multidimensional fission barriers for heavy and superheavy nuclei

10
Multidimensional fission barriers for heavy and superheavy nuclei Adam Sobiczewski Sołtan Institute for Nuclear Studies,Warsaw 1. Introduction 2. Method of the analysis 3. Results 4. Conclusions 50 Years of the Nilsson Model Lund, June 14-18, 2005 Importance of the contribution of Sven Gösta Nilsson and the Lund group to the early studies on the problem of SHN

Upload: freya-house

Post on 03-Jan-2016

42 views

Category:

Documents


2 download

DESCRIPTION

50 Years of the Nilsson Model Lund, June 14-18, 2005. Multidimensional fission barriers for heavy and superheavy nuclei. Adam Sobiczewski Sołtan Institute for Nuclear Studies,Warsaw. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multidimensional fission barriers  for  heavy and superheavy nuclei

Multidimensional fission barriers for heavy and superheavy nuclei

Adam SobiczewskiSołtan Institute for Nuclear Studies,Warsaw

1. Introduction2. Method of the analysis3. Results4. Conclusions

50 Years of the Nilsson ModelLund, June 14-18, 2005

Importance of the contribution of Sven Gösta Nilsson and the Lund group to the early studies on the problem of SHN

Page 2: Multidimensional fission barriers  for  heavy and superheavy nuclei

0,0 0,2 0,4 0,6 0,8-8

-6

-4

-2

0

2

Etot

Emacr

278112166

min. in: 4,

6,

8

E (

MeV

)

2

Page 3: Multidimensional fission barriers  for  heavy and superheavy nuclei

138 144 150 156 162 168 174 180 186

2468

Cf

Bf

(MeV

)

N

2468

Fm

2468

Rf

st

2468

Ds

2468

114

2468

138 144 150 156 162 168 174 180 186

MM ETFSI 120

Page 4: Multidimensional fission barriers  for  heavy and superheavy nuclei

2 4 6 8

012345678

Bf

(M

eV

)

max

2 4 6 80

1

2

3

4E

s (M

eV

)

-5

-4

-3

-2

-1

02 4 6 8

250Cf

Em

in (

MeV

)

Page 5: Multidimensional fission barriers  for  heavy and superheavy nuclei

6

54

3

2

3

4

5

1

0

6

-11

2

-2

02

1

-1-3

7

0

-2-4

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,70,0

0,1

0,2

0,3

0,4

(3.5)

(1.8)

250Cf

2 si

n

2 cos

Page 6: Multidimensional fission barriers  for  heavy and superheavy nuclei

-4,0

-3,0

-2,0

-1,0

-1,0

-2,0

0 1,0

-3,0

-4,0

2,00

-5,0

-3,0 -2,0

0

-5,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,70,0

0,1

0,2

0,3

0,4

(-2.4)

(-1.4)(-0.9)

284114170

2 si

n

2 cos

Page 7: Multidimensional fission barriers  for  heavy and superheavy nuclei

2 4 6 8

012345678

exp

Bf

(M

eV

)

max

2 4 6 80

1

2E

s (M

eV

)

-5

-4

-3

-2

-1

02 4 6 8

250Cf

Em

in (

MeV

)

Page 8: Multidimensional fission barriers  for  heavy and superheavy nuclei

53

54

55

5657

58 52

49

58

52

51

51

51

5050

49

50

4849

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

min. in.: 3,

5,

6,

7

E (MeV)

238U

4

2

Page 9: Multidimensional fission barriers  for  heavy and superheavy nuclei

53

54

55

5657

58 52

49

58

52

51

51

51

5050

49

50

4849

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

min. in.: 3,

5,

6,

7

E (MeV)

238U

4

2

Page 10: Multidimensional fission barriers  for  heavy and superheavy nuclei

Conclusions

1. Importance of sufficiently large deformation space

2. Importance of higher multipolarities λ

3. Convergence of results with increasing λ

4. Importance of non-axial shapes

5. Individuality of each nucleus (probably because of

importance of shell effects which are very specific for

each nucleus)