multi-scale tomography of heterogeneous metals3 institute of materials science and technology 5...

28
1 Institute of Materials Science and Technology 1 Multi Multi- scale Tomography scale Tomography of heterogeneous Metals of heterogeneous Metals H.Peter Degischer, G.Requena, M.Schöbel, D.Tolnai, B.Harrer *) , A.Kottar, B.Foroughi, F.Lasagni, Z.Asghar, F.Warchomicka, M.Hochegger, G.Fiedler, W.Altendorfer Institute of Materials Science and Technology, Institute of Materials Science and Technology, Faculty of Mechanical & Industrial Engineering, Faculty of Mechanical & Industrial Engineering, Vienna University of Technology Vienna University of Technology In cooperation with FEDERAMS M.Suery, L.Salvo, E.Maire, ESRF: T.Buslaps & M.di Micheli (ID15), E.Boller (ID19), P.Coetens (ID22), and *) FH-OÖ Wels/AT http://info.tuwien.at/E308 Institute of Materials Science and Technology 2 1 mm B.Tomic et al., Sbd.Prakt.Metallogr., 2006 Heterogeneities in ductile cast iron crank shaft GJS 700 10 mm Micro-radiography of 4mm thick slice: subsurface porosity, „dendritic“ alignments of graphite spherules (lower density) Light optical micrograph of graphite spherules 1 mm 3 mm removed

Upload: others

Post on 27-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

1

Institute of Materials Science and Technology 1

MultiMulti--scale Tomography scale Tomography of heterogeneous Metalsof heterogeneous Metals

H.Peter Degischer, G.Requena, M.Schöbel, D.Tolnai, B.Harrer *), A.Kottar, B.Foroughi, F.Lasagni, Z.Asghar,

F.Warchomicka, M.Hochegger, G.Fiedler, W.Altendorfer

Institute of Materials Science and Technology, Institute of Materials Science and Technology, Faculty of Mechanical & Industrial Engineering,Faculty of Mechanical & Industrial Engineering,

Vienna University of TechnologyVienna University of Technology

In cooperation with FEDERAMSM.Suery, L.Salvo, E.Maire,

ESRF: T.Buslaps & M.di Micheli (ID15), E.Boller (ID19), P.Coetens (ID22),

and *)FH-OÖ Wels/AT

http://info.tuwien.at/E308

Institute of Materials Science and Technology 2

1 mm

B.Tomic et al., Sbd.Prakt.Metallogr., 2006

Heterogeneities in ductile cast iron crank shaft

GJS 700

10 mm

Micro-radiography of 4mm thick slice:subsurface porosity, „dendritic“ alignments ofgraphite spherules (lower density)

Light optical micrograph of graphite spherules

1 mm

3 mm removed

Page 2: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

2

Institute of Materials Science and Technology 3

Graphite spherule distribution in cast ironGJS500 tensile test sample (4 mmØ):

µXCT (6µm)³/voxel reveals µ-pores andplanar alignments of graphite spherules ( > 50 µmØ)

µ-pores

1 mm

B.Harrer et al., Sbd.Prakt.Metallogr., 2007

Fracture path through µ-poresparallel to graphite alignment !

Institute of Materials Science and Technology 4

Crack in GJS500

Bild3: 3D Ansichten

Siehe Video!

Rot Graphit

Grün Riss

Crack

Top viewTransvers

Graphite spherules

Graphite and crack segmented from XCT (5 µm)³/voxel

Graphite spherules surround crack ?

0,1 mm

0,1 mm

B.Harrer et al., Sbd.Prakt.Metallogr., 2007

Page 3: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

3

Institute of Materials Science and Technology 5

Multi-scale tomography

GraphiteGraphite

CrackCrack

200 µm

Crack in cast iron

X-ray computed tomography (XCT) and Synchrotron tomography (SCT) are basically non-destructive,

but for higher resolution the specimen diameter has to be reduced;

In-situ experiments can be performed (thermal cycling, tension [E.Maire], compression, creep [A.Pyzalla],

solidification [L.Salvo] , cracking [J.Y.Buffier] etc.),diffraction analysis can be combined

Institute of Materials Science and Technology 6

Hierarchical tomography

Sectioning methods (FIB-SEM-Tomo, light optical tomography (LOT) are destructive, but allow to identify the phases analytically.

