fusion-fission process in super heavy mass region...reaction mechanism of fusion-fission process in...

24
Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo 1 , K. Hagino 2 , K. Nishio 1 , and S. Chiba 1 1 Japan Atomic Energy Agency, Tokai, Japan 2 Department of Physics, Tohoku University, Sendai, Japan 「微視的核反応理論による物理」 YITP, Kyoto, Japan, 1-3 August, 2011

Upload: others

Post on 24-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Reaction mechanism of fusion-fission process in superheavy mass region

Y. Aritomo1, K. Hagino2, K. Nishio1, and S. Chiba1

1Japan Atomic Energy Agency, Tokai, Japan2 Department of Physics, Tohoku University, Sendai, Japan

「微視的核反応理論による物理」YITP, Kyoto, Japan, 1-3 August, 2011

Page 2: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

1. ModelCoupled-channels method + Dynamical Langevin calculation

Trajectory analysis Langevin equationTwo center shell model

2. Results36S+238U and 30Si+238U

Mass distribution of Fission fragmentsCapture Cross-sectionFusion Cross-section

3. Mechanism of Dynamical processPotential energy surface on scission lineAnalysis of trajectory behaviorAnalysis of probability distribution

4. Summary

Page 3: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

36S + 238U30Si + 238U

Exp. by

K. Nishio

et al.

Zcn=106 Zcn=108

Page 4: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Phenomenalism

Dynamical Model based on Fluctuation-dissipation theory

(Langevin eq, Fokker-Plank eq, etc) Classical trajectory analysis

We can obtain…. Fission, Synthesis of SHE

Mass and TKE distribution of fission fragments ACN : 200~300

Neutron multiplicity

Charge distribution

Cross section (capture, mass symmetric fission, fusion)

Angle of ejected particle, Kinetic energy loss ( two body)

Conditions

Nuclear shape parameter

Potential energy surface (LDM, shell correction energy, LS force)

Transport coefficients (friction, inertia mass) Liner Response Theory

Dynamical equation (memory effect, Einstein relation)

What we can obtain under the conditions

Page 5: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

1. Model

1. 1-1. Potential

2. 1-2. Dynamical Equation

1-3. Simulation of Experiment and Cross Sections

Page 6: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Estimation of cross sections

Capture Cross Section

Fusion Cross Section

Coupled-channel method

Dynamical calculation

Langevin eq.

CN

Formation probability PCN

Page 7: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

計算処方の概観

Time-evolution of nuclear shape

in fusion-fission process

1. Potential energy surface

2. Trajectory described by

equations

Model: Outlook of calculation methods

Page 8: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

two-center parametrization

(Maruhn and Greiner,

Z. Phys. 251(1972) 431)

),,( z

Nuclear shape

δ=0

(δ1=δ2)

Trajectory which enters

into the spherical region

= fusion trajectory

( , , )q z

Page 9: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

2

0

( 1)( , , ) ( ) ( , )

2 ( )

( ) ( ) ( )

( , ) ( ) ( )

DM SH

DM S C

SH shell

V q T V q V q TI q

V q E q E q

V q T E q T

T : nuclear temperature

E* =aT2 a : level density parameter

Toke and Swiatecki

ES : Generalized surface energy (finite range effect)

EC : Coulomb repulsion for diffused surface

E0shell : Shell correction energy at T=0

I : Moment of inertia for rigid body

Φ(T) : Temperature dependent factor

MeV 20

exp)(2

d

d

E

E

aTT

Potential Energy

Page 10: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

qi : deformation coordinate (nuclear shape)

two-center parametrization (Maruhn and Greiner, Z. Phys. 251(1972) 431)

pi : momentum

mij : Hydrodynamical mass (inertia mass)

γij: Wall and Window (one-body) dissipation (friction )

)(2

1 11

1

tRgpmppmqq

V

dt

dp

pmdt

dq

jijkjkijkjjk

ii

i

jiji

ijjk

k

ik

ijjii

Tgg

tttRtRtR

process) (Markovian noise white:)(2)()( ,0)( 2121

),,( z

)(2

1 1*

int qVppmEE jiij

energy excitation : energy, intrinsic : *

int EE

多次元ランジュバン方程式Multi-dimensional Langevin Equation

Newton equationFriction Random force

dissipation fluctuation

Page 11: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Two Center Shell Model

