nb3sn srf cavity development at fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities...

53
Sam Posen NSCL Nuclear Science Seminar September 12, 2018 Nb 3 Sn SRF Cavity Development at Fermilab

Upload: others

Post on 05-Apr-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

NSCL Nuclear Science Seminar

September 12, 2018

Nb3Sn SRF Cavity Development at Fermilab

Page 2: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Particle Acceleration via SRF Cavities

• Superconducting radiofrequency (SRF) cavities

• High quality EM resonators: Typical Q0 > 1010

• Over billions of cycles, large electric field generated

• Particle beam gains energy as it passes through

Slowed down by factor of approximately 4x109Input RF power at 1.3 GHz

~1 m Images from linearcollider.org, WIkipedia2

Niobium

Page 3: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Particle Acceleration via SRF Cavities

• Superconducting radiofrequency (SRF) cavities

• High quality EM resonators: Typical Q0 > 1010

• Over billions of cycles, large electric field generated

• Particle beam gains energy as it passes through

Slowed down by factor of approximately 4x109Input RF power at 1.3 GHz

~1 m Images from linearcollider.org, WIkipedia3

Niobium

SRF: high current, high energy, high brightness beams

Page 4: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Impact of SRF on Accelerators for Science

9/12/2018 Sam Posen4

• Low energy nuclear physics, for nuclear shape, spin, vibration– Heavy ion linacs

• Medium energy nuclear physics, structure of nucleus, quark-gluon physics – Recirculating linac

• Nuclear astrophysics, for understanding the creation of elements – Facility for rare isotope beams (FRIB)

• X-Ray Light Sources for life science, materials science & engineering– Storage rings, free electron lasers, energy recovery linacs

• Spallation neutron source for materials science and engineering, life science, biotechnology, condensed matter physics, chemistry – High intensity proton linac

• Future High Intensity Proton Sources for – Nuclear waste transmutation, energy amplifier, power generation from Thorium

• High energy physics for fundamental nature of matter, space-time – Electron-positron storage ring colliders, linear collider, proton linacs for neutrinos

Page 5: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

RAONSoleil

SRF Accelerators Around the World

8/12/185

Circular

Planning

Light src

<10 cavities

Linear

NPHEP

Produc’nOper’n10-100 cavities

100-1000 cavities >1000 cavities

CEBAF

SNS

FRIBEICCLSISAC

LHCXFEL

ESS

TLS

BESSY

ATLAS

FLASHCESR

C-ADS

LIPAcBEPC-IIHIE-ISOLDE cERL

SPIRAL2

ALPI

ALICEELBE

ANURIB

J-PARCSC-LINAC

SARAF

ANUUSP

PIP-II/IIIFCC

ILC

ISNSADS

MaRIELCLS-II CepC-SppC

Sam Posen

Map from Wikipedia. Non-exhaustive facility list.

TARLA

Sam Posen

Page 6: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

EIC

SC-LINAC

SARAF

HIE-ISOLDE cERLJ-PARC

LIPAc

ANURIB

BEPC-II

TLS

ANUUSP

ALPI

BESSYELBE

FLASHSoleil

ALICE

LHC

ATLAS

CEBAF

SNS

CLS

CESR

ISACSPIRAL2

RAON

SRF Accelerators Around the World

8/12/186

Circular

Planning

Light src

<10 cavities

Linear

NPHEP

Produc’nOper’n10-100 cavities

100-1000 cavities >1000 cavities

ESS

C-ADS

ISNSADS

MaRIE

PIP-II/IIIFCC

CepC-SppC

FRIBXFEL

ILC

LCLS-II

Map from Wikipedia. Non-exhaustive facility list.

