsofanelectricfield(E-plane)andamagneticfield(H-plane).

Theelectricfieldandmagneticfieldpropagatetowardthesame

generaldirection,butthepolarizationoftheirwavesarealways

perpendicular(90°angle)toeachother.Radiationpatternsare

differentforvarioustypesofantennas.E-planeandH-plane

diagramsprovideatwo-dimensionalviewofhowelectricand

magneticfieldsbehaveforaparticularantenna.

VSWR Efficiency Chart

VSWR Efficiency Loss

1 100% 0.00dB

1.3 98.3% 0.08dB

1.5 96.0% 0.18dB

1.8 91.8% 0.36dB

2 88.9% 0.51dB

2.5 81.6% 0.86dB

3 75.0% 1.25dB

3.5 69.1% 1.61dB

4 64.0% 1.94dB

5 55.6% 2.55dB

Page 29: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

28

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2Sample Antenna Spec

Omni-directional Antennas Antenna Patterns: E-Plane for 2.4 GHz Antenna Patterns: H-Plane for 2.4 GHz

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

Antenna TypesTherearetwobasictypesofantennasforWLANproducts,categorizedbythedirectioninwhichtheybeamradiosignals:omni-directionaland

directional.

Sample Antenna Spec

Directional Antennas Antenna Pattern: E-Plant for 2.4GHz Antenna Pattern: H-Plant for 2.4GHz

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

030

60

90

120

150180

210

240

270

300

3300

30

60

90

120

150180

210

240

270

300

330

Directional Antennas

Directionalorpatchantennasprovideamorefocusedsignalthan

omni-directionalantennas.Signalsaretypicallytransmittedinan

oval-shapedpatternwithabeamwidthofapproximately30degrees.

Thistypeofantennaisalsoidealforofficelocations.Forexample,an

accesspointwithasemi-directionalantennacanbeplacedinone

Omni-directional Antennas

Omni-directionalantennasaredesignedtoradiatesignalsequally

inall360degrees.Usethistypeofantennaifyouneedtotransmit

fromacentralnode,suchasanaccesspoint,tousersscatteredall

aroundthearea.Inasmallofficewiththreeorfourrooms,anaccess

pointwithanomni-directionalantennashouldbeabletoprovide

sufficientcoverageforallwirelessstationsinallrooms.

cornerofaroomtoprovidereliablecoverageforitsentirelength.

Directionalantennascanalsobeusedoutdoorstoprovideshort

distancepoint-to-pointlinksorasthecustomerendofapoint-to-

multipointnetwork.

Page 30: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

29 Industrial Wireless Guidebook

Understanding Wireless Technology

2-3 Cables

RF CablesRFcable,alsocalledcoaxialcable,isthemostcommontype

ofcableusedtoconnectanRFtransmitter(orreceiver)tothe

antenna.Thecoreandwovenshieldaregenerallymadeofcopper,

andthedielectricinsulatoriscommonlymadeofsolidorfoamed

polyethylene.SomeRFcablesalsoincludeafoillayerbetweenthe

shieldandthedielectrictofurtherreduceloss.

Typically,themetallicshieldisatgroundpotentialandthevoltageis

appliedtothemainconductortotransmitsignals.Themainbenefit

ofusinganRFcableisthatelectromagneticfieldsarekeptwithin

thedielectricinsulatorwithverylittleradiatedloss.Inaddition,the

dielectricinsulatorprotectsthetransmissionlineagainstsourcesof

externalinterference.

plastic jacket

dielectric insulator

metallic shield

central core

Key Parameters

Impedance Matching

Thisisthesameprincipleintroducedintheantennasection.Tohave

thebesttransmissionefficiency,theconnectedmediums,suchas

RFcable,antenna,connector,andsourcetransmitter,musthavea

matchingimpedance.

Attenuation

EveryRFcablehassignalloss,whichisreferredtoasattenuation

andismeasuredindecibels(dB)per100feet.AttenuationofRF

signalswillincreaseathigherfrequenciesbecauseRFcurrenttravels

mostlyontheoutersurfacelayer(skineffect)ofthecoreconductor

andsurfaceresistancewillincreaseathigherfrequencies.Skin

effectlossesonthecoreconductorcanbereducedbyincreasing

thediameterofthecable.Doublingthecablediameterwillreduce

theskineffectresistanceinhalf(notincludingdielectricandshield

losses).

Bending Radius

Thebendingradiusistheminimummeasureoftheinsidecurvature

thatacablecanbebentwithoutcausingitphysicaldamage,

reducingitsperformance,orshorteningitsusefullife.Thefigure

belowillustratesacablewithabendingradiusof3centimeters.

3cm

Cable

Page 31: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

30

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

Common Coaxial Cables

Ethernet CablesCategory5(Cat5)isthefifth-generationstandardfortwisted-pair

EthernetcablesestablishedbytheElectronicIndustriesAssociation

andTelecommunicationsIndustryAssociation(EIA/TIA).Cat5

cablescontain4pairsofwiresbutuseonly2pairs(ratedat100

MHz)for10BASE-Tand100BASE-TX(FastEthernet)transmission.

Anenhancedversion,CAT5e,imposesmorerestrictedcross-talk

specificationstoensurethestabilitywhenusingallfourpairsfor

1000BASE-T(GigabitEthernet)communication.Cat5/5ecables

generallyhaveatransmissiondistancelimitationof100meters.

Category6(Cat)isanothercommonlyusedstandardforGigabit

Ethernettransmission.ItisbackwardscompatiblewithCat5andCat

5e,butatthesametime,itallowshighertransmissionfrequency

upto250MHz.Itissuitablefor10BASE-T,100BASE-TX(Fast

Ethernet),1000BASE-T/1000BASE-TX(GigabitEthernet),and

10GBASE-T(10-GigabitEthernet).

Type Impedance(ohms) Core Dielectric

Type Dielectric VF Dielectric mm OD mm Max. Attenuation @ 750 MHz dB/100 ft

LMR-100 50 2.79 20.725

LMR-195 50 4.95 10.125

LMR-200

50 1.12mmCu PF 0.83 2.95 4.95 9.035HDF-200

CFD-200

LMR-400

50 2.74mm(Cu-cladAl) PF 0.85 7.24 10.29 3.544HDF-400

CFD-400

LMR-600 50 4.47mm(Cu-cladAl) PF 0.87 11.56 14.99 2.264

LMR-900 50 6.65mm(BCtube) PF 0.87 17.27 22.1 1.537

LMR-1200 50 8.86mm(BCtube) PF 0.88 23.37 30.48 1.143

LMR-1700 50 13.39mm(BCtube) PF 0.89 34.29 42.42 0.844

Page 32: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

31 Industrial Wireless Guidebook

Understanding Wireless Technology

Key Parameters

Bending Radius

MostCategory5cablescanbebentatanyradiusexceeding

approximatelyfourtimesthediameterofthecable.

Maximum Cable Segment Length

TherecommendedlengthforaCAT5cablesegmentis100meters

(TIA/EIA568-5-A).Repeatersandswitchescanbeusedtoextend

thetransmissiondistance.Mediaconverters,suchasEthernet-to-

fiberconverters,canbeusedtosignificantlyextendtransmission

distance.

Straight-through vs. Cross-over

TwistedpairsofEthernetcablescanberearrangedtoprovide

connectivitybetweendifferenttypesofdevices.Atypicalstraight-

throughcable,alsocalledapatchcable,hasidenticaltwisted-pair

arrangementsonbothends(RJ45connector)andisusedtoconnect

acomputertoaswitchorrouter.Across-overcablehastheorange

twistedpaircrossedoverwiththegreentwistedpair,andisusedto

connecttwocomputersdirectlytoallowcommunication.However,

newernetworkinterfaceswithauto-MDIXportsarecapableof

detectingthetypeofconnectiontoautomaticallychooseMDIor

MDIXconfiguration,whicheliminatestheneedforcross-overcables.

10BASE-T and 100BASE-TX vs. 1000BASE-T

10BASE-Tand100BASE-TXEthernetconnectionsrequiretwo

cablepairs.1000BASE-TEthernetconnectionsrequirefourcable

pairs(8pins).Listedbelowarethepinassignmentsforthesethree

10/100BASE-TX MDI and MDI-X PORT PINOUTS

Pin MDI Signal Name MDI-X Signal Name

1 TransmitDataplus(TD+) ReceiveDataplus(RD+)

2 TransmitDataminus(TD-) ReceiveDataminus(RD-)

3 ReceiveDataplus(RD+) TransmitDataplus(TD+)

6 ReceiveDataminus(RD-) TransmitDataminus(TD-)

4,5,7,8 Notused Notused

1000BASE-T MDI and MDI-X PORT PINOUTS

Pin MDI Signal Name MDI-X Signal Name

1 Bi-directionalPairAPlus(BI_DA+)

Bi-directionalPairBPlus(BI_DB+)

2 Bi-directionalPairAMinus(BI_DA-)

Bi-directionalPairBMinus(BI_DB-)

3 Bi-directionalPairBPlus(BI_DB+)

Bi-directionalPairAPlus(BI_DA+)

4 Bi-directionalPairCPlus(BI_DC+)

Bi-directionalPairDPlus(BI_DD+)

5 Bi-directionalPairCMinus(BI_DC-)

Bi-directionalPairDMinus(BI_DD-)

6 Bi-directionalPairBMinus(BI_DB-)

Bi-directionalPairAMinus(BI_DA-)

7 Bi-directionalPairDPlus(BI_DD+)

Bi-directionalPairCPlus(BI_DC+)

8 Bi-directionalPairDMinus(BI_DD-)

Bi-directionalPairCMinus(BI_DC-)

1 2

Orangepair 1

Green pair 3

3 4 5 6 7 8

Bluepair 1

Brownpair 1

1 2

Orangepair 2

Green pair 3Straight-through

3 4 5 6 7 8

Bluepair 1

Brownpair 4

1 2

Orangepair 2

Green pair 3

3 4 5 6 7 8

Bluepair 1

Brownpair 4

1 2

Green pair 3

Orange pair 2Cross-over

3 4 5 6 7 8

Bluepair 1

Brownpair 4

standards(10BASE-T,100BASE-TX,1000BASE-T)onbothMDI

(MediaDependantInterface)andMDI-X(MediaDependantInterface

cross-over).

