mws gen int ppt gaussquadrature

Upload: rajaram-kamath

Post on 05-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    1/30

    4/5/2012 http://numericalmethods.eng.usf.edu 1

    Gauss Quadrature Rule of

    Integration

    Major: All Engineering Majors

    Authors: Autar Kaw, Charlie Barker

    http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

    Undergraduates

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/
  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    2/30

    Gauss Quadrature Rule ofIntegration

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/
  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    3/30

    http://numericalmethods.eng.usf.edu3

    What is Integration?Integration

    b

    a

    dx)x(fI

    The process of measuringthe area under a curve.

    Where:

    f(x)is the integrand

    a= lower limit of integration

    b= upper limit of integration

    f(x)

    a b

    y

    x

    b

    a

    dx)x(f

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    4/30

    http://numericalmethods.eng.usf.edu4

    Two-Point GaussianQuadrature Rule

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    5/30

    http://numericalmethods.eng.usf.edu5

    Basis of the Gaussian

    Quadrature RulePreviously, the Trapezoidal Rule was developed by the method

    of undetermined coefficients. The result of that development is

    summarized below.

    )(2

    )(2

    )()()( 21

    bfab

    afab

    bfcafcdxxf

    b

    a

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    6/30

    http://numericalmethods.eng.usf.edu6

    Basis of the Gaussian

    Quadrature Rule

    The two-point Gauss Quadrature Rule is an extension of theTrapezoidal Rule approximation where the arguments of the

    function are not predetermined as a and b but as unknownsx1 and x2. In the two-point Gauss Quadrature Rule, theintegral is approximated as

    b

    adx)x(fI )x(fc)x(fc 2211

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    7/30

    http://numericalmethods.eng.usf.edu7

    Basis of the Gaussian

    Quadrature RuleThe four unknowns x1, x2, c1 and c2 are found by assuming thatthe formula gives exact results for integrating a general thirdorder polynomial, .xaxaxaa)x(f 33

    2

    210

    Hence

    b

    a

    b

    a

    dxxaxaxaadx)x(f 332

    210

    b

    a

    xaxaxaxa

    432

    4

    3

    3

    2

    2

    10

    432

    44

    3

    33

    2

    22

    10

    aba

    aba

    abaaba

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    8/30

    http://numericalmethods.eng.usf.edu8

    Basis of the Gaussian

    Quadrature RuleIt follows that

    32322221023132121101 xaxaxaacxaxaxaacdx)x(fb

    a

    Equating Equations the two previous two expressions yield

    432

    44

    3

    33

    2

    22

    10

    aba

    aba

    abaaba

    3

    23

    2

    222102

    3

    13

    2

    121101 xaxaxaacxaxaxaac

    322

    3

    113

    2

    22

    2

    11222111210

    xcxcaxcxcaxcxcacca

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    9/30

    http://numericalmethods.eng.usf.edu9

    Basis of the Gaussian

    Quadrature RuleSince the constants a0, a1, a2, a3 are arbitrary

    21 ccab 221122

    2xcxc

    ab

    2

    22

    2

    11

    33

    3 xcxcab

    322

    311

    44

    4xcxcab

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    10/30

    http://numericalmethods.eng.usf.edu10

    Basis of Gauss QuadratureThe previous four simultaneous nonlinear Equations haveonly one acceptable solution,

    21

    abc

    22

    abc

    23

    1

    21

    ababx

    23

    1

    22

    ababx

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    11/30

    http://numericalmethods.eng.usf.edu11

    Basis of Gauss Quadrature

    Hence Two-Point Gaussian Quadrature Rule

    23

    1

    2223

    1

    22

    )( 2211

    abab

    f

    ababab

    f

    ab

    xfcxfcdxxf

    b

    a

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    12/30

    http://numericalmethods.eng.usf.edu12

    Higher Point GaussianQuadrature Formulas

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    13/30

    http://numericalmethods.eng.usf.edu13

    Higher Point Gaussian

    Quadrature Formulas)()()()( 332211 xfcxfcxfcdxxf

    b

    a

    is called the three-point Gauss Quadrature Rule.

    The coefficients c1, c2, and c3, and the functional arguments x1, x2, and x3

    are calculated by assuming the formula gives exact expressions for

    b

    a dxxaxaxaxaxaa

    5

    5

    4

    4

    3

    3

    2

    210

    General n-point rules would approximate the integral

    )x(fc.......)x(fc)x(fcdx)x(f nn

    b

    a

    2211

    integrating a fifth order polynomial

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    14/30

    http://numericalmethods.eng.usf.edu14

    Arguments and Weighing Factorsfor n-point Gauss Quadrature

    Formulas

    In handbooks, coefficients and

    Gauss Quadrature Rule are

    1

    1 1

    n

    i

    ii )x(gcdx)x(g

    as shown in Table 1.