Sam Posen

Sam Posen

Page 7: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

EIC

SC-LINAC

SARAF

HIE-ISOLDE cERLJ-PARC

LIPAc

ANURIB

BEPC-II

TLS

ANUUSP

ALPI

BESSYELBE

FLASHSoleil

ALICE

LHC

ATLAS

CEBAF

SNS

CLS

CESR

ISACSPIRAL2

RAON

SRF Accelerators Around the World

8/12/187

Circular

Planning

Light src

<10 cavities

Linear

NPHEP

Produc’nOper’n10-100 cavities

100-1000 cavities >1000 cavities

ESS

C-ADS

ISNSADS

MaRIE

PIP-II/IIIFCC

CepC-SppC

FRIBXFEL

ILC

LCLS-II

Map from Wikipedia. Non-exhaustive facility list.

Sam Posen

Sam Posen

Advances in SRF cavity performance improve the feasibility of building new accelerators with unprecedented reach into unexplored scientific frontiers.

Page 8: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Gradient -> Length for Linear Accelerator

8/12/18 Sam Posen8

8 cavities~10 m

ILC: 8,000 cavities in 16 km linac

European XFEL

60

70

80

90

100

110

120

130

140

20 30 40 50

ILC cost vs. Gradient and Q0

Q0=4.0e9

Q0=6.0e9

Q0=8.0e9

Q0=1.6e9

Q0=3.2e9

Gradient MV/m

Co

st (

%)

Baseline design

Q0 also important!

Image from linearcollider.org. Tunnelflug video by European XFEL. Cost analysis by N. Solyak

Page 9: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Q0 -> Cryogenic Infrastructure, Operating Cost

8/12/189

4 kW 2 K LHe plant

Pdiss ~ Eacc/Q0

Lower cost

Jefferson Lab

Sam Posen

Number of Cavities350 400 450 500 550 600 650 700

Dis

sip

ate

d R

F P

ow

er

at

2 K

[kW

]

0

2

4

6

8

10

12

14

16

13 MV/m16 MV/m19 MV/m22 MV/m

1 Cryoplant

2 Cryoplants

3 Cryoplants

4 Cryoplants Q=1.5x1010

Q=1.7x1010

Q=1.9x1010

Q=2.1x1010

Q=2.3x1010

Q=2.5x1010

Q=2.7x1010

Above is a rough calculation for LCLS-II upgrade(from me, not to be considered official numbers from project)

Low

er c

ost

8 GeV CW SRF Linac(for fixed Emax)

New N-doping technique

Previous state-of-the-art

Page 10: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

SRF Figures of Merit: Q vs E Curve

9/12/201810

Qu

alit

y Fa

cto

r

Higher energy gain per length

Hig

her

Cry

oge

nic

Eff

icie

ncy

Eacc

[MV/m]0 5025

Bpk [mT]0 200100

Slide adapted from M. LiepeSam Posen

109

1011

1010Quench of

superconductivity

Page 11: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

• RF currents concentrated in the first ~100 nm of the inner surface

Cavity performance depends on nm properties of inner surface

11 8/12/18

Page 12: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

• Final treatment crucial to performance• Surface analysis needed to connect RF performance with

material properties

12

• RF losses concentrated in the first ~100 nm of the inner surface

Cavity performance depends on nm properties of inner surface

8/12/18

Page 13: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

Fermilab Materials Science Laboratory – Understanding how

to push performance through investigation of microstructure

13 8/12/18

Page 14: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

Fermilab Materials Science Laboratory – Understanding how

to push performance through investigation of microstructure

14M. Checchin et al., IPAC 2018 and TTC 2018 – to be published

8/12/18

Page 15: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

Material characterization of inner cavity surface

RF characterization + T-map highlightareas with different dissipativebehavior

Generation of cavity cut-outs leads to themost representative samples that can beanalyzed

15 8/12/18

Page 16: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Major Cavity Processing/Treatment Facilities

8/12/18Sam Posen16

electropolishing

tuning

Class 10 clean room/high pressure water rinsing

clean room assembly

results have been found for fine grain cavities post-heat treatment with no subsequent

material removal, showing often very poor performance [7, 8, 9]. To date there has not

been a detailed study of the possible roots of these poor results, and of a potential

solution to achieve consistently good performance on all cavities annealed with no

subsequent chemistry (fine grain, large grain, differently processed substrates), which

strongly motivated this work at FNAL. Finally, there has been an extensive effort at

FNAL in producing an acid-free material removal process, via centrifugal barrel

polishing (CBP),  material   removal   technique   that   allows   obtaining   ‘mirror   smooth’  

surfaces [10]. However, CBP loads the cavity with large amount of hydrogen and a final

degassing step followed by light chemistry is always needed post CBP. This further

motivated our studies, since the elimination of the post-furnace material removal is

essential to make CBP a completely chemistry-free procedure and to preserve the mirror

smooth finish.