The hierarchical architecture of components and heterogeneous materials requires appropriatetomographic methods;

Resolution limit for absorption contrast µXCT > 1 µm; SCT > 0.3 µm;SCT+KB mirror > 0.1µm> max. diameter/1000,

The higher the mass density, the more difficult transmission and artefact corrections.

LOMLOM--tomotomo

TEMTEMAPAP

Page 4: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

4

Institute of Materials Science and Technology 7

Tomographic systems

Vienna AKH Human CT:Philips Mx8000 IDT 16 (140 keV) > ca. 0,5 mm

Berlin, BAM µXCT (225 keV, 320 keV) > ca. 10 µmAntwerp University:SkyScan 1072 Desktop µCT (80 keV) > ca. 8 µmSkyScan „nano-CT“ ( 80 keV) > ca. 0,5 µmFH OÖ, Wels/Austria:Rayscan 250XE µCT(225 keV) > ca. 5 µm

Macro-focus (450 keV) > ca. 0,4 mm„nanotom 180“-phoenix (180 keV) > ca. 0,5 µmESRF Europ.Synchrotron-Grenoble: ID15A, ID19 CT (20-100 keV) > ca. 0,3 µm

ID22 (KB-mirror) > 40 nm

Tomographic systems used by the group

FH-OÖ Wels/Austria

Location (energy) optimum resolutionCone beam X-ray tomography

Institute of Materials Science and Technology 8

Pore distribution in cellular Al (Alulight)

ALVIS , E.Gröller et al., TU-Wien, 2000

Mikro-XCT (BAM)(10µm)³/voxelReconstructed iso-surface

0.45 g/cm³

Local density distribution

Ca.1 cm

Page 5: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

5

Institute of Materials Science and Technology 9

Imaging cellular Al-structures at different resolution levelsLight opt.micrograph

10 mm

A.Kottar et al, in Handbook of Cellular Metals, 2002

Medical-XCT (AKH): 0.6x0.6x1 mm³/voxel

XCT (BAM): (40µm)³/voxel

Averaging „Density mapping“ (averaging volume

6.8mm)³

Averaging (0.5mm)³

medical tomogram sufficient

Institute of Materials Science and Technology 10

Cellular structure along gauge length

10 mm10 mm x

ythickness

length

g/cm3

1.031.00.90.80.70.60.50.40.30.20.17

Computed tomography slice, voxel 0.4×0.4×3 mm3

(medical tomograph)

Density mapping from CT dataaveraging volume: 6 (2.6)×6×42 mm3

(of the whole width of the sample)Sandwich-like density distribution

Photographic pictures:

Longitudinal sample, irregular pore structure

Transversal sample, smaller pores near surface

H.P.Degischer et al., Metfoam 2007

Page 6: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

6

Institute of Materials Science and Technology 11

Density mapping via averaging volumes applied to tomography data

x

y

z

1

2 50mm

2.6

2.6 mm

22.8

Averaging VolumesGauge lengthSkin A: ρs = 0.3- 0.5Core*): ρf = 0.1- 0.3Skin B*) 8 overlapping layers

for coreSkins A,B: 2.6 × 6 × 50 mm3

x

y

1.10.10.90.80.70.60.50.40.30.2g/cm3

2D Model averaging along the width

thickness

length

ACore

B

6×6×50 mm3

Slice 3

Additional separation into 4 longitudinal slices,

each represents an uncoupled 2D model

Slice 2Slice 1

Slice 0

B.Foroughi et al., 2007

Institute of Materials Science and Technology 12

1

2

3

4

Stif

fness

[G

PA

]

Damage decreases stiffness

Tensile test result & acoustic emissions & crack simulation

10 mm

x

z

Upper SkinUpper Skin100 nJ acoustic energy

Longitudinal sample #3

Pos

ition

[mm

]

x

y

Simulated crack

iniation

Damage decreases strain hardening

36,178

11,874

7,002

9,578

103,288 11,912

1049,037

0

1

2

3

4

5

0 0,2 0,4 0,6 0,8 1 1,2

Strain [%]