Page 33: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

32

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

2-4 Connectors

Beforeplacinganorderforantennasandcablesforyourwireless

device(s),theconnectortypesmustfirstbedetermined.Ingeneral,

termssuchasplug,pin,andprongrefertomaleconnectors,

andtermssuchasreceptacle,socket,andslotrefertofemale

Connector Frequency Range Male Connector Female Connector

SMA(Sub-MiniatureversionA) DCto18GHz

RP-SMA(ReversePolaritySMA) DCto18GHz

QMA(QuickSMA) DCto18GHz

N-type(namedafterPaulNeill) DCto11GHz

TNC DCto11GHz

Antenna ConnectorsTherearevarioustypesofcoaxialRFantennaconnectorsdesignedfordifferentapplications.Thissectionintroducesseveralcommonly-used

antennaconnectortypesasaguidelineforidentifyingandselectingtheappropriateconnector.

connectors.Forelectricalconnectors,connectorgender(maleand

female)isnotenoughtoidentifytherightconnector.Thischapter

providesseveralcommonlyusedconnectorsandtheirpicturesasa

referencetoyourselection.

Page 34: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

33 Industrial Wireless Guidebook

Understanding Wireless Technology

Connector Data Rate Distance Transceiver

SFP(SmallForm-factorPluggable) 155Mbpsto4.25Gbps <140km

SFP+(SmallForm-factorPluggablePlus) 6Gto10G <80km

Optical Fiber Connectors

Opticalfiberconnectorsareusedtoquicklyconnect/disconnectan

opticalfiberconnection.Opticalfiberconnectorsareusuallyspring

loadedtoensurethatopticalfibercross-sectionsarefirmlypressed

togethertoeliminateairgaps,whichcancausesignalloss.The

accompanyingtableshowscommonly-usedopticalfiberconnectors

Connector Ferrule Diameter Standard Male Jack

LC(LucentConnector)

1.25mm IEC61754-20

SC(SubscriberConnector)

2.5mm IEC61754-4

Ethernet Pluggable Modules

SFPandSFP+Ethernetmodulesaretypesofinterfaceconverters(or

transceivers)thatcanbeinterchangedonavarietyofnetworkdevice

portstoprovideagigabitinterface.Thesecompacttransceivers

areanimprovementtothebulkyGBIC(gigabitinterfaceconverter)

transceivers.Pluggablemodulesareavailableforcoppercable

connectionsbutaregenerallyusedforfiberconnections.

Ethernet Connectors

Copper Cable Connectors

ThechartbelowshowsinformationforRJ45andM12connector

types,whicharetwoofthemostpopulartypesofEthernet

connectors.RJ45connectorsareverycommonfortypicalindoor

applications,whileM12connectorsareusedmostlyforoutdoor

environmentsorforapplicationsthatencounterfrequentshock/

vibration.

Connector Data Rate Male Jack

RJ45(RegisteredJack45)

10/100Mbps(4pins)1000Mbps(8pins)

M12 10/100Mbps(4pins)1000Mbps(8pins)

Page 35: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

34

www.moxa.comU

nd

ersta

nd

ing

Wire

less Te

ch

no

log

y

2

IntroductionWirelessfailuresathomeorintheofficewillbeaninconvenience

untilareplacementdeviceisinstalled.Wirelessnetworkfailuresin

industrialapplications,however,canjeopardizethesafetyofonsite

personnel,damageexpensivemachinery/equipment,andpossibly

translateintothousandsofdollarsperminuteinproductionlosses.

Industrial HazardsManyindustrialwirelessapplications,suchasthoseformining,

railway,andoil&gas,aredeployedinharshenvironments

andrequiretheuseofindustrial-gradedevices.Whilesome

environmentalfactorsareobvious,suchasextremetemperatures

andmoisture,thereareotherelementsthatarenotsoapparent

3-1 Industrial Design Concepts

Industrial Wireless

Electrical InterferenceDescription

Therearemanydifferentkindsofelectricalinterferenceinan

industrialenvironment:electrostaticdischargeaccumulatedona

humanbody,surgecausedbyindirectlightningstrikes,andbursts

generatedbyfactorygenerators.Failingtoproperlydesignyour

systemtoprotectagainstsuchinterferencecanresultinunstable

communications,orsometimesyourdevicecouldbepermanently

damaged,causingacompleteshutdownofyoursystem.

Inadditiontonetworkredundancy,industrialoperatorsmustalso

assesstheapplicationenvironmentforelementsthatcanimpact

networkperformance,compromisedevicereliability,andleadto

unplannedsystemdowntime.

butcanalsoquicklydisableanunprotecteddevice.Thischapter

introducesseveralexamplesofinterferencesandenvironmental

difficultiesthatarecommonlyseeninindustrialapplications.

Industrial Solution

Industrial-gradedevicesaredesignedtoprotectinternal

components,andcircuitsarespeciallydesignedtobeable

towithstanddifferenttypesofinterference.Inaddition,the

manufacturerwilltesttheproductstomakesuretheycanoperate

reliablyinharshconditionssoend-userscanrestassuredthatthe

productswillbemorestable,morereliable,andhavealongerlife

thannon-industrialproducts.

Page 36: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

35 Industrial Wireless Guidebook

Industrial Wireless

Radiated Electromagnetic Interference

Flammable Gases

Extreme Temperatures

Shock and Vibration

DescriptionRadiatedelectromagneticinterferenceismostobviousnearanelectricalsubstation.Thehighvoltageandstrongcurrentflowcauseacouplingeffectwithnearbyelectricaldevices.Ifthedevicesarenotproperlyprotected,theinternalcircuitsofthedevicescanwearoutmorequicklyorbepermanentlydamaged.Thesameeffectcanalsobeseennearfactorygeneratorsand

largetransformers.

Industrial SolutionForindustrial-gradedevices,ametalcasingandproperlydesignedisolationcanovercomesuch

interference.

DescriptionIncertainindustries,theworkingenvironmentcouldbepermeatedwithflammablegasordust,andtopreventelectricalequipmentfromcausingafireorexplosion,strictregulationsarein

placetodefinewhatkindofdevicescanbeusedintheseextremehazardouslocations.

Industrial SolutionDifferentlevelsofanti-explosivedesignarestipulated.Forexample,anencapsulationdesignreferstoadevicethatisairtight,orequivalentmethodsthatpreventsparksfromcomingintocontactwiththesurroundingflammablegases.Anintrinsicallysafedesignreferstoadevicethatwillnotigniteflammablegasesunderanycircumstances,evenifthereisdirectcontactbetweenthedeviceandgas.

DescriptionUnderahotsummersun,deviceslockedinsideanoutdoorcabinetcaneasilyreachatemperatureof70°C(158°F),whereasasimilarcabinetlocatedatahighaltitudecouldexperienceatemperatureof-30°C(-22°F)onacoldwinternight.Withoutaproperdesign,electronicdevicesinsidethecabinetcouldeitherover-heat,orbeunabletobootupifthetemperatureistoolow.

Industrial SolutionTwomajordesignfocusesforindustrial-gradeproductsareheat-dissipationandlow-temperatureoperation.Byselectingtherightcomponentsandmechanicaldesign,engineerscanensurethatdeviceswillbeabletooperatereliablyinbothextremelyhotandextremelylow

temperatures.

DescriptionWirelesstechnologyiswidelyusedinmobilecommunications.However,fordevicesinstalledinvehicleswithRJ45connectorsand/orstandardpowerjacks,thecontinuousvibrationofthevehiclecancausetheconnectionstowiggleloose.

Industrial SolutionInordertoprovideamorereliableconnection,industrialproductsdesignedformobilecommunicationsoftencomewithM12connectorsfordatacommunicationandterminalblocks

forpowerandDI/DOconnections.

Page 37: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

36

www.moxa.comIn

du

strial W

irele

ss

3

Omni-directional Antenna

Standard Roaming

Connect to AP 1 Connect to AP 2

Lost AP1 signal, disconnect to AP1

Scan for available AP and re-establish the connection

Client

AP1 AP2

3-2 Robust Wireless Concepts

IntroductionEnsuringthestabilityandreliabilityofwirelessdevicesiscriticalfor

industrialdeployments.Withanindustrial-gradehardwaredesign,

wirelessdevicescanwithstandhigherlevelsofdisturbanceinharsh

industrialenvironments.However,tofurtherenhancethereliability

ofwirelessnetworkcommunicationformission-criticalapplications,

anindustrial-gradesoftwaredesignisalsorequired.Inthischapter,

wediscussseveralmajorindustrialconcernsforwirelesstechnology,

andintroducethecorrespondingsoftwaresolutionsdesignedto

answerthoseconcerns.

Concerns for Wireless Local Area Networks

Wi-Fi Mobile Communication: Roaming Break/Recovery Time

Standard Roaming

Thefollowingfigureillustratesthestandardroamingmechanismfor

mostcommercial-gradewirelessdevices.Themovingclientdevice

willstayconnectedwiththecurrentAPuntilsignalsgettooweakto

maintainfurthercommunication.Itthendisconnectsfromthecurrent

Recentadvancesinwirelesstechnologyhavemadeitpossibleto

usewirelessformission-criticalmobileapplications,suchasrailway

(Train-to-Ground),buses(waysideAPcommunication),andfactory

AGV(AutomatedGuidedVehicle).Themostcrucialaspectofthese

mission-criticalwirelessapplicationsisensuringuninterrupted

APandstartsscanningforanewAPwithwhichtoestablisha

connection.Thestandardroamingprocesscantake3to5seconds,

ormore,tocomplete.

communicationbetweenwirelessclientsandaccesspoints(AP),

evenwhenthewirelessclientisroamingatconsiderablespeeds

betweendifferentAPs.Inthissection,weintroducethedifferences

betweenstandardroaming,client-basedroaming,andcontroller-

basedroaming.