Experimental tools

A picture of the T-M Vacuum Furnace used for these studies is shown in Figure 1. The

chamber can accommodate two single cell cavities or a 1.3 GHz nine-cell cavity. Two

cryopumps are attached to the chamber and provide a total pumping speed of 9600 L/sec

air and 24,000 L/sec hydrogen. A dry Roots pump provides rough pumping capability.

Throughout the furnace operation, RGA measurements of the partial pressures are

recorded. A full spectrum of 1-100 amu is recorded every minute. Cold cathode gauges

provide total pressure readings. The maximum allowed operating temperature of the

furnace is 1000°C. The heating elements are 2-inch wide molybdenum strips which

surround  t

h

e  ho

t

 zone,  which  i

s

 a  vo l um e  of  12 ”  x  12 ”  x  60 ” .    Five layers of molybdenum

make up the thermal shields. Chilled water kept at 70°F keeps the outer surface of the

dual-walled vacuum chamber cool to the touch during operation.

Figure 1.  Picture  of  the  T-M  furnace  used  for  the  heat  tr eatment  st udies  of  niobium  cavities,  with  a  9-cell  

1.3  GHz  cavity  being  loaded  in  the  chamber.  

All the cavities used in these studies are 1.3 GHz TESLA shape cavities [11], with Nb-Ti

alloy flanges. The serial number and some parameters of these cavities are summarized in

Table 1. The typical electro-polishing removal is done using a standard solution of

H2SO4:HF 9:1, while details of the material removal via CBP can be found in [10].

Furnace treatment

Joint facility with Argonne National Lab

Page 17: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Facilities used for: clean assembly of cryomodules, from

individual cavities to accelerator-ready module

• Projects/Programs served: LCLS-II, PIP-II, future SRF

accelerator projects, opportunity for assembly of high

gradient R&D cryomodule to push state-of-the-art

• Uniqueness of facility: one of two major cryomodule

assembly facilities in the US, ~4 of this scale in the world

Cryomodule Assembly

8/12/18 Sam Posen17

Page 18: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Example: LCLS-II Cryomodule Assembly

8/12/18 Sam Posen18

Page 19: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Non-accelerator SRF applications: quantum computing and

dark sector searches

8/12/18Sam Posen19

S. R. Parker et al, Phys. Rev. D 88, 112004 (2013)

J. Hartnett et al, Phys. Lett. B 698 (2011) 346

J. Jaeckel and A. Ringwald, Phys. Lett. B 659, 509 (2008)

Looking for hidden paraphotons

QDET, QEM < 105 so

far used

QDET, QEM > 1010 SRF can offer

>10 orders of magnitude

improvement in sensitivity to c

Qu

alit

y F

acto

r

Eacc (MV/m)

0.001 0.01 0.1 1 10

1x1010

3x1010

5x1010

7x1010

9x1010

Saturation of the

Q decrease

Fit to TLS model

Ec = 0.1 MV/m

b = 0.19

CWSS RBW=10 kHzSS RBW=30 Hz

FNAL new large

dilution refrigerator

capable of (>50) 3D-

SRF qubits

(New Ultra low T SRF

Facility)

Page 20: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen20

Nb3Sn SRF Coating at Fermilab

Page 21: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Niobium has been the material of choice for SRF cavities for

the last ~50 years

• Niobium has some of the best superconducting properties of

all elements including highest critical temperature Tc ~ 9.2 K

• Easy to work with – purify, make sheets, form, weld, treat

– Not a compound! Don’t need to achieve precise stoichiometry

• Other important features: good structural and thermal

properties in bulk form, long coherence length (relatively low

defect sensitivity), doesn’t react with water

Why is Niobium the Traditional SRF Material?