Stre

ss [M

Pa]

0

20

40

60

80

100

Fracture

Second crack

Crack in coreCrack

growth

H.P.Degischer, E.Maire, et al., Metfoam 2007

Page 7: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

7

Institute of Materials Science and Technology 13

Low density regions in the gauge length of tensile sample with skinpredicting the crack initiation

Iso-surfaces enclosing regions of low density in the core

< 0.2g/cm³< 0.2g/cm³(< 45% of the average density of the sample)

Lower Skinρ ≥ 0.7

Coreρ ≤ 0.2

Upper Skinρ ≥ 0.7

yz

x

80 mm

50 mm

28 mm

Iso-surfaces enclosing regions of high density in the skin

≥≥ 0.7g/cm³0.7g/cm³(≥ 150% of the average density of the sample)

11st st crackcrack

22nd nd crackcrack

Cracks start in the low density regions:

1st crack proceeds into the core

2nd crack within the skin

Tension

B.Foroughi et al., ICAA11, Aachen 2oo8

Institute of Materials Science and Technology 14

1st crack

2nd crack

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 g/cm3

2nd crack

Slice0

y y

z

Left slice 0

zz

Longitudinal sampe #11: ρ gauge length = 0,41 g/cm³

y

1st crack

Slice3

y

zz

Right slice 34 - slice model:

H.P.Degischer et al., ICAA11, 2008

Page 8: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

8

Institute of Materials Science and Technology 15

Synchrotron tomography at ESRF beam line ID19

Rotation stage

Sample Ø~ 1000x pixel

Ru/B4C Multilayer Monochromator, 15 keV

Apertures

2D Detectors

Synchrotron radiaton10-40 keV

Monochromaticbeam

(1400 x 1400 µm²)

145 m

150 mDistance z for

phase contrast

(usually 180° in 1500 steps)

2048x2048x204814bit pixels> (0.28 µm)² Reconstruction: inverse

Radon-transformation

Microscope opticsLAG:Eu3 + Scintillator screen

ESRFFReLoNCamera

Mirror

Undulator

www.esrf.eu

Institute of Materials Science and Technology 16

Synchrotron tomography ESRF ID19 (0.7 µm)³ voxel (as cast condition)

20 µm

1 voxel layerBSE image is similar

20 µm

z

y

x1,6 vol1,6 vol% % δδ--AlFeSiAlFeSi

Gray value segmented 3D image

AlFeSiAlFeSi

MgMg22SiSi

Al Mg5 Si8 cast multiphase stucture

H.P.Degischer et al., Sdb.Prakt.Metalogr.2006

Page 9: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

9

Institute of Materials Science and Technology 17

in Al Mg5Si8:

Mg2Si segmentationin a volume of 210 x 210 x 180 µm³

„corals“ extending> 100 µm

2550 „separate“ MgMg22Si Si particlesparticles, , 23 23 withinwithin cube cube

Representing a volume fraction of

8.7 ± 1 %

20 µm

Mg2Si chinese script phase

H.P.Degischer et al., Sdb.Prakt.Metalogr.2006

Institute of Materials Science and Technology 18

Solidification sequence

ID19 (0,3 µm)³/voxel 230 x 160 x 60µm³

ID19 (0,7 µm)³/voxel 100 x 70 x 70 µm³

D.Tolnai et al., 3D imaging, Dresden 2008

α−dendrites⇒ Mg2Si⇒ tripletriple eutecticeutectic;; AlFeSiAlFeSi betweenbetween chinesechinese scriptsscripts(phase contrast to separate Si from Al)

Page 10: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

10

Institute of Materials Science and Technology 19

Si+MgSi+Mg22SiSi Mg2Si

90 µm

Possible solution: multiphase holotomographic

reconstruction

Separation of eutectic Si particles from Mg2Si by sizefrom phase contrast reconstructions

