nano-assembly of immobilized enzymes for biocatalysis in aqueous and non-aqueous media

37
NANO-ASSEMBLY OF IMMOBILIZED ENZYMES FOR BIOCATALYSIS IN AQUEOUS AND NON-AQUEOUS MEDIA Debasish Kuila, Ph.D. Professor and Chair of Chemistry North Carolina A&T State University Greensboro, NC 27411 [email protected] Yuri Lvov, Devendra Patel, Rajendra Aithal, and Gopal Krishna Louisiana Tech University, Ruston, LA 71272 Ming Tien, Penn State University, University Park, PA 16802

Upload: oki

Post on 03-Feb-2016

54 views

Category:

Documents


0 download

DESCRIPTION

NANO-ASSEMBLY OF IMMOBILIZED ENZYMES FOR BIOCATALYSIS IN AQUEOUS AND NON-AQUEOUS MEDIA. Debasish Kuila, Ph.D. Professor and Chair of Chemistry North Carolina A&T State University Greensboro, NC 27411 [email protected] Yuri Lvov, Devendra Patel, Rajendra Aithal, and Gopal Krishna - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

NANO-ASSEMBLY OF IMMOBILIZED ENZYMES

FOR BIOCATALYSIS IN AQUEOUS AND NON-AQUEOUS MEDIA

Debasish Kuila, Ph.D.Professor and Chair of Chemistry

North Carolina A&T State UniversityGreensboro, NC 27411 [email protected]

Yuri Lvov, Devendra Patel, Rajendra Aithal, and Gopal KrishnaLouisiana Tech University, Ruston, LA 71272

Ming Tien, Penn State University, University Park, PA 16802

Page 2: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Outline• Introduction

– Lignin Peroxidase (LiP)

– Manganese Peroxidase (MnP)

• Catalytic Cycle of Peroxidases

• Layer-by-Layer Assemblies of LiP and MnP on a Flat Surface– Characterization using a Quartz Crystal Microbalance (QCM)

– Using silica nanoparticles

– Veratryl Alcohol Oxidation (aqueous and non- aqueous)

• Nano-assemblies on Microparticles - Oxidation

• Conclusions

Page 3: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Lignin Peroxidase•Heme access channel•Also site of long range transfer

Mn Peroxidase•Heme access channel•Mn binding site near heme

Lignin Peroxidase Mn Peroxidase

Lignin and Manganese Peroxidases

Page 4: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Fe

N

N N

N

COOHCOOH

Structure of Iron-Protoporphyrin IX

Page 5: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Mn-Peroxidase (P. chrysosporium)

Page 6: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

C

C

16

15

14

13

11

10

9

8

7

65

4

3

2

112

O

CH

CH

CH2OH

H3CO

O

COH

CH

CH2OH

H3CO

OH

CH

H3CO

CHOH

HC

HOCH2

H3CO

O

O

HC

CH

CH2OH

HC

HC

OCH3

HOH2C

OCH3

OO

H3CO

O

CH

CH2OH

OCH3

O

CHOH

CH

CH2OH

OCH3

OH

CH

HC

CH2OH

H3CO OCH3

O etc.

O

C

C

C

H3CO OCH3

Carbohydrate

OH

C

HC

CH2OH

OCH3

O

O

CHOH

HC

HOH2C

OCH3

CHOH

CH

CH2OH

O

HC

H3CO

HO

OCH3

O

HC

HC

H2C

OCH3

OCH2

O

OCH

CH

O

CH2OH

H3CO

HC

CH2OH

OHOCH3

CH CH2OH

O etc.

Representative Structure of LigninRepresentative Structure of Lignin

Adapted from Adler

Page 7: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Characteristics of LiP and MnP• Lignin Peroxidase (LiP) and Manganese

Peroxidase (MnP) are isolated from Phanerochaete chrysosporium (Prof. Tien, Penn State).

– LiP: Molecular Weight ~42,000, PI ~3.5 – 4.0

– MnP: Molecular Weight ~45,000, PI ~4.5

• Oxidize aromatic substrates of higher redox potential – a distinct feature

Page 8: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Catalytic Cyle of PeroxidasesCatalytic Cyle of Peroxidases

Fe3+

+ H2O2 Fe4+O

+ H2O+.Ferric Compound I

Fe4+

O+.

+ RH Fe4+

O

+ R.Compound I Compound I I

Fe4+

O

+ RH Fe3+ + R.

Compound I I Ferric

Page 9: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Fe(III)

N N

N N

+ H2O2

O

C

H

H

H

Fe(III)

N N

N N

+O

C

H

- H2O

Ferric Enzyme Compound I

Compound I Ferric EnzymeAlcohol Aldehyde

Fe(IV)+ ∙

N N

N N

O

Fe(IV)+ ∙

N N

N N

O RR

Oxidation of an Alcohol by Ferri-LiP in the presence of H2O2

Page 10: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Why Do Immobilization of Enzymes?