Page 38: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

37 Industrial Wireless Guidebook

Industrial Wireless

Client-Based Roaming

Client finds an AP with a better signal strength, and roams to the new AP

Re-associate the security keys and establish the connection

Omni-directional Antenna

Connect to AP 1 Connect to AP 2

Client

AP1 AP2

Controller-Based Roaming

Client finds an AP with a better signal strength, and roams to the new AP

Security information is stored in the controller

Associate with the new AP

Omni-directional Antenna

Connect to AP 1 Connect to AP 2

Client

AP1 AP2

Client-Based Roaming

ThefollowingfigureillustratesMoxa’sproprietaryclient-basedTurbo

Roamingmechanism.Themajordifferencefromstandardroaming,

whichtakesatleast2secondstoroamandconnecttoadifferent

AP,isthattheMoxawirelessclientactivelysearchesforAPswith

astrongersignaltoconnectto,withoutwaitingforacomplete

disconnection.Thispreemptivetypeofroamingmechanismallows

theclienttosuccessfullyroamandconnecttoadifferentAPina

matterofmilliseconds,whichisseveralordersofmagnitudefaster

thanstandardroaming.

Controller-Based Roaming

Moxa’spreliminaryController-BasedTurboRoamingisspecifically

designedformission-criticalapplicationsthatrequirehighly-

availablewirelessnetworkcommunication.WiththeWirelessAccess

Controller,themobileclientcanseamlesslyroambetweenAPseven

whenthehighestsecuritysettingsareapplied.Furthermore,with

advancedcontroller-basedroaming,wirelessclientdevicescanroam

betweendifferentnetworksubnets,aswellasprovideIPmobility

(MobileIP).

Page 39: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

38

www.moxa.comIn

du

strial W

irele

ss

3

Anti-Interference Techniques for Wireless SignalsTherapidadvancementofwirelesstechnologyhasleadtoan

increaseinwirelessdeploymentsaroundtheworld,andinorder

topreventWi-Fiequipmentfrominterferingwitheachother,many

standardsandmechanismshavebeensetup,includingCollision

Avoidance(CDMA-CA),CommunicationControl(RTS/CTS),and

InterFrameSpacing(IFS).However,evenwhenthesemechanisms

areworkingperfectly,instabilityinwirelessconnectionscausedby

alackof802.11radiosignals,orco-channeloradjacent-channel

interferencescanoccur.Manyapproachesareavailabletoovercome

theseproblems.

Traditional Single-RF Wireless Network Concurrent Dual-Radio Technology

Noise

Single-RF Wireless AP

Single-RF Wireless Client

Noise

Active Concurrently

Dual-RadioRedundant AP

Dual-RadioRedundant Client

Noise

Single-RF Wireless AP

Single-RF Wireless Client

Noise

Active Concurrently

Dual-RadioRedundant AP

Dual-RadioRedundant Client

Auto Channel Assessment and Adjustment

Onecommonlyknownapproachisautochannelassessment

andadjustment.Thisapproachexaminesthecurrentchannel

todetermineitsquality.Whenthecurrentconnectionfailsthe

examination,thedevicewillautomaticallyswitchtoacleaner

channel.However,channeladjustmentandrenegotiationcanstill

resultinpacketlossandisunacceptableforlatency-intolerant

applications.

Dual Channel Wireless Redundancy

Formission-criticalapplications,higherreliabilityandstabilityis

required.Zero-packet-losswirelesscommunicationcanbeachieved,

usingconcurrentdual-radiotransmission,toprovidehighlyreliable

wirelessconnectivityforsafety-criticalapplications,withbenefits

suchasoptimizeddatathroughput,interferenceimmunity,and

latency-freetransmissions.

Thefiguresbelowillustratethedifferencesbetweenstandardradio

communicationanddualradioredundancy.

Page 40: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

39 Industrial Wireless Guidebook

Industrial Wireless

Concerns for Wireless Wide Area Networks

Cellulartechnologyiscommonlydeployedinapplicationsthatinvolve

longdistancecommunicationordevicemonitoringoveralargearea.

Onsitetroubleshootinganddiagnosiscanbearealproblemdueto

thewidelyspreadgeographicdistribution.Therefore,havingastable

andreliableconnectionisakeyconcernforindustrialoperators.

Therearemanydifferentapproachestoovercomingthisproblem,

butsomeresultinahighdatatransmissioncost.Moxa’sGuaranlink

providesa3-tieredcheckingmechanismthatallowsusersto

maintainareliableconnectionbutatthesametimekeepthedata

transmissioncosttoaminimum.

Reliable and Consistent Cellular Connectivity

Redundant Wireless Bridges

Moxa’sAeroLinkProtectionprovidesareliablewirelessbridgebetween

twonetworks.WithAeroLinkProtection,anetworkhastwoormore

wirelessclientnodes—withAeroLinkProtectionenabled—connected

toasingleaccesspoint.Oneservesastheactivenode,whilethe

othersarepassive,backupnodes.Iftheactivenodestopssendingor

receivingdataforanyreason,AeroLinkProtectioncompletelyrestores

thecommunicationlinkwithin300ms,includingthetimerequiredfor

networkconvergenceandAddressResolutionProtocol(ARP)updating.

Furthermore,thepassivenodecanbeconnectedtoadifferent

accesspointonadifferentfrequency,providingfrequency-level

redundancy.Ifthereisinterferenceontheactivechannel,the

backuppathwilltransmitthedataviaabackupdeviceandbackup

frequency.Thetechnologyusesthewirelessradio’sstandard

wirelessprotocoltodetectthatthelinkhasbeendisconnected.

Assoonasaseriousinterruptionisdetected,AerolinkProtection

takesaction.Theswitchovertothepassivenode,andfullnetwork

recovery,takeslessthan300ms.

AeroLinkProtectionnotonlyguardsagainstbothdeviceandwireless

linkfailure,butalsoofferstheabilitytoscaleupyourredundancy

pathsbyaddingadditionalhardware—providingevenstronger

protectionforyourwirelessbridgenetworkwhenneeded.Ifyou

needextra-robustresistancetoradiofrequencyinterference,three

ormoredifferentbackupfrequenciescanbeusedwhenthe5GHz

rangeisavailable.

AeroLinkProtectionisaclientradiofeaturethatnegotiateswitheveryotherAeroLinkProtection-enabledclientinrangetosetuptheactivenode

andpassivenodes.BecauseAeroLinkProtectionworksatalowlevel,layer2,itiseffectivelyinvisibletohighernetworkprotocollevels,soitis

easytoaddanAeroLinkProtectionbridgetoanexistingnetwork.Thefastrecoverytimeandsimplesetupallowuserstoformareliablewireless

bridgethatwillensuretheirdailyoperationsareuninterrupted,nomatterwhatkindoffailuresoccur.

Page 41: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

40

www.moxa.comS

tan

da

rds

4IEEE 802.1Bridging(networking)andNetworkManagement

IEEE 802.3Ethernet

IEEE 802.11TheWLANstandardwasoriginally1Mbpsand2Mbps,2.4GHz

RFandinfrared(IR)standard(1997),alltheotherslistedbeloware

Amendmentstothisstandard,exceptforRecommendedPractices

802.11Fand802.11T.

IEEE 802.15WirelessPAN

IEEE 802.16BroadbandWirelessAccess(WiMAXcertification)

IEEE 802.17Resilientpacketring

IEEE 802.3 EthernetIEEE 802.3a10BASE210Mbps(1.25Mbytes/s)overthinCoax(a.k.a.thinnetor

cheapernet)

IEEE 802.3b10BROAD36

IEEE 802.3c10Mbps(1.25Mbyte/s)repeaterspecs

IEEE 802.3dFiber-opticinter-repeaterlink

IEEE 802.3e1BASE5orStarLAN

IEEE 802.3i10BASE-T10Mbps(1.25Mbyte/s)overtwistedpair

IEEE 802.3j10BASE-F10Mbps(1.25Mbyte/s)overopticalfiber

IEEE 802.18RadioRegulatoryTAG

IEEE 802.19CoexistenceTAG

IEEE 802.20MobileBroadbandWirelessAccess

IEEE 802.21MediaIndependentHandoff

IEEE 802.22WirelessRegionalAreaNetwork

IEEE 802.23EmergencyServicesWorkingGroup

IEEE 802.24SmartGridTAG(November,2012)

IEEE 802.3u100BASE-TX,100BASE-T4,100BASE-FXFastEthernetat100Mbps

(12.5Mbyte/s)withauto-negotiation

IEEE 802.3xFullDuplexandflowcontrol;alsoincorporatesDIXframing,so

there’snolongeraDIX/802.3split

IEEE 802.3y100BASE-T2100Mbps(12.5Mbyte/s)overlowqualitytwistedpair

IEEE 802.3z1000BASE-XGbpsEthernetoveropticalfiberat1Gbps(125Mbyte/s)

IEEE 802.3ab1000BASE-TGbpsEthernetovertwistedpairat1Gbps(125

Mbyte/s)

IEEE 802.3acMaxframesizeextendedto1522bytes(toallow“Q-tag”).TheQ-tag

includes802.1QVLANinformationand802.1ppriorityinformation.

Standards4-1 IEEE 802 Standards

Page 42: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

41 Industrial Wireless Guidebook

Standards

IEEE 802.3adLinkaggregationforparallellinks;sincemovedtoIEEE802.1AX.