9/12/2018 Sam Posen21

Images from Roark, G. Orly, ESS, SRF 2015, and Fermilab

Page 22: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Larger Tc, larger predicted ultimate field (see next slides)

• Niobium compound: can convert existing cavities

• Only two elements – next step in stoichiometric complexity

• Coherence length smaller than niobium but still several nm

• Brittle and low thermal conductivity, but can be used as a film

with thickness large compared to the RF penetration depth

Why Consider Nb3Sn?

9/12/2018 Sam Posen22

Top surface Cross-section

Page 23: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

High Q0(T) via Nb3Sn

23

• Large Tc ~ 18 K for Nb3Sn

• Very small RBCS(T) – RBCS(T) ~ e-1.76Tc /T

• High Q0 even at relatively high T

• Higher temperature operation

• Simpler cryogenic plant

• Higher efficiency

T [K]1 2 3 4 5

PA

C/P

dis

s

0

500

1000

1500

CERN cryogenic plant

8/12/18 Sam Posen

0 5 10 15 2010

4

106

108

1010

T [K]

Q0 [

]

Tc = 9.2 K T

c = 18 K

Rres

= 9.5 n

Nb3Sn Data

Nb3Sn BCS Theory

Nb BCS Theory

Page 24: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Maximum Accelerating Field

8/12/1824

• For high gradient applications, the superheating field of

Nb3Sn is predicted to be twice that of niobium, potentially

providing twice as large acceleration per unit length

• This is significantly beyond current performance levels

• R&D to avoid microstructural inhomogeneities may improve

maximum fields

T2 [K

2]

0H

[m

T]

0 82 112 142 162 182

0

50

100

150

200

250

0H

quench, Nb

3Sn

0H

sh, Nb

3Sn

0H

c1, Nb

3Sn

Campisi

Hays

S. Posen, N. Valles, and M. Liepe, Phys. Rev. Lett., 115, 047001 (2015).

0

20

40

60

80

100

Now Potential

Max

imu

m E

acc

[MV

/m]

Series1

Series2

Nb

Nb3Sn

Sam Posen

Page 25: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Eacc

[MV/m]0 5 10 15 20

Q0

108

109

1010

1011

1 W 3 W 5 W

10 W

30 W

50 W

Wuppertal 2000Cornell 2014Cornell 2015Fermilab 2018

Possibility for Cryocooler

9/12/2018 Sam Posen | Fermilab Nb3Sn SRF Program25

1.3 GHz4.2 K

Nb approx

Sumitomo

2-5 W at 4.2 K for ~$30-50k/watt

Lower dissipation expected for 650 MHz

7-10 MV/m with ~5 W dissipation

Small-Scale Accelerators

Dissipated power

Page 26: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Solid state orMagnetronPower Supply

Cryo-coolerCompressor Integrated

ElectronGun

Cryo-coolerCold HeadLow

Heat-lossRF Coupler

Nb3SnCoated Cavity No Liquid Heluim

Slide courtesy Charles Thangaraj/IARC, Fermilab

Page 27: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Nb3Sn SRF Experimental Program at Fermilab

27

• Program initiated in 2015, first coatings in early 2017

• Nb3Sn SRF program goals:

1. Process development to push performance: Q0 and Eacc

2. Scale up to production-style cavities and study in cryomodule-

like environment

New

door

and

heat

shields

New Nb chamber,

20”diam, 82” long

Existing vacuum

furnace

1.3 GHz 1-cell (current state of Nb3Sn R&D) 650 MHz 5-cell (future)

8/12/18Sam Posen

Page 28: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Fermilab Nb3Sn Coating System

8/12/18Sam Posen28

Nb coating chamber

Hot zone

Existing vacuum furnace

First and only Nb3Sn coating chamber capable of coating 1.3 GHz 9-cell cavities or 5-cell 650 MHz cavities