• Stabilize the enzyme…

• Bioreactors

• Oxidize Aromatic Pollutants

• Bioremediation

Page 11: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Enzyme Immobilization Procedure• Electrostatic interaction between oppositely

charged species.• Polyelectrolytes:

– Poly(dimethyldiallylammonium chloride) (PDDA) – PI ~13– Poly(ethylenimine) (PEI) – PI ~11– Poly(allylamine) (PAH) – PI ~ 8– Poly(styrenesulfonate) (PSS) – PI ~2

• Enzymes:– Lignin Peroxidase (LiP) – PI ~3.5– Manganese Peroxidase (MnP) – PI ~4.5

• LbL assembly carried out at pH 6.0 (Acetate Buffer).

Page 12: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

N

CH3H3C

Cl-

PEIPoly(ethyleneami

ne)

PAHPoly(allylamine)

N+

H2

Cl-NH3+

PDDAPoly(dimethyldiallylammonium)

SO3 -

Na+

Structure of Polyelectrolytes

PSS

Polystyrenesulfonate

Page 13: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

LbL Assembly on a Flat Surface

+++++++

+++++++

Initially Negatively Charged Surface

Adsorption of Polycations

Adsorption of Polyanions

Adsorption of Polycations

Adsorption of Protein

Polycation

Polyanion

Protein

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

Page 14: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

QCM Characterization of Nano-assembly on a Flat Surface

0

200

400

600

800

1000

1200

1400

Null

PDDA/PEI/P

AHPSS

PDDA/PEI/P

AHPSS

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

Layers

Fre

qu

ency

Sh

ift

(Hz

)

02468101214161820

Film

Th

ickn

ess

(nm

)

MnP/PDDA

MnP/PEI

MnP/PAH

Film Thickness is calculated using Sauerbrey equation: ΔT (nm) ≈ - (0.016 ± 0.002) x ΔF

where ΔF is frequency shift of QCM resonator after each layer is deposited

Page 15: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of not drying enzyme layers (on thickness)

-500

0

500

1000

1500

2000

Null PEI PSS PEI PSS PEI PEI PEI PEI PEI PEI PEI

Layers

Fre

qu

ency

Sh

ift

(Hz)

-5

0

5

10

15

20

25

30

35

Film

Th

ickn

ess

(nm

)

LiP/PEI

MnP/PEI

Presence of water is critical for nano-assembly.

Page 16: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Atomic Force Microscopy (AFM) Picture of (PDDA/MnP) Assembly on mica

Page 17: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Activity Studies of LbL-assembled LiP and MnP

Veratryl Aldehyde (310 nm)

OCH3

CH2OH

OCH3

Veratryl Alcohol

OCH3

OCH3

CHO

H2O2

Page 18: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of Polycations on Activities of Immobilized LiP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120

Time (min.)

Ab

sorb

ance

(31

0 n

m) (LiP/PDDA)5

(LiP/PEI)5

(LiP/PAH)5

Page 19: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of Number of Layers on LbL-Assembled MnP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120

Time (min.)

Ab

sorb

ance

(31

0nm

)

(MnP/PAH) Layer = 1

(MnP/PAH) Layers = 2

(MnP/PAH) Layers = 4

(MnP/PAH) Layers = 7

Page 20: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of Number of Runs on Activity of (LiP/PEI)6 Nano-Assembly

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Time (min.)

Ab

sorb

ance

(31

0nm

)

Assembly 1, Day 1, Run 1Assembly 1, Day 4, Run 2Assembly 2, Day 4, Run 1Assembly 2, Day 8, Run 2

Page 21: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Active site

Product

Reactant

Scheme for Oxidation of Substrates

Page 22: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Activity Assays of Assemblies on Flat surface: Effect of drying

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120

Time (min.)

Ab

sorb

ance

(31

0 n

m)

(MnP/PEI)5, Drying of Enzyme LayerSkipped

(MnP/PEI)7, Drying Was Carried Outfor Characterization

Page 23: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of acetone on Veratryl Alcohol Oxidation using (MnP/PEI)7 Assembly

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120Time (min.)

Ab

sorb

ance

(31

0nm

)

Day 1, Aqueous

Day 2, 5% Acetone

Day 3, 10% Acetone

Day 4, 15 % Acetone

Day 5, 20 % Acetone

Day 6, 30% Acetone

Day 7, 35% Acetone

D. S. Patel et al, Colloids & Surfaces B: Biointerfaces, 2005, 43, 13-19

Page 24: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of acetone on VA Oxidation using (MnP/PEI)7 Assembly

OCH3

CH2OH

OCH

3Veratryl Alcohol Veratryl Aldehyde (310 nm)

OCH3

OCH3

CHO

H2O2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120

Time (min.)