IEEE 802.3ae10Gbps(1,250Mbyte/s)Ethernetoverfiber;10GBASE-SR,

10GBASE-LR,10GBASE-ER,10GBASE-SW,10GBASE-LW,

10GBASE-EW

IEEE 802.3afPoweroverEthernet(12.95W)

IEEE 802.3ahEthernetintheFirstMile

IEEE 802.3ak10GBASE-CX410Gbps(1,250Mbyte/s)Ethernetovertwin-axial

cable

IEEE 802.3an10GBASE-T10Gbps(1,250Mbyte/s)Ethernetoverunshielded

twistedpair(UTP)

IEEE 802.3apBackplaneEthernet(1and10Gbps(125and1,250Mbyte/s)

overprintedcircuitboards)

IEEE 802.3aq10GBASE-LRM10Gbps(1,250Mbyte/s)Ethernetovermultimodefiber

IEEE 802.3asFrameexpansion

IEEE 802.3atPoweroverEthernetenhancements(25.5W)

IEEE 802.3auIsolationrequirementsforPoweroverEthernet(802.3-2005/Cor1)

IEEE 802.3av10GbpsEPON

IEEE 802.3awFixedanerrorinanequationinthepublicationof10GBASE-T

(releasedas802.3-2005/Cor2)

IEEE 802.3azEnergyEfficientEthernet

IEEE 802.3ba40Gbpsand100GbpsEthernet.40Gbpsover1mbackplane,10

mCucableassembly(4x25Gbitor10x10Gbitlanes)and100m

ofMMFand100Gbpsupto10mofCucableassembly,100m

ofMMFor40kmofSMFrespectively

IEEE 802.3bcMoveandupdateEthernetrelatedTLVs(type,length,values),

previouslyspecifiedinAnnexFofIEEE802.1AB(LLDP)to802.3.

IEEE 802.3bdPriority-basedFlowControl.AnamendmentbytheIEEE802.1Data

CenterBridgingTaskGroup(802.1Qbb)todevelopanamendment

toIEEEStd802.3toaddaMACControlFrametosupportIEEE

802.1QbbPriority-basedFlowControl.

IEEE 802.3.1MIBdefinitionsforEthernet.ItconsolidatestheEthernet

relatedMIBspresentinAnnex30A&B,variousIETFRFCs,and

802.1ABannexFintoonemasterdocumentwithamachine

readableextract(workgroupnamewasP802.3be).

IEEE 802.3bfProvideanaccurateindicationofthetransmissionandreception

initiationtimesofcertainpacketsasrequiredtosupportIEEE

P802.1AS.

IEEE 802.3bgProvidea40GbpsPMDwhichisopticallycompatiblewithexisting

carrierSMF40Gbpsclientinterfaces(OTU3/STM-256/OC-768/40G

POS).

IEEE 802.11 Wireless Local Area Network

IEEE 802.11dInternational(country-to-country)roamingextensions(2001)

IEEE 802.11eEnhancements:QoS,includingpacketbursting(2005)

IEEE 802.11FInter-AccessPointProtocol(2003)WithdrawnFebruary2006

IEEE 802.11a54Mbps,5GHzstandard(1999,shippingproductsin2001)

IEEE 802.11bEnhancementsto802.11tosupport5.5and11Mbps(1999)

IEEE 802.11cBridgeoperationprocedures;includedintheIEEE802.1Dstandard

(2001)

Page 43: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

42

www.moxa.comS

tan

da

rds

4

IEEE 802.11g54Mbps,2.4GHzstandard(backwardscompatiblewithb)(2003)

IEEE 802.11hSpectrumManaged802.11a(5GHz)forEuropeancompatibility

(2004)

IEEE 802.11iEnhancedsecurity(2004)

IEEE 802.11jExtensionsforJapan(2004)

IEEE 802.11kRadioresourcemeasurementenhancements(2008)

IEEE 802.11nHigherthroughputimprovementsusingMIMO(multipleinput,

multipleoutputantennas)(September2009)

IEEE 802.11pWAVE—WirelessAccessfortheVehicularEnvironments(suchas

ambulancesandpassengercars)(July2010)

IEEE 802.11rFastBSStransition(FT)(2008)

IEEE 802.11sMeshNetworking,ExtendedServiceSet(ESS)(July2011)

IEEE 802.11TWirelessPerformancePrediction(WPP)—testmethodsandmetrics

recommendationcancelled

IEEE 802.11uImprovementsrelatedtoHotSpotsand3rdpartyauthorizationof

clients,e.g,cellularnetworkoffload(February2011)

IEEE 802.11vWirelessnetworkmanagement(February2011)

IEEE 802.11wProtectedManagementFrames(September2009)

IEEE 802.11y3650to3700MHzOperationintheU.S.(2008)

IEEE 802.11zExtensionstoDirectLinkSetup(DLS)(September2010)

IEEE 802.11aaRobuststreamingofAudioVideoTransportStreams(June2012)

IEEE 802.11acVeryHighThroughput5GHz(2013)

IEEE 802.11adVeryHighThroughput60GHz(December2012)

IEEE 802.11aePrioritizationofManagementFrames(March2012)

IEEE 802.15 Wireless Personal Area Network

IEEE 802.15.1Bluetoothcertification

IEEE 802.15.2IEEE802.15andIEEE802.11coexistence

IEEE 802.15.3High-RatewirelessPAN

IEEE 802.15.4Low-RatewirelessPAN(e.g.,ZigBee,WirelessHART,MiWi,etc.)

IEEE 802.15.5MeshnetworkingforWPAN

IEEE 802.15.6Bodyareanetwork

Page 44: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

43 Industrial Wireless Guidebook

Standards

ATEX DirectiveTherearetwoATEXdirectives:theATEX

95equipmentdirective94/9/ECisforthe

manufacturer,andtheATEX137workplace

directive99/92/ECisfortheuserofthe

equipment.Areasclassifiedintozones(0,1,2

forgas-vapor-mistand20,21,22fordust)mustbeprotected.

EN 300 220 ElectromagneticcompatibilityandRadiospectrumMatters(ERM);

ShortRangeDevices(SRD)fortheradioequipmenttobeusedinthe

25MHzto1000MHzfrequencyrangewithpowerlevelsrangingup

to500mW.

EN 300 328 ElectromagneticcompatibilityandRadiospectrumMatters(ERM);

Widebandtransmissionsystemsforthedatatransmissionequipment

operatinginthe2.4GHzISMbandandusingwidebandmodulation

techniques.(HarmonizedENcoveringtheessentialrequirementsof

article3.2oftheR&TTEDirective.)

EN 300 440 ElectromagneticcompatibilityandRadiospectrumMatters(ERM);

Shortrangedevices;Radioequipmenttobeusedinthe1GHzto40

GHzfrequencyrange.

EN 301 489 ElectromagneticcompatibilityandRadiospectrumMatters(ERM);

ElectroMagneticCompatibility(EMC)standardforradioequipment

andservices.

EN 301 489-1Part1:Commontechnicalrequirements

EN 301 489-3Part3:SpecificconditionsforShort-RangeDevices(SRD)operating

onfrequenciesbetween9kHzand40GHz.

EN 301 489-7Part7:Specificconditionsformobileandportableradioandancillary

equipmentofdigitalcellularradiotelecommunicationssystems(GSM

andDCS.)

EN 301 489-9Part9:Specificconditionsforwirelessmicrophones,similarRadio

Frequency(RF)audiolinkequipment,cordlessaudioandin-ear

monitoringdevices.

EN 301 489-17Part17:SpecificconditionsforBroadbandDataTransmission

Systems(2.4GHzand5HGz).

EN 301 489-24Part24:SpecificconditionsforIMT-2000CDMADirectSpread

(UTRAandE-UTRA)forMobileandportable(UE)radioandancillary

equipment.

EN 301 511GlobalSystemforMobilecommunications(GSM);HarmonizedEN

formobilestationsintheGSM900andGSM1800bandscovering

essentialrequirementsunderarticle3.2oftheR&TTEdirective

(1999/5/EC).

EN 301 893 BroadbandRadioAccessNetworks(BRAN);5GHzhighperformance

RLAN.(HarmonizedENcoveringtheessentialrequirementsofarticle

3.2oftheR&TTEDirective.)

EN 50371Genericstandardtodemonstratethecomplianceoflowpower

electronicandelectricalapparatuswiththebasicrestrictionsrelated

tohumanexposuretoelectromagneticfields(10MHzto300GHz)

—GeneralPublic.

EN 50385ProductStandardtoDemonstratetheComplianceofRadioBase

StationsandFixedTerminalStationsforWirelessTelecommunication

SystemswiththeBasicRestrictionsortheReferenceLevelsRelated

toHumanExposuretoRadio-FrequencyElectromagneticFields(110

MHzto40GHz)—GeneralPublic.

EN 50155Railwayapplications—Electronicequipmentusedonrollingstock.

EN 50121Railwayapplications—Electromagneticcompatibility.

EN 50121-1Part1:General

EN 50121-2 Part2:EmissionoftheWholeRailwaySystemtotheOutsideWorld

EN 50121-3-1Part3-1:RollingStock—TrainandCompleteVehicle

EN 50121-3-2Part3-2:RollingStock—Apparatus

EN 50121-4 Part4:EmissionandImmunityoftheSignallingandTelecommunic-

ationsApparatus

4-2 Safety and Certifications

Page 45: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

44

www.moxa.comS

tan

da

rds

4

EN 55022Informationtechnologyequipment;Radiodisturbancecharacteristics;

Limitsandmethodsofmeasurement.

EN 55 024Informationtechnologyequipment;Immunitycharacteristics;Limits

andmethodsofmeasurement.

EN 60950-1 Informationtechnologyequipment—Safety,Part1:General

requirements.

IEC 61000-4Part4:ElectromagneticCompatibility;TestingandMeasurement

TechniquesPackage.

IEC 61000-4-2Part4-2:Electrostaticdischargeimmunitytest(ESD)

IEC 61000-4-3Part4-3:Radiated,radio-frequency,electromagneticfieldimmunity

test(RS).

IEC 61000-4-4Part4-4:Electricalfasttransient/burstimmunitytest(EFT).

IEC 61000-4-5Part4-5:Surgeimmunitytest(Surge).

IEC 61000-4-6Part4-6:Immunitytoconducteddisturbances,inducedbyradio-

frequencyfields(CS).

IEC 61000-4-8Part4-8:Powerfrequencymagneticfieldimmunitytest(PFMF).

IEC 61000-4-12Part4-12:Oscillatorywavesimmunitytest(Ring-Wave).