19D.Tolnai et al., 3D imaging, Dresden 2008

Institute of Materials Science and Technology 20

Visualizing dendrites

20

235 µmMultiscale problem

High resolution to identify eutectic regions

Large dendrites (larger than cropped volume)

D.Tolnai et al., 3D imaging, Dresden 2008

Page 11: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

11

Institute of Materials Science and Technology 21

cross section (2.5 mm)²Zn-Cu-rich interdentritic eutecticAl3(Zr,Sc) inclusionsPores

[B. Harrer, FHOÖ-TU Wien, 2008]

SectionSection of of αα--Al Al dendritedendrite

50 µmNot applicable for Al-Si separation

As cast AlZnMgCu - Alloy (AA7010) - Dendrites µXCT (4µm)³/voxel

Institute of Materials Science and Technology 22

Reachability diagram

1 2 3 4 5 6 7 8 9 10 11 12 130

15

Rea

chab

ility

dis

tanc

e

Sequence number

22

Triple eutectic Si/Mg2Si-particles are distributed inhomogeneous in between the dendrite arms

Cluster properties

0 1000 2000 3000 4000 5000 6000 7000

0

20

40

60

80

100

Rea

chab

ility

dis

tanc

e

Sequence number

13

12

3

7

46

5

1211

8

109

Minimum distance: 25

Minimum cluster size: 5

Largest cluster:4985 particles

D.Tolnai et al., 3D imaging, Dresden 2008

Page 12: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

12

Institute of Materials Science and Technology 23

Desintegrationand

spheroidisation of Mg2Si during

solution treatmentat 540°C

23

2 4 6 8 10 12 14 16 18 20 22 240,00

0,05

0,10

0,15

0,20

0,25

Pro

babi

lity

dens

ity

Surface/Volume (1/pixel)

As cast 1h heat treatment 25h heat treatment

Probability of spherical

particles increases

Probability of particles with huge surfaces

decreases

AC: interconnected

1h: 1/3 interconnected

25h: 5% of AC particle

Institute of Materials Science and Technology 24Degischer, Salvo, et al. In progress 0.1 mm 0.1 mm

0 200 400 600 800 1000 1200

555

560

565

570

575

580

585

590

Tem

pera

ture

(Cel

sius

)

Time (s)

Cooling rate ca. 3K/s

ESRF/ID19: Beam energy: 15 keV, (1.4 µm)³/voxel• Sample-detector distance: 20 mm

• Continuous rotation, scan time: 40 s

24

In-situ solidification test

Mg2Si start

AlFeSistart

All grow

liquidus

Eutecticvalley

Triple eutectic (solidus)

α-dendrites+ melt

Page 13: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

13

Institute of Materials Science and Technology 2525

The AlSi8Mg5 system (Thermocalc®)

AlFeSi particlesα-Al/Mg2Si

eutectic,

α-Aluminium dendrites

α-Al+Mg2Si+Sitriple eutectic

Liquid

Institute of Materials Science and Technology 26

LOM: longitudinal section at bottomsurface, casting direction ⇒

2 µm

Triple eutectic: Al – Mg2Si – Si in strip cast AlSi7Mg4: SEM images

20 µm

MgMg22Si+ SiSi+ Si

G.Requena et al., 2008

20 µm

FEG-SEM after etching

Page 14: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

14

Institute of Materials Science and Technology 27

33-- Ion millingIon milling

II--BeamBeam

11-- PtPt--depositiondeposition

II--BeamBeamII--BeamBeam

00-- Zone selectionZone selectionFIB Tomographic method

10 µm

(slicing

44-- Final polishingFinal polishing

SEISEI

5 µmSectioningdirection

F.Lasagni et al., AEM 2007 (Univ.Saarland)

Institute of Materials Science and Technology 28

FIB-sectioning steps ca.15 nm (z-direction)for selected specimen volume of 14 x 12 x 9 µm³

~200 SE-images (voxel 18 x 24 x 75 nm³) + 20 EDX-maps in between

MgMg22SSii

Al Al transparenttransparent

13.6 µm14.3 µm

8.5 µm

1 µm

z

yy

x2 µm0.8 µm

Si

3D reconstruction of Mg2Si segment surrounded by eutectic Si

1.2 µm

Si-needlesca.0.1 µm ø

Eutectic Si needle (ca.0.1 µm ø) packages grow from αα--MgMg22SiSi branches in different directions