Ab

sorb

an

ce (

31

0n

m)

Day 1, Aqueous

Day 2, 5% Acetone

Day 3, 10% Acetone

Day 4, 15 % Acetone

Day 5, 20 % Acetone

Day 6, 30% Acetone

Day 7, 35% Acetone

Colloids & Surfaces B: Biointerfaces, 2005, 43, 13-19

Page 25: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Assembly on Colloidal Particles

PolyanionPolycation

Positively ChargedMF Particle (5 microns)

Polyanion Adsorption

Polycation Adsorption

Protein Adsorption

Silica Nanoparticle (45nm)

Protein

Assembly on flat surface using a composite layer of silica nanoparticles

Page 26: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

QCM Characterization: With a composite layer of silica nanoparticles

PDDA

PDDAPDDA

PDDA

PDDA

MnPPDDA

MnP

Null PDDAPSS PDDA

PSS

SILICA 45nm

PDDA

PSS

MnP

MnP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Null

PDDAPSS

PDDAPSS

PDDA

SILIC

A 45n

mPDDA

PSS

PDDAM

nP

PDDAM

nP

PDDAM

nP

PDDAM

nP

PDDA

Layers

Fre

qu

en

cy S

hif

t (H

z)

0

20

40

60

80

100

120

140

160

Film

Th

ick

ne

ss (

nm

)

Page 27: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of a composite layer of silica on activities of LbL-MnP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120Time (min.)

Ab

sorb

ance

(31

0nm

) PDDA/Silica/(MnP/PDDA)4

(PDDA/MnP)7

Page 28: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Assembly on Colloidal Particles

PolyanionPolycation

Positively ChargedMF Particle (5 microns)

Polyanion Adsorption

Polycation Adsorption

Protein Adsorption

Silica Nanoparticle (45nm)

Protein

Assembly on flat surface using a composite layer of silica nanoparticles

Page 29: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Zeta Potential - MnP Assembly on Melamine Formaldehyde (MF, 5 microns)

MF

PSS

PDDA

PSS

PDDA

MnP 24 hrs

PEI PEI

MnP 24 hrs

MnP 24 hrs

-80

-60

-40

-20

0

20

40

60

80

Layers

Zet

a P

ote

nti

al (

mV

)

Page 30: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

VA Oxidation Using LiP and MnP on MF Microparticles

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120Time (min.)

Ab

sorb

an

ce (

310

nm

)

(PEI/LiP)2 on MF (5 microns)

(PEI/MnP)3 on MF (5 microns)

Page 31: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

2,6-Dimethoxyphenol Oxidation Using LiP/MnP on MF Microparticles

Oxidation of 2,6-dimethoxyphenol

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60

Time (min.)

Ab

sorb

ance

(46

9 n

m)

(PEI/LiP)2 on MF (5microns)

(PEI/MnP)3 on MF (5microns)

Page 32: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Conclusions• Nano-Assemblies of LiP and MnP are successfully fabricated

and characterized on a flat surface as well as colloidal particles.• A unique dynamic adsorption-desorption of enzyme layer

during assembly process is observed using QCM.• Time, number of runs, non-aqueous media, and drying of the

enzyme layers have significant effect on the activity of the LbL assembled enzymes.

• A novel concept of using of silica nanoparticles improves bio-catalysis.

• Oxidations of veratryl alcohol and 2,6 – dimethoxyphenol by enzymatic nano-assemblies on MF particles have been successfully demonstrated.

Page 33: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Acknowledgement

• Louisiana Tech U – Start-up Grant

Page 34: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14

Time (min)

Ab

so

rba

nc

e(3

10

nm

)

Aqueous media

5% acetone

10% acetone

15% acetone

20% acetone

25% acetone

AqueousR-same day

AqueousR-2nd day

AqueousR-3rd day

VA Oxidation in aqueous and aq-acetone media with MnP-PAH (4 layers) [Reverse Process]

Page 35: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Comparisons

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

Time (min.)

Co

nce

ntr

atio

n (

nM

)

Native LiP ( Per ug of Enzyme)

(PEI/LiP)2 on MF (5 microns)

(PEI/LiP)5 on QCM

Colloids & Surfaces B: Biointerfaces, 2005, 43, 13-19 .

Page 36: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Effect of Time on Activity of LbL Assembled Enzymes [ (MnP/PEI)5 ]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Time (min)

Ab

sorb

ance

(31

0 n

m)

Day 1, Run 1

Day 3, Run 2

Day 6, Run 3

Day 21, Run 7

Page 37: NANO-ASSEMBLY OF IMMOBILIZED ENZYMES  FOR BIOCATALYSIS IN AQUEOUS  AND NON-AQUEOUS MEDIA

Characterization of MnP-Assembly with Different Polyelectrolytes on a Flat

Surface Using QCM

Film Thickness is calculated using Sauerbrey equation: ΔT (nm) ≈ - (0.016 ± 0.002) x ΔF

where ΔF is frequency shift of QCM resonator after each layer is deposited

0

200

400

600

800

1000

1200

1400

Null

PDDA/PEI/P

AHPSS

PDDA/PEI/P

AHPSS

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

PDDA/PEI/P

AHM

nP

Layers

Fre

qu

en

cy S

hif

t (H

z)

0

2

4

6

8

10

12

14

16

18

20

Film

Th

ickn

ess (

nm

)

MnP/ PDDA

MnP/ PEI

MnP/ PAH

D. S. Patel et al, Colloids & Surfaces B: Biointerfaces, 2005, 43, 13-19