EN 61000-6 Part6:ElectromagneticCompatibility—Genericstandards.

EN 61000-6-1Part6-1:Genericstandards—Immunityforresidential,commercial

andlight-industrialenvironments.

EN 61000-6-2Part6-2:Genericstandards—Immunityforindustrialenvironments.

EN 61000-6-3Part6-3:Genericstandards—Emissionstandardforresidential,

commercial,andlight-industrialenvironments.

EN 61000-6-4Part6-4:Genericstandards—Emissionstandardforindustrial

environments.

IEC 62479Assessmentofthecomplianceoflowpowerelectronicandelectrical

equipmentwiththebasicrestrictionsrelatedtohumanexposureto

electromagneticfields(10MHzto300GHz).Itssupersededstandard

isEN50371.

IEC 60529DegreesofProtectionProvidedbyEnclosures(IPCode).

FCC Part 15FCCPart15regulatesunlicensedradio-frequencytransmissions.

Therelatedradiofrequencydevicesincludereceivers,computers,

andothercommerciallyassembledproductsthatcanemitRF.They

canbeintentional,unintentional,orincidentalradiators.

FCC Part 15 Subpart ASubpartAcontainsageneralprovisionthatdevicesmaynotcause

interferenceandmustacceptinterferencefromothersources.

FCC Part 15 Subpart B USlimitsandmethodsofmeasurementofradiodisturbance,

measuringradiowavesaccidentallyemittedfromdevicesnot

specificallydesignedtoemitradiowaves(unintentional),bothdirectly

(radiated)andindirectly(conducted).

FCC Part 15 Subpart C to HThesesubpartshandleunlicenseddevicesspecificallydesignedto

emitradiowaves(so-called“intentional”),suchaswirelessLAN,

cordlesstelephones,low-powerbroadcasting,walkie-talkies,etc.

FCC Part 22 FCCPart22regulatespublicmobileservices,suchasair-ground

radiotelephone,commercialaviationairgroundservice,cellular,

offshoreradiotelephoneservice,ruralradiotelephoneservice,and

commercialpaging.

FCC Part 24 FCCPart24regulatesPersonalCommunicationsServices,PCS

(NarrowbandPCS901-902,930-931,940-941MHz;Broadband

PCS1850-1990MHz).

UL 60950-1 GeneralRequirementsforInformationTechnologyEquipment(ITE).

Thisstandardisapplicabletomains-poweredorbattery-powered

informationtechnologyequipment.

UL Class 1, Division 2AccordingtoANSI/NFPAareasdescription,ClassI,Div.2meansthe

areawhereignitableconcentrationsofflammablegases,vapors,or

liquidsarepresentwithintheatmosphereunderabnormaloperating

conditions.ULhasaseriesofcertificationdocumentsforsucha

hazardouslocation.

Page 46: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

45 Industrial Wireless Guidebook

Industrial Wireless AP/Bridge/Client

Moxa’s Wireless Product Selection Guide

Dual-Radio Wireless AP/Bridge/Client Single-Radio Wireless AP/Bridge/Client

AWK-6232 AWK-5232 AWK-4131A AWK-3131A AWK-1131A AWK-3191

WLA

N IEEE802.11Standards a/b/g/n a/b/g/n a/b/g/n a/b/g/n a/b/g/n 900MHz

NumberofRFmodules 2 2 1 1 1 1

Inte

rfac

es

NumberofAntennaConnectors 4(2x2MIMO) 4(2x2MIMO) 2(2x2MIMO) 2(2x2MIMO) 2(2x2MIMO) 2(2R1TDiversity)

AntennaConnectorType N-type(female) RP-SMA(female) N-type(female) RP-SMA(female) RP-SMA(female) RP-SMA(female)

TotalNumberofLANPorts 2 2 1 1 1 1

LANPortType M12(female8-pinA-coded) RJ45 WaterproofRJ45 RJ45 RJ45 RJ45

LANPortSpeed 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100BaseT(X)

RS-232ConsolePort 1,waterproofRJ45 1,RJ45 1,WaterproofRJ45 1,RJ45 1,RJ45 1,RJ45

DB9RS-232/422/485SerialPort – – – – – –

DI/DO –

DI/DOConnectorType M12(male8-pinA-coded) 10-pinterminalblock M12(female8-pinA-coded) 10-pinterminalblock – 10-pinterminalblock

Hous

ing

Prot

ectio

n

IP-rating IP68 IP30 IP68 IP30 IP30 IP30

Stan

dard

s an

d Ce

rtifi

catio

ns HazardousLocation – – – UL/cULCID2,ATEXZone2,IECEx – UL/cULCID2

EMC EN55022/24 EN55022/24 EN61000-6-2/6-4 EN61000-6-2/6-4 EN55022/24 –

Page 47: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

46

www.moxa.com

Dual-Radio Wireless AP/Bridge/Client Single-Radio Wireless AP/Bridge/Client

AWK-6232 AWK-5232 AWK-4131A AWK-3131A AWK-1131A AWK-3191

WLA

N IEEE802.11Standards a/b/g/n a/b/g/n a/b/g/n a/b/g/n a/b/g/n 900MHz

NumberofRFmodules 2 2 1 1 1 1

Inte

rfac

es

NumberofAntennaConnectors 4(2x2MIMO) 4(2x2MIMO) 2(2x2MIMO) 2(2x2MIMO) 2(2x2MIMO) 2(2R1TDiversity)

AntennaConnectorType N-type(female) RP-SMA(female) N-type(female) RP-SMA(female) RP-SMA(female) RP-SMA(female)

TotalNumberofLANPorts 2 2 1 1 1 1

LANPortType M12(female8-pinA-coded) RJ45 WaterproofRJ45 RJ45 RJ45 RJ45

LANPortSpeed 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100/1000BaseT(X) 10/100BaseT(X)

RS-232ConsolePort 1,waterproofRJ45 1,RJ45 1,WaterproofRJ45 1,RJ45 1,RJ45 1,RJ45

DB9RS-232/422/485SerialPort – – – – – –

DI/DO –

DI/DOConnectorType M12(male8-pinA-coded) 10-pinterminalblock M12(female8-pinA-coded) 10-pinterminalblock – 10-pinterminalblock

Hous

ing

Prot

ectio

n

IP-rating IP68 IP30 IP68 IP30 IP30 IP30

Stan

dard

s an

d Ce

rtifi

catio

ns HazardousLocation – – – UL/cULCID2,ATEXZone2,IECEx – UL/cULCID2

EMC EN55022/24 EN55022/24 EN61000-6-2/6-4 EN61000-6-2/6-4 EN55022/24 –

Page 48: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

47 Industrial Wireless Guidebook

Cellular IP Gateways and Cellular Routers

Moxa’s Wireless Product Selection Guide

Cellular IP Gateways Cellular Routers

OnCell G3111/3151OnCell G3211/3251

OnCell G3110 OnCell G3150

OnCell G3111-HSPA OnCell G3151-HSPA OnCall G3470A-LTE OnCell 5004-HSPA

OnCell 5104-HSPA

Cellu

lar I

nter

face

Standards GSM/GPRS GSM/GPRS/EDGE GSM/GPRS/EDGE/UMTS/HSPA

GSM/GPRS/EDGE/UMTS/HSPA/LTE

GSM/GPRS/EDGE/UMTS/HSPA

4GBandOptions – – –

EUmodel:2100/1800/2600/900/800MHz (B1/B3/B7/B8/B20)USmodel:1900/AWS/850/700MHz(B2/B4/B5/B13/B17/B25)

LTEDataRate – – –

20MHzbandwidth: 100MbpsDL,50MbpsUL10MHzbandwidth: 50MbpsDL,25MbpsUL

3GBandOptions – – 800/850/900/1900/2100MHz

EUmodel:800/850/900/ 1900/2100MHzUSmodel:850/900/AWS/ 1900/2100MHz

800/850/AWS/1900/2100MHz

HSPADataRate – – 14.4MbpsDL, 5.76MbpsUL

42MbpsDL,5.76MbpsUL(Category24,6)

14.4MbpsDL, 5.76MbpsUL

2GBandOptions 850/900/1800/1900MHz 850/900/1800/1900MHz 850/900/1800/1900MHz 850/900/1800/1900MHz 850/900/1800/1900MHz

EDGEDataRate – 237kbpsDL,237kbpsUL 237kbpsDL,237kbpsUL 237kbpsDL,237kbpsUL(Class10,12) 237kbpsDL,237kbpsUL

GPRSDataRate 85.6kbpsDL,42.8kbpsUL 85.6kbpsDL,85.6kbpsUL 85.6kbpsDL,85.6kbpsUL 85.6kbpsDL,42.8kbpsUL 85.6kbpsDL, 85.6kbpsUL

Ethe

rnet

In

terfa

ce

NumberofPorts 1(10/100M,RJ45) 1(10/100M,RJ45) 1(10/100M,RJ45) – 1(10/100M,RJ45)

SIM

In

terfa

ce

NumberofSIMs 1 1 1 2 2

Seria

l Int

erfa

ce

NumberofPorts OnCellG3111/G3151:1OnCellG3211/G3251:2 1 1 – –

SerialStandards

OnCellG3111/G3211:RS-232OnCellG3151/G3251:RS-232/422/485

OnCellG3110: RS-232 OnCellG3150: RS-232/422/485

OnCellG3111-HSPA:RS-232 OnCellG3151-HSPA: RS-232/422/485

– –

Connector DB9-M

OnCellG3110: DB9-M OnCellG3150: DB9-MandTB

DB9-M – –

I/O

Inter

face AlarmContacts – 1 – 1 OnCell5104-HSPA:1

DigitalInputs – 2 – 2 OnCell5104-HSPA:2

Page 49: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

48

www.moxa.com

Wireless and ZigBee Device Servers

Wireless Device Servers ZigBee Device Servers

NPort W2150A NPort W2150A-T

NPort W2250A NPort W2250A-T

NPort Z2150 NPort Z2150-T

NPort Z3150 NPort Z3150-T

Wire

less

Inte

rfac

e

RFStandard IEEE802.11a/b/g IEEE802.15.4(ZigBee)