Page 29: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen29

Coating Parameter Optimization

Page 30: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Coating Mechanism: Vapor Diffusion

8/12/183030

Sn vapor arrives at surface

Sn diffusion

Ts = Sn source temperature=~1200 C

By independently controlling Sn vapor abundance, it can balanced with Sn diffusion

rate to achieve desired stoichiometry

Sn

Nb

Nb3Sn

UHV furnace

Nb cavity substrate

Tf = Furnace temperature=~1100 C

SnVapor

Heater

Technique development: Saur and Wurm, Die Naturwissenchaften 1962, Hillenbrand et al. IEEE

Transactions on Magnetics 1977, Peiniger et al, SRF’88.Sam Posen

Page 31: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Sam Posen

“Phase Locking” to Achieve Desired Composition

8/12/1831

1. Stoichiometric A15 Nb3Sn: ~18-26 at.% of Sn2. Nb3Sn with 24-26 at.% of Sn to get Tc~18K

Godeke et. al. Supercond. Sci. Technol. 19 (2006)

Rudman et. al. J. App Phys. 55 (1984)

Page 32: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen32

0.7 g tin evaporated

Top

Bottom

Page 33: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Parameter optimization to avoid over-/under-coating

• Several parameters found to be important:

Coating Parameter Optimization

8/12/18 Sam Posen33

0.4 g tin evaporated

Apparent thin or uncoated areas

1.5 g tin evaporated

Apparent Residual tin

– Crucible diameter

– Heater power

– Coating time

– Annealing time

Page 34: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Extremely Important Tool – T-map

8/12/18 Sam Posen34

Page 35: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Spot #1 – Board 33, resistor #8, 37.4 degrees

8/12/18 Sam Posen35

Coating #2

Coating #1 Coating #1 + anodized

Post CBP #1 Post CBP #2

As Received

Weld defect

Page 36: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• To date, best appearance

and performance at

Fermilab achieved with:

– Smallest diameter

crucible tested

– Heater at maximum

power (crucible ~1200 C)

– Cavity anodized to 30 V

prior to coating

Coating Parameter Optimization

8/12/18 Sam Posen36

S. Posen, TTC Meeting 2018, Tokyo, Japan

Page 37: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Very high Q0 at

2.0 K ~5e10 at

useful fields

~10 MV/m

• Excellent low

and mid-field

Q0 at 4.4 K

>1e10

• Still some Q-

slope but nice

quench field

• Sharp 18 K

transitions

Q vs E

8/12/18 Sam Posen37

Nb at 2.0 K, 10 MV/m: ~1x1010 - 3x1010

Nb at 4.4 K, 10 MV/m: ~3x108 - 5x108

1.3 GHz

S. Posen, TTC Meeting 2018, Tokyo, Japan

Page 38: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen38

Surface Studies and Q-Slope

Page 39: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Hints for Improvements: What causes Q-Slope?

Sam Posen39

CornellWuppertal

Jefferson Lab Fermilab

8/12/18

Page 40: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Nb3Sn-Coated Nb Cavity (ERL1-5) and Cutout Samples

8/12/18Sam Posen40

Q of 109 @ low fields; significant Q-slope starting from 5 MV/m

Temperature map was taken at 9 MV/m @ 4.2K

C2

H4

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).

Page 41: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Cold vs. Hot cutout: SEM/EDS at 20 kV

41

Cold

Hot

Hot cutout: what are the “patchy” regions?