    Points WeightingFactors

    FunctionArguments

    2 c1 = 1.000000000c2 = 1.000000000

    x1 = -0.577350269x2 = 0.577350269

    3 c1 = 0.555555556c2 = 0.888888889c3 = 0.555555556

    x1 = -0.774596669x2 = 0.000000000x3 = 0.774596669

    4 c1 = 0.347854845c2 = 0.652145155c3 = 0.652145155c4 = 0.347854845

    x1 = -0.861136312x2 = -0.339981044x3 = 0.339981044x4 = 0.861136312

    arguments given for n-point

    given for integrals

    Table 1: Weighting factors c and functionarguments x used in Gauss QuadratureFormulas.

    d i hi

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    15/30

    http://numericalmethods.eng.usf.edu15

    Arguments and Weighing Factorsfor n-point Gauss Quadrature

    Formulas

    Points WeightingFactors

    FunctionArguments

    5 c1 = 0.236926885c2 = 0.478628670c3 = 0.568888889c4 = 0.478628670c5 = 0.236926885

    x1 = -0.906179846x2 = -0.538469310x3 = 0.000000000x4 = 0.538469310x5 = 0.906179846

    6 c1 = 0.171324492c2 = 0.360761573c3 = 0.467913935c4 = 0.467913935c5 = 0.360761573c6 = 0.171324492

    x1 = -0.932469514x2 = -0.661209386x3 = -0.2386191860x4 = 0.2386191860x5 = 0.661209386x6 = 0.932469514

    Table 1 (cont.) : Weighting factors c and function arguments x used inGauss Quadrature Formulas.

    A d W i hi F

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    16/30

    http://numericalmethods.eng.usf.edu16

    Arguments and Weighing Factorsfor n-point Gauss Quadrature

    FormulasSo if the table is given for

    1

    1

    dx)x(g integrals, how does one solve

    b

    a

    dx)x(f ? The answer lies in that any integral with limits of b,a

    can be converted into an integral with limits 11, Let

    cmtx

    If then,ax

    1t

    ,bx If then 1tSuch that:

    2

    abm

    A t d W i hi F t

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    17/30

    http://numericalmethods.eng.usf.edu17

    Arguments and Weighing Factorsfor n-point Gauss Quadrature

    Formulas

    2

    abc

    Then Hence

    22

    abtabx dtabdx2

    Substituting our values of x, and dx into the integral gives us

    1

    1222

    )( dtabab

    tab

    fdxxf

    b

    a

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    18/30

    http://numericalmethods.eng.usf.edu18

    Example 1For an integral derive the one-point Gaussian Quadrature

    Rule.

    ,dx)x(fb

    a

    Solution

    The one-point Gaussian Quadrature Rule is

    11 xfcdx)x(fb

    a

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    19/30

    http://numericalmethods.eng.usf.edu19

    SolutionThe two unknowns x1, and c1 are found by assuming that theformula gives exact results for integrating a general first orderpolynomial,

    .)( 10 xaaxf

    b

    a

    b

    a

    dxxaadxxf 10)(

    b

    a

    xaxa

    2

    2

    10

    2

    22

    10

    abaaba

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    20/30

    http://numericalmethods.eng.usf.edu20

    SolutionIt follows that

    1101

    )( xaacdxxf

    b

    a

    Equating Equations, the two previous two expressions yield

    2

    22

    10

    abaaba 1101 xaac )()( 11110 xcaca

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    21/30

    http://numericalmethods.eng.usf.edu21

    Basis of the Gaussian

    Quadrature RuleSince the constants a0, and a1 are arbitrary

    1cab

    11

    22

    2xc

    ab

    abc 1

    21

    abx

    giving

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    22/30

    http://numericalmethods.eng.usf.edu22

    Solution

    Hence One-Point Gaussian Quadrature Rule

    2)()( 11

    abfabxfcdxxf

    b

    a

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    23/30

    http://numericalmethods.eng.usf.edu23

    Example 2Use two-point Gauss Quadrature Rule to approximate the distance

    covered by a rocket from t=8 to t=30 as given by

    30

    8

    892100140000

    1400002000 dtt.

    tlnx

    Find the true error, for part (a).

    Also, find the absolute relative true error, for part (a).a

    a)

    b)

    c)

    tE

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    24/30

    http://numericalmethods.eng.usf.edu24

    SolutionFirst, change the limits of integration from [8,30] to [-1,1]

    by previous relations as follows

    1

    1

    30

    8 2

    830

    2

    830

    2

    830dxxfdt)t(f

    1

    1

    191111 dxxf

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    25/30

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    26/30

    http://numericalmethods.eng.usf.edu26

    Solution (cont.)Now we can use the Gauss Quadrature formula

    191111191111191111 22111

    1

    xfcxfcdxxf

    1957735030111119577350301111 ).(f).(f

    ).(f).(f 350852511649151211

    ).().( 481170811831729611

    m.4411058

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    27/30

    http://numericalmethods.eng.usf.edu27

    Solution (cont)since

    ).(.).(

    ln).(f 64915128964915122100140000

    14000020006491512

    8317296.

    ).(.).(

    ln).(f 35085258935085252100140000

    14000020003508525

    4811708.

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    28/30

    http://numericalmethods.eng.usf.edu28

    Solution (cont)

    The absolute relative true error, t , is (Exact value = 11061.34m)

    %.

    ..t 100

    3411061

    44110583411061

    %.02620

    c)

    The true error, , isb)tE

    ValueeApproximatValueTrueEt

    44.1105834.11061 m9000.2

  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    29/30

    Additional ResourcesFor all resources on this topic such as digital audiovisuallectures, primers, textbook chapters, multiple-choicetests, worksheets in MATLAB, MATHEMATICA, MathCad

    and MAPLE, blogs, related physical problems, pleasevisit

    http://numericalmethods.eng.usf.edu/topics/gauss_qua

    drature.html

    http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_quadrature.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_quadrature.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html
  • 8/2/2019 Mws Gen Int Ppt Gaussquadrature

    30/30

    THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/