FrequencyBand 2.4GHzor5GHz 2.4GHz

Max.TransmissionRate 54Mbps 250Kbps

Encryption 128-bitTKIP/AES-CCMPEAP-TLS/TTLS,PEAP,LEAP,etc. 128-bitAES

NetworkTopology AP-Client Star,Mesh,Clustertree

TransmissionDistance 100m

LAN

Inte

rfac

e

EthernetPort 1x10/100Mbps(RJ45) – 1x10/100Mbps(RJ45)

Seria

l Int

erfa

ce

NumberofPorts 1 2 1 1

SerialStandards1

Connector

SerialCommunicationParameters

DataBits:5,6,7,8; StopBits:1,1.5,2; Parity:None,Even,Odd,Space,Mark

DataBits:8; StopBits:1,2; Parity:None,Even,Odd

DataBits:5,6,7,8;StopBits:1,2; Parity:None,Even,Odd,Space,Mark

FlowControl RTS/CTS,XON/XOFF RTS/CTS RTS/CTS,XON/XOFF

Baudrate 50bpsto921.6kbps 50bpsto230.4kbps 50bpsto921.6kbps

Page 50: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

49 Industrial Wireless Guidebook

Wireless Embedded Computers

Moxa’s Wireless Product Selection Guide

W406 W406-T W315A W325A W321 W341

Seria

l Int

erfa

ce

CPU ARM932-bit200MHz ARM932-bit200MHz ARM932-bit192MHz ARM932-bit192MHz ARM932-bit192MHz ARM932-bit192MHz

OS EmbeededLinux WinCE6.0 Linux2.6.9 EmbeddedLinuxwithMMUsupport

RAM 32MB 32MB 32MB 32MB 32MB 32MB

Flash 16MB 16MB 16MB 16MB 16MB 16MB

USB 1(USB2.0) 1(USB2.0) – – – 2(USB2.0)

RelayOutputs 4DIs,4DOs 4DIs,4DOs – – – FormC,SPDTx1

Stor

age

SDCard

Lan

Inte

rfac

e 10/100MbpsEthernetPorts 1 1 1 1 1 1

MagneticIsolationProtection 1.5kV 1.5kV 1.5kV 1.5kV 1.5kV 1.5kV

WLA

N In

terf

ace

StandardCompliance – – – – 802.11a/b/g

RadioFrequencyType – – – – DSSS,CCK,OFDM

TransmissionRate – – – –

54Mbps(max.)withautofallback(54,48,36,24,18,12,11,9,6,5.5,2,1Mbps) •802.11a/g:6,9,12,18,24,36,48,54Mbps •802.11b:1,2,5.5,11Mbps

TransmissionDistance – – – – Upto100meters(@11Mbpsinopenareas)

WirelessSecurity – – – – WEP:64-bit/128-bit,WPA,WPA2dataencryption

WLANModes – – – – Ad-hoc(802.11b/g),Infrastructure

Cellu

lar I

nter

face CellularModes GSM/GPRS/EDGE GSM,GPRS – –

RadioFrequencyBands 850/900/1800/1900MHz 850/900/1800/1900MHz – –

GPRSClass 12 10 – –

EDGEClass 12 – – –

CodingSchemes CS1toCS4 CS1toCS4 – –

Seria

l Int

erfa

ce

RS-232/422/485Ports 2(DB9-M) 2(DB9-M) 1(DB9-M) 2(DB9-M) 2(DB9-M) 4(DB9-M)

ESDProtection 15kV 15kV 15kV 15kV 15kV 15kV

ConsolePort SerialCommunicationParameters DataBits:5,6,7,8;StopBits:1,1.5,2;Parity:None,Even,Odd,Space,Mark

FlowControl RTS/CTS,XON/XOFF,ADDC™

Baudrate 50bpsto921.6kbps(non-standardbaudratessupported)

Envi

ronm

enta

l Li

mits

OperatingTemperature -10to60°C Byrequest -10to60°C -10to60°C -10to60°C -10to60°C

StorageTemperature -20to80°C Byrequest -20to80°C -20to80°C -20to80°C -20to80°C

Regu

lato

ry

Appr

oval

s

Safety EN60950-1,CSAC22.2No.60950-1-03 UL60950-1,EN60950-1,CSAC22.2No.60950-1-03 UL60950-1,EN60950-1

EMCEN55022ClassB,EN61000-3-2ClassA,EN61000-3-3,EN55024,FCCPart15SubpartBClassB

EN55022ClassA,EN61000-3-2, EN61000-3-3,EN55024,FCCPart15SubpartBClassA

EN55022ClassA,EN61000-3-2, EN61000-3-3,EN55024

Radio EN301489-1,EN301489-7,EN301511 EN301489-1,EN301489-7,EN301511 EN301489-1/17,EN301893,EN300328,EN50392,FCCPart15,SubpartC/E

Page 51: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

50

www.moxa.com

ioLogik W5312 ioLogik W5340 ioLogik W5340 HSPA

Inpu

t/out

put DigitalInputs 8

DigitalOutputs 8RelayOutputs 2 2DI/DOConfigurable 4 8 8AnalogInputs 4 4

Cel-

lula

r GSM/GPRS/EDGE UMTS/HSPA

Ethe

rnet Port(Connector) 1(RJ45)

Speed 10/100MbpsProtocols Modbus/TCP,TCP/IP,UDP,DHCP,Bootp,SNMP,SMTP

Seria

l Port(Connector) 1(DB9MaleorTerminalblock)Interface RS-232/422/485Protocols Modbus/RTU

Envi

ronm

enta

l Li

mits

StandardOperatingTemp. -10to55°CWideOperatingTemp. -30to70°C -20to70°CStorageTemp. -40to85°C

AmbientRelativeHumidity 5to95%RH(non-condensing)

Softw

are

Programmability Click&Go Click&Go Click&Go

ActiveOPCServer DA-Center MXIO ConfigurationUtility

Stan

dard

s an

d C

ertif

icat

ions

Safety UL508,EN60950-1,NCCEMI FCCPart15,SubpartB,ClassA;EN61000-3-2;EN61000-3-3;EN61000-6-4orEN55022

EMS EN55024,EN61000-4-2,EN61000-4-3,EN61000-4-4,EN61000-4-5,EN61000-4-6,EN61000-4-8,EN61000-4-11,EN61000-6-2

Shock Shock:IEC60068-2-27Freefall Freefall:IEC60068-2-32Vibration Vibration:IEC60068-2-6RailTraffic EN50155;EN50121-3-2;EN50121-4

Relia

bilit

y

Warranty 5years 2years 2years

Cellular RTU Controllers

Page 52: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

51 Industrial Wireless Guidebook

Glossary

2G2G:GSM,2.5G:GPRS,2.75G:EDGE

3G3G:UMTS/CDMA2000,3.5G:HSPA/EV-DO,3.75G:HSPA+

4GPre-4G:LTE/WiMax,4G:LTE-A/WirelessMAN-Advanced

Ad hoc network (wireless)Anadhocnetworkischaracterizedbytemporary,short-lived

relationshipsbetweennodes.Adhocwirelessnetworksdonotrely

onpreexistinginfrastructuresandareusedforapplicationssuchas

wirelessbridgingfordataforwarding.

AESAdvancedEncryptionStandard—AESisaspecificationforthe

encryptionofelectronicdataestablishedbytheU.S.National

InstituteofStandardsandTechnology(NIST)in2001.

APAccessPoint—AnAPisan802.11devicethatiswiredtothe

backbonenetworktoprovidewirelessaccesstoother802.11

devices.

APNAccessPointName—APNisgenerallythenameofagateway

betweenaGPRS(or3G)mobilenetworkandPacketDataNetwork,

usuallythepublicInternet.

ATOAutomaticTrainOperation—ATOisasafetysystemusedforthe

operationoftrainandsubwaysystems.

BERBitErrorRateorBitErrorRatio—BERisthepercentageofbits

thathaveerrorsrelativetothetotalnumberofbitsreceivedina

transmission,usuallyexpressedastentoanegativepower.For

example,atransmissionmighthaveaBERof10,meaningthatof

1,000,000bitstransmitted,onebitwasinerror.

BPSKBinaryPhaseShiftKeying—BPSKisthesimplestformofPSKand

usesatypeofphasemodulationwith2distinctcarrierphases

separatedby180°tosignalonesandzerostoencodebitsofdata.

BSSBasicServiceSet—ABSSisabuildingblockof802.11networks.A

BSSisasetofstationsthatarelogicallyassociatedwitheachother.

BSSIDBasicServiceSetIdentifier—ABSSIDisa48-bitidentifierinthe

frameheaderusedbyallstationsinaBSSforidentification.

CBTCCommunication-basedTrainControl

CCKComplementaryCodeKeying—CCKisan802.11bmodulation

schemeadoptedin1999togainhigherdatarates(>2Mbps)atthe

expenseofshortertransmissiondistance.

CRCCyclicRedundancyCheck—ACRCisamathematicalchecksum

thatcanbeusedtodetectdatacorruptionintransmittedframes.

TheCRCisalinearhashfunction,andshouldnotbeusedfordata

securityassurance.

CDMA2000CodeDivisionMultipleAccess2000—CDMA2000(also

knownasIMTMulti-Carrier)isafamilyof3Gmobiletechnology

standards,whichuseCDMAchannelaccesstosendvoice,data,and

signalingdatabetweenmobilephonesandcellsites.

CMSChangeableMessageSigns—CMSaredigitalmessagedisplays

placedatroadsideoronoverheadgantriestoinformdriversofroad

conditionsand/oremergencies.

CSDCircuitSwitchedData—CSDistheoriginalformofdatatransmission

developedforthetimedivisionmultipleaccess(TDMA)-basedmobile

phonesystemslikeGlobalSystemforMobileCommunications

(GSM).CSDusesasingleradiotimeslottodeliver9.6kbpsdata

transmissiontotheGSMNetworkandSwitchingSubsystemwhere

itcouldbeconnectedthroughtheequivalentofanormalmodemto

thePublicSwitchedTelephoneNetwork(PSTN)allowingdirectcalls

toanydial-upservice.