2

22

LS L0

ˆ ( ) ( ) ( )2

H V V Vm

r r p s r p

r

a2a1

r R=0.75 (1+ )0 2/3 r

z =z1 2=0r r r

z

z2a1 a2

b1

b2

a1 | |z1z2 a2

b2

|zmax1

| zmin2

| |z1

E0

E

e= /E0E

z

V V V

V0

b1

b1 b2

( )a ( )b ( )c

J. Maruhn and W. Greiner, Z. Phys, 1972

2 2 2 2

1 1 1

2 2 2 2 2 2

1 1 1 1 1

1

2 2 2 2 2 20 2 2 2 2 2

2

2 2 2 2

2 2 2

1 1

01

( ) 1 12

0

z

z

z

z

z z z

z c z d z g z

z z

V z m z c z d z g z

z z

z z z

r

r

r

r

r

r

r r

r

1

2

0

0

z z zz

z z z

Neck parameter is the ratio of smoothed potential

height to the original one where two harmonic

oscillator potential cross each other

ε = 1.0

0.35

0.0

Page 12: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

224Th

Time dependent adiabatic fusion-fission potential

Time-dependent

weight function

V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko and W. Greiner, Phys. Part. Nucl. 38 (2007) 469

0.4

0.8 3.31.8 2.81.3 2.3 3.8

0.2

0.6

0.8

1.0

r/R0n

eck p

ara

me

ter

()e

Page 13: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

2. Results

2-2.

1. Capture and Fusion Cross sections

2. Mass distribution of Fission Fragments

34, 36S+238U and 30Si+238U 2-2.

Touching probability CC method

Perform a trajectory calculation

starting from the touching distance between target and projectile

to the end each process.

Page 14: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Fusion box and Sample trajectory 36S+238U

E*= 40 MeV

L = 0

θ = 0

z-α

δ=0

z-δ

α=0

QF

FFFF?

QF

FF

DQF

Page 15: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Results 36S+238U MDFF and Cross sections

FF

process

Page 16: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Results 30Si+238U MDFF and Cross sections

Page 17: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

3. Mechanism of Dynamical process

30Si+238U 36S+238U

200u74u

137u

178u90u

134u

Clarification of the mechanism of Fusion-fission process

MDFF at Low incident energy

Page 18: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

0.4

0.8 3.31.8 2.81.3 2.3 3.8

0.2

0.6

0.8

1.0

r/R0

neck p

ara

me

ter

()e

(a) 1-dim Potential energy on scission line

30Si+238U

36S+238U

Page 19: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

(b) Trajectory Analysis on Potential Energy Surface z-A plane

E* = 35.5 MeV

L=0, θ=0

30Si+238U

δ=0.22, ε=1.0

δ=0.22, ε=0.35

δ=0.22, ε=1.0

E* = 39.5 MeV

L=0, θ=0

36S+238U

Page 20: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Trajectory Analysis on Potential Energy Surface 30Si+238U

E* =

35.5 MeV

L=0, θ=0

Page 21: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

Trajectory Analysis on Potential Energy Surface 36S+238U

E* =

39.5 MeV

L=0, θ=0

Page 22: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

0.8 1.0 1.2 1.4 1.60.48

0.60

0.72

0.84

B

z0.8 1.0 1.2 1.4 1.6

0.48

0.60

0.72

0.84

B

z0.8 1.0 1.2 1.4 1.6

0.48

0.60

0.72

0.84

B

z

Trajectory Analysis using ALL trajectories

~40,000 points

Page 23: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

(c) Trajectory Analysis “Probability Distribution”

E* =

35.5 MeV

L=0, θ=0

E* =

39.5 MeV

L=0, θ=0

Page 24: Fusion-Fission Process in Super Heavy Mass Region...Reaction mechanism of fusion-fission process in superheavy mass region Y. Aritomo1, K. Hagino2, K. Nishio 1, and S. Chiba 1Japan

3. Summary

1. In order to analyze the fusion-fission process in superheavy mass region, we apply the Couple channels method + Langevin calculation.

2. Incident energy dependence of mass distribution of fission fragments (MDFF) is reproduced in reaction 36S+238U and 30Si+238U.

3. The shape of the MDFF is analyzed using (a) 1-dim potential energy surface on the scission line (b) sample trajectory on the potential energy surface (c) probability distribution

4. The relation between the touching point and the ridge line is very importantto decide the process fusion hindrance

leading to synthesize SHE

4. Summary