Nb~75 at.% Sn~25 at.%

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).8/12/18Sam Posen

Page 42: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Cold vs. Hot: TEM on cross-sectional samples

42

Cold Hot

Both cutouts have Nb3Sn A15 structure

Hot cutout shows extremely thin regions, only ~1 RF penetration depth

Nb3Sn[011]

Pt

Nb3Sn

Nb

Pt

Nb3Sn

Nb

Nb3Sn[001]

200nm

2000nm ~10 times difference in

thickness

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).8/12/18Sam Posen

Page 43: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• EBSD analysis of grain orientation reveals that the thin

regions in the hot spots are in fact large grains, with diameter

~100 microns vs ~1 micron for standard Nb3Sn grains

Thin Regions are Unusually Large Grains

43

EBSD by Y. TrenikhinaSEM by Y. Trenikhina

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).8/12/18 Sam Posen

Page 44: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• EBSD analysis of grain orientation reveals that the thin

regions in the hot spots are in fact large grains, with diameter

~100 microns vs ~1 micron for standard Nb3Sn grains

Thin Regions are Unusually Large Grains

44

EBSD by Y. TrenikhinaSEM by Y. Trenikhina

• This is consistent with mechanism for

growth of grains: diffusion of tin to

interface via grain boundaries

X-section

Top view

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).8/12/18 Sam Posen

Page 45: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Epitaxial orientation relationships at Nb/Nb3Sn

Jae-Yel Lee, Northwestern University / Fermilabhttps://arxiv.org/abs/1807.03898

45

Normal Grain Thickness

8/12/18 Sam Posen

Page 46: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Epitaxial orientation relationships at Nb/Nb3Sn

Jae-Yel Lee, Northwestern University / Fermilabhttps://arxiv.org/abs/1807.03898

46

Thin Grain

12.0%

8/12/18 Sam Posen

Page 47: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen47Jae-Yel Lee, Northwestern University / Fermilab

https://arxiv.org/abs/1807.03898

thin region thin region

Nb3Sn [1-20] zone axis

Nb [-111] zone axis

12.3% lattice misfit

Page 48: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• For cavity with poor performance, worst regions show:

– Thin coating

– Composed of large, single grains

– With specific orientation relative to Nb substrate

• Now need to extend lessons learned to prevent the formation

of these regions

• Improved understanding particularly key for multicell cavities,

where first attempts have shown substantial presence of

“patchy” regions

Thin Region Summary and Outlook

8/12/18 Sam Posen48

Page 49: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

8/12/18 Sam Posen49

On the Horizon

Page 50: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Nb3Sn Coatings of 3.9 GHz and 650 MHz Cavities

8/12/18 Sam Posen50

Set up for coating

After Coating

Nb flange weld

VTS baseline (Nb only)

How do properties scale with frequency? Residual and BCS resistance, Q-slope, quench field…

3.9 GHz 1-cell 650 MHz 1-cell

Page 51: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Very first coating on 9/4 (1 week ago)

• Vertical test in ~2 weeks

650 MHz 1-cell Coated with Nb3Sn

8/12/18 Sam Posen51

Page 52: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

Increasing Eacc in Nb3Sn Cavities

• Several promising paths forward for

continued progress including:

9/12/2018Sam Posen52

R. Porter, D. L. Hall, M. Liepe, J. T. Maniscalco, Proc. Linac Conference 2016, MOPRC027 (2016).

Cornell: AFM scan of Nb3Sn

sampleField

enhancement factor >1.5

S. Posen, Ph.D. Thesis, Cornell University (2015).

Y. Trenikhina, S. Posen, D. Hall, and M. Liepe, Proc. SRF Conference 2015, TUPB056, 2015

4 μm

X-section

Smoothing sharp-edged

surfaces

Reducing low tin content regions

Tin transport through grain boundaries

Page 53: Nb3Sn SRF Cavity Development at Fermilab · 2019-11-27 · 10-100 cavities 100-1000 cavities >1000 cavities ESS C-ADS ADS ISNS MaRIE PIP-II/III FCC CepC-SppC FRIB XFEL ILC LCLS-II

• Superconducting radiofrequency cavities accelerate

particle beams at large facilities in a diverse range of

scientific applications, with more being added every year

• Nb3Sn offers a path to operation at higher temperatures,

where cooling is substantially more efficient, potentially

opening new applications

• Nb3Sn focus for near future:

– Reproducibility on single cells

– Push to remove Q-slope and increase maximum gradient

– Move into other frequencies and into multicells

Summary and Outlook

9/12/2018 Sam Posen53