CSMA/CACarrierSenseMultipleAccesswithCollisionAvoidance—CSMA/CA

isaCSMAmethodthattriestoavoidsimultaneousaccess(collsions)

bydeferringaccesstothemedium.802.11andAppleTalk’s

LocalTalkaretwoprotocolsthatuseCSMA/CA.

CTS CleartoSend—CTSistheframetypeusedtoacknowledgereceipt

ofaRequesttoSendandthesecondcomponentusedintheRTS-

CTSclearingexchangeusedtopreventinterferencefromhidden

nodes.

Glossary

Page 53: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

52

www.moxa.com

DDNSDynamicDNS—DDNSisamethodofautomaticallyupdatinganame

serverintheDomainNameSystem(DNS),ofteninrealtime,with

theactiveDNSconfigurationofitsconfiguredhostnames,addresses,

orotherinformation.

DSSS Direct-SequenceSpreadSpectrum—DSSSisatransmission

techniquethatspreadsasignaloverawidefrequencybandfor

transmission.Atthereceiver,thewidespreadsignaliscorrelatedinto

astrongersignal;inaddition,anynarrowbandnoiseisspreadwidely.

Mostofthe802.11-installedbasesat2Mbpsand11Mbpsare

composedofdirect-sequenceinterfaces.

DTIM DeliveryTrafficIndicationMessage—ADTIMisatypeoftraffic

indicationmessage(TIM),whichindicatesthepresenceofdata

bufferedontheaccesspoint.DTIMsaresentbybeaconframes

periodicallybyanaccesspointtosynchronizeawirelessnetworkand

areusedtoindicatethatbroadcastandmulticastframesbufferedby

theaccesspointwillbedeliveredshortly.

EAPExtensibleAuthenticationProtocol—TheEAPisaframework

authenticationprotocolusedby802.1Xtoprovidenetwork

authentication.Authenticationitselfisdelegatedtosub-protocols

calledmethods.

EDGEEnhancedData-ratesforGSMEvolution—EDGE,alsoknownas

EnhancedGPRS(EGPRS),IMTSingleCarrier(IMT-SC),orEnhanced

DataratesforGlobalEvolution,isadigitalmobilephonetechnology

thatallowsimproveddatatransmissionratesasabackward-

compatibleextensionofGSM.

EFTElectricalFastTransient—AnEFTisashort-livedburstofenergy

inasystemcausedbyasuddenchangeofstate.TheEuropean

standardforEFTtestingisEN-61000-4-4.TheU.S.equivalentis

IEEEC37.90.

EIRPEffectiveIsotropicRadiatedPower—Anantennasystemwillhave

afootprintoverwhichtheradiowavesaredistributed.Thepower

insidethefootprintiscalledtheeffectiveisotropicradiatedpower.

EMCElectromagneticcompatibility—EMCisthebranchofelectrical

sciencesthatstudiestheunintentionalgeneration,propagation,and

receptionofelectromagneticenergywithreferencetounwanted

effects(Electromagneticinterference,orEMI)thatsuchenergymay

induce.

EMIElectromagneticInterference—EMI,alsocalledradio-frequency

interference(RFI)wheninhighfrequencyorradiofrequency,isthe

levelofemmittedelectromagnaticinterferencetothesurrounding

environment.

EMSElectromagneticSusceptibility—EMSistheinabilityofadevice,

circuit,orsystemtoperformwithoutdegradationinthepresenceof

anelectromagneticdisturbance.

ESSExtendedServiceSet—ESSisasetoftwoormoreinterconncted

BSSsthatappearasasingleBSS,usingacommonSSIDbut

perhapsdifferentchannels.

ETSI EuropeanTelecommunicationsStandardsInstitute—ETSI

isamultinationalstandardizationbodywithregulatoryand

standardizationauthorityovermuchofEurope.

EV-DOEnhancedVoice-DataOptimizedorEnhancedVoice-DataOnly—

EVDO,EV,orEv-DOisatelecommunicationsstandardforthe

wirelesstransmissionofdatathroughradiosignals,typicallyfor

broadbandInternetaccess.

FCCFederalCommunicationsCommission—TheFCCRulesinTitle47of

theCodeofFederalRegulationsgoverntelecommunicationsinthe

UnitedStates.WirelessLANsmustcomplywithPart15oftheFCC

rules,whicharewrittenspecificallyforRFdevices.

FERFrameErrorRate—FERissimilartobiterrorrate(BER),butis

measuredasafractionofpacketswitherrors.

FHSS FrequencyHoppingSpreadSpectrum—FHSSisatechniquethat

usesamethodoftransmittingradiosignalsbyrapidlyswitchinga

carrieramongmanyfrequencychannelstoreduceinterference.

GPRSGeneralPacketRadioService—GPRSisapacket-orientedmobile

dataserviceonthe2Gand3Gcellularcommunicationsystem’s

globalsystemformobilecommunications(GSM).

GSMGlobalSystemforMobileCommunications,originallyGroupe

SpécialMobile—GSMisastandardsetdevelopedbytheEuropean

TelecommunicationsStandardsInstitute(ETSI)todescribeprotocols

forsecondgeneration(2G)digitalcellularnetworksusedbymobile

phones.

Page 54: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

53 Industrial Wireless Guidebook

Glossary

GTK GroupTransientKey—GTKisderivedfromthegroupmasterkey

bycombiningwiththegrouprandomnumber;theGTKisusedto

derivethegroupkeyhierarchy,whichincludeskeysusedtoprotect

broadcastandmulticastdata.

GuaranLinkGuaranLinkisMoxa’sproprietarytechnologytoensureamore

reliableandconsistentcellularconnectivity.

HSDPAHighSpeedDownlinkPacketAccess—Downlinkspeed:14.4Mbps

HSPAHighSpeedPacketAccess—HSPAisacombinationoftwomobile

telephonyprotocols,HighSpeedDownlinkPacketAccess(HSDPA)

andHighSpeedUplinkPacketAccess(HSUPA),thatimprovesthe

performanceofexisting3rdgenerationmobiletelecommunication

networksutilizingtheW-CDMAprotocols.Uplinkspeed:5.76Mbps/

Downlinkspeed:14.4Mbps

HSUPAHighSpeedUplinkPacketAccess—HSUPAisa3Gmobile

teoephonyprotocolintheHSPAfamilywithuplinkspeedsofupto

5.76Mbps;HSUPAisalsoknownasEnhancedUplink(EUL).

IBSSIndependentBasicServiceSet—AnIBSSisan802.11network

withoutacontrollingaccesspoint.

IEEEInstituteofElectricalandElectronicsEngineers—IEEEisa

professionalassociationheadquarteredinNewYorkCitythatis

dedicatedtoadvancingtechnologicalinnovationandexcellence.It

hasmorethan400,000membersinmorethan160countries,about

51.4%ofwhomresideintheUnitedStates.

IPsecInternetProtocolSecurity—IPsecisatechnologyprotocolsuitefor

securingInternetProtocol(IP)communicationsbyauthenticating

andencryptingeachIPpacketofacommunicationsession.IPsec

alsoincludesprotocolsforestablishingmutualauthentication

betweenagentsatthebeginningofthesessionandnegotiationof

cryptographickeystobeusedduringthesession.

Isolation transformersIsolationtransformersaregenerallycomposedoftwoseparate

windingswithamagneticshieldbetweenthesewindingstooffer

noisecontrol.Themainbenefitofferedbyisolationtransformers

istheinput-to-outputisolation,wheretheoutputcircuitcanbe

re-groundedandisolatedfrominputorothergroundnoisesources.

ThisisolationcanalsobeusefulwhereGroundPotentialRise

protectioncannotbeaffordedbynormalbondingprocedures.

ITSIntelligentTransportationSystems

ITUInternationalTelecommunicationUnion

LLCLogicalLinkControl—LLCisanIEEEspecificationthatallowsfurther

protocolmultiplexingoverEthernet.802.11framescarryLLC-

encapsulateddataunits.

LTELongTermEvolution—LTEisastandardforwirelesscommunication

ofhigh-speeddataformobilephonesanddataterminals.Itisbased

ontheGSM/EDGEandUMTS/HSPAnetworktechnologies,increasing

thecapacityandspeedusingadifferentradiointerfacetogetherwith

corenetworkimprovements.

M2MMachinetomachine—M2Mreferstotechnologiesthatallowboth

wirelessandwiredsystemstocommunicatewithotherdevicesof

thesameability.M2Musesadevice(suchasasensorormeter)to

captureanevent(temperature,inventorylevel,etc.),whichisrelayed

throughanetwork(wireless,wired,orhybrid)toanapplication

(softwareprogram),thattranslatesthecapturedeventinto

meaningfulinformation(forexample,itemsneedtoberestocked).

MAC (MAC address)MediaAccessControl—MACaddressesareuniqueidentifiers

assignedtonetworkinterfacesforcommunicationsonthephysical

networksegment,andareusedasanetworkaddressformost

IEEE802networktechnologies,includingEthernet.Logically,MAC

addressesareusedinthemediaaccesscontrolprotocolsublayerof

theOSIreferencemodel.

MIB ManagementInformationBase—AMIBisavirtualdatabaseused

formanagingtheentitiesinacommunicationsnetwork.Mostoften

associatedwiththeSimpleNetworkManagementProtocol(SNMP),

thetermisalsousedmoregenericallyincontextssuchasinthe

OSI/ISOnetworkmanagementmodel.Whileintendedtoreferto

thecompletecollectionofmanagementinformationavailableonan

entity,itisoftenusedtorefertoaparticularsubset,morecorrectly

referredtoasaMIB-module.

MIMOMultiple-Input/Multiple-Output—MIMOistheuseofmultiple

antennasatboththetransmitterandreceivertoimprove

communicationperformance.Itisoneofseveralformsofsmart

antennatechnology.Notethatthetermsinputandoutputreferto

theradiochannelcarryingthesignal,nottothedeviceshaving

antennas.

Page 55: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

54

www.moxa.com

OCMOnCellCentralManager—OCMisMoxa’sproprietarytechnologythat

allowsdevicesattachedtoprivatecellularnetworkstobeaccessed

overtheweb.

OFDMOrthogonalFrequencyDivisionMultiplexing—OFDMisatechnique

thatsplitsawidefrequencybandintoanumberofnarrowfrequency

bandsandinversemultiplexesdataacrossthesubchannels.

802.11aand802.11garebasedonOFDM.802.11nand802.11ac

useMIMOtotransmitmultipleOFDMdatastreams.

OSI layers (OSI model)OpenSystemsInterconnection—TheOSImodel(ISO/IEC7498-1)

ismaintainedbytheInternationalOrganizationforStandardization.

Itisaprescriptionofcharacterizingandstandardizingthefunctions

ofacommunicationssystemintermsofabstractionlayers.Similar

communicationfunctionsaregroupedintologicallayers.Alayer

servesthelayeraboveitandisservedbythelayerbelowit.

PERPacketErrorRate—PERissimilartobiterrorrate(BER),butis

measuredasafractionofpacketswitherrors.

PHYPHYisthecommonIEEEabbreviationforthephysicallayerofthe

OSImodel.

RADIUS RemoteAuthenticatedDial-InUserService—RADIUSisaprotocol

usedtoauthenticatedial-inusers.Ithasbecomemorewidelyused

becauseof802.1Xauthentication,andisthemostcommontypeof

authenticationserverusedin802.1Xsystems.

RIPRoutingInformationProtocol—RIPisadistance-vectorrouting

protocol,whichemploysthehopcountasaroutingmetric.RIP

preventsroutingloopsbyimplementingalimitonthenumber

ofhopsallowedinapathfromthesourcetoadestination.The

maximumnumberofhopsallowedforRIPis15.

RSSIReceivedSignalStrengthIndicator—RSSIisameasurementofthe

powerpresentinareceivedradiosignal.

RFRadiofrequency

SurgeAlsoreferredtoas“spikes,”electricalsurgesaresudden,briefrises

involtageand/orcurrenttoaconnectedload.Standardelectrical

equipmentoperatingat120voltscanbedamagedbysurgesof500

voltsorgreater.

SSIDServiceSetIdentity—AnSSIDisastringusedtoidentifyan

extendedserviceset.Typically,theSSIDisarecognizablecharacter

stringforthebenefitofusers.

TD-LTETime-DivisionLong-TermEvolution—TD-LTE,alsoreferredtoas

Long-TermEvolutionTime-DivisionDuplex(LTE-TDD),isa4-G

mobile-telecommunicationstechnology/standardco-developedby

severalmajorChinesetelecommunicationcompanies.

TIMTrafficIndicationMap—ATIMisabitmapelementtoindicatetoany

sleepinglisteningstationsiftheAccessPoint(AP)hasanybuffered

framespresentforit.Becausestationsshouldlistentoatleastone

beaconbeforethelisteninterval,theAPperiodicallysendsthis

bitmaponitsbeaconsasaninformationelement.

TKIP TemporalKeyIntegrityProtocol—TKIPisoneoftheimproved

encryptionprotocolsin802.11i.TKIPusesthefundamental

operationsofWEPwithnewkeyingandintegritycheckmechanisms

toofferadditionalsecurity.

Turbo RoamingTurboRoamingisMoxa’sproprietarytechnologythatiscapableof

providingseamlessmillisecond-levelhandoffsfor802.11roaming.

UMTSUniversalMobileTelecommunicationsSystem—UMTSisathird

generationmobilecellularsystemfornetworksbasedontheGSM

standard,whichstandard.Itisdevelopedandmaintainedbythe

3GPP(3rdGenerationPartnershipProject).

VPNVirtualPrivateNetwork—AVPNenablesahostcomputertosend

andreceivedataacrosspublicnetworks,suchastheInternet,with

allthefunctionality,security,andmanagementpoliciesoftheprivate

network.

VRRPVirtualRouterRedundancyProtocol—VRRPisacomputer

networkingprotocolthatprovidesforautomaticassignmentof

availableInternetProtocol(IP)routerstoparticipatinghosts.This

increasestheavailabilityandreliabilityofroutingpathsviaautomatic

defaultgatewayselectionsonanIPsubnetwork.

W-CDMAWidebandCodeDivisionMultipleAccess—W-CDMA,UMTS-FDD,

UTRA-FDD,orIMT-2000CDMADirectSpreadisanairinterface

standardfoundin3Gmobiletelecommunicationsnetworks.

Page 56: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

55 Industrial Wireless Guidebook

Glossary

WEP WiredEquivalentPrivacy—WEPisanoutdatedsecurityalgorithmfor

IEEE802.11wirelessnetworks.Itwasfoundtohavenumerousflaws

andisnowdeprecatedinfavorofnewerstandardssuchasWPA2.

Wi-FiWirelessFidelity—Wi-Fiisapopulartechnologythatallowsan

electronicdevicetoexchangedatawirelessly(usingradiowaves)

overacomputernetwork,includinghigh-speedInternetconnections.

TheWi-FiAlliance(formerlytheWirelessEthernetCompatibility

Alliance)startedtheWi-Fi(“wirelessfidelity”)certificationprogram

totestinteroperabilityof802.11implementation.Thistermis

sometimesreferredtoIEEE802.11standards-relateddevicesor

technologies.

WLANWirelessLocalAreaNetwork

WMANWirelessMetropolitanAreaNetworks(alsoknownasWiMAX)

WPA / WPA2 Wi-FiProtectedAccess—WPAandWPA2aretwosecurityprotocols

andsecuritycertificationprogramsdevelopedbytheWi-FiAlliance

tosecurewirelesscomputernetworks.TheAlliancedefinedthese

inresponsetoseriousweaknessesresearchershadfoundinthe

previoussystem,WEP(WiredEquivalentPrivacy).

WPANWirelessPersonalAreaNetwork—AWPANisaPANcarried

overwirelessnetworktechnologiessuchasIrDA,WirelessUSB,

Bluetooth,Z-Wave,ZigBee,orevenBodyAreaNetwork.Thereach

ofaWPANvariesfromafewcentimeterstoafewmeters.

WWANWirelessWideAreaNetwork—AWWANdiffersfromawirelesslocal

areanetwork(WLAN)byusingmobiletelecommunicationcellular

networktechnologiessuchasLTE,WiMAX(oftencalledawireless

metropolitanareanetworkorWMAN),UMTS,CDMA2000,GSM,

cellulardigitalpacketdata(CDPD),andMobitextotransferdata.It

canalsouseLocalMultipointDistributionService(LMDS)orWi-Fito

provideInternetaccess.

Page 57: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

Robust WLAN & WWAN for Industrial Applications

Industrial Wireless LAN & Cellular Solutions

Download our white paper to learn more about industrial-grade wireless devices

www.moxa.com/industrial_wireless_whitepaper

Critical Elements of Industrial-Grade Wireless Devices

AWK SeriesIndustrial IEEE 802.11 Wireless AP/Bridge/Client

OnCell Series Industrial Cellular Solutions

EMS Protection

Galvanic Isolation Protection

Extreme Temperature and Waterproof

Shock & Vibration Protection

Interference Free

Moxa Inc. Tel: +886 2 8919 1230 [email protected] www.moxa.com

Page 58: ndustrial Wireless Guidebook Industrial... · 2016. 8. 15. · 1-1 Overview ... 1-2 WLAN Basics..... 6 • IEEE 802 Standards in the OSI Reference Model • History of WLAN Standards

Moxa Sales and MarketingHeadquarters

Moxa Corporate Plaza601 Valencia Ave., Suite 200Brea, CA 92823, U.S.A.Toll Free: 1-888-669-2872Tel: +1-714-528-6777Fax: [email protected]

Moxa Design and EngineeringHeadquarters

Tel: +886-2-8919-1230Fax: [email protected]

Fl. 4, No. 135, Lane 235, Baoqiao Rd.Xindian Dist., New Taipei City,Taiwan, R.O.C.

The AmericasMoxa AmericasToll Free: 1-888-MOXA-USATel: +1-714-528-6777Fax: [email protected]

Moxa Brazil Tel: +55-11-2495-3555Fax: [email protected]

EuropeMoxa GermanyTel: +49-89-3700-399-0Fax: [email protected]

Moxa France Tel: +33-1-30-85-41-80Fax: [email protected]

Asia-PacificMoxa TaiwanTel: +886-2-8919-1230Fax: [email protected]

Moxa India Tel: +91-80-4172-9088Fax: [email protected]

Moxa RussiaTel: +7(495)287-09-29Fax: +7(495)269-09-29 [email protected]

ChinaMoxa ShanghaiTel: +86-21-5258-9955Fax: [email protected]

Moxa Beijing Tel: +86-10-6782-3959/61Fax: [email protected]

Moxa Shenzhen Tel: +86-755-8368-4084/94Fax: [email protected]

Moxa UK Tel: +44-1844-355-601Fax: [email protected]

© 2016 Moxa Inc. All rights reserved. The MOXA logo is a registered trademark of Moxa Inc. All other logos appearing in this document are the intellectual property of the respective company, product, or organization associated with the logo. P/N: 1900041301100

www.moxa.com/iw

AWK Series OnCell Series NPort Series

Industrial IEEE 802.11 Wireless AP/Bridge/Client

Industrial Cellular Solutions

Wireless and ZigBee Device Servers

Industrial Wireless Guidebook

Reliable Networks Sincere ServiceReliable Networks Sincere Service

Your Trusted Partner in AutomationMoxa is a leading manufacturer of industrial networking, computing, and automation solutions. With

over 25 years of industry experience, Moxa has connected more than 30 million devices worldwide

and has a distribution and service network that reaches customers in more than 70 countries. Moxa

delivers lasting business value by empowering industry with reliable networks and sincere service

for automation systems.