MgMg22SiSi

F. Lasagni et al., TU-Wien & Univ.Saarland (2007)

Univ.d. Saarlandes &

Page 15: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

15

Institute of Materials Science and Technology 29

Light optical tomography: serial sectioning of AlSi12Ni (as cast)

10 µm

Silicon

Intermetallic

2D

Resolution: xy plane and z-direction= 0.5 µm

15 µm

26 µm

23 µ

m

3D

Z.Asghar et al., TU-Wien, 2008

Institute of Materials Science and Technology 30

Si network

17 µm

26 µm

23 µ

m

15 µm

26 µm

23 µ

m

Light optical tomography: AlSi12Ni coarseing by solutionizing

Ni intermetallic

As cast

Solution treated at

540°C

Z.Asghar et al., TU-Wien, 2008

C2D=0.4

S3D=0.02C2D=0.6S3D=0.1

Significantdifferencebetweencircularityand sphericity

Page 16: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

16

Institute of Materials Science and Technology 31

Short fibre reinforced Al-Si piston alloy

Fiber plane

AlSi7/Al2O3/20s

Eutectic Al-Si

Al-matrix leached offSEM reveals

interconnected 3D fiber-Si network

F.Lasagni et al., Kovove, 2006

Saffil short fibre preforminfiltrated by squeeze casting

Institute of Materials Science and Technology 32

Synchrotron tomography

Phase separationin volume

100x100x250 µm³ :

Fibres

Intermetallics´

SiliconSilicon((phasephase

contrastcontrast))

Pores

G.Requena et al., J.Mat.Sci.& Eng., 2007

Page 17: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

17

Institute of Materials Science and Technology 33

Quantitative 3D Analysis: minimum particle size: 3x3x3 voxel = 9.3 µm³Initial condition (T6S) After 6400 h creep at 300°C

Biggest Si Particle= 7 ± 4% (of 8 vol% Si) Biggest Si Particle = 69 ± 4% (of 7 vol% Si)

Biggest „SF+IM“ = 61 ± 8 %Biggest „SF+IM+Si“ = 95 ± 2 %

Biggest „SF+IM“ = 97 ± 1 %Biggest „SF+IM+Si“ = 99 ± 0.5 %

Coarsening of phases in short fibre reinforced AlSi12NiCu piston alloy

G. Requena, et al. – Mat. Sci.& Eng. A 487 (2008)

ΔεΔεminmin..

Decreasing creep rate with exposure time

0 1000 2000 3000 40000,0

0,2

0,4

0,6

0,8

1,0

30M P a

40M P a

stra

in [%

]

tim e [h r]

A lS i12C uM gN i/A l2O 3/15s

30M P a Ageing (10M Pa)

0 1000 2000 3000 40001E-10

1E-9

1E-8

1E-7

30M P a

40M P a30M P a

stra

inra

te [1

/s]

tim e [h r]

A lS i12C uM gN i/A l2O 3/15s

.

Ageing (10M Pa)

Institute of Materials Science and Technology 34

- gradual decrease of stationary creep rate due to load transfer from matrix to fibres- additional decrease of creep rate for 100% of interconnectivity of reinforcement

as observed experimentally

nn0%0% > > nn100%100%

Modelling the increasing creep resistance of SFRM with exposure time

Initially: no interconnectivity

of fibres

During creep: 100% interconnectivity

of fibres

Creep (time-hardening) Δεstat= A.σn.Δt

3D unit cell model

ΔεΔεstatstat..

E.Marks, G.Requena et al., MECASENS 2007

Page 18: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

18

Institute of Materials Science and Technology 35

Powdermetallurgically prepared Ti64+ B + C (USA)SEM-BSE micrographs:

black: Ca.3 vol.% TiB particles and „needles/platelets“

gray: alpha phasewhite: beta phase

Increased stiffness and strength

TiB

TiB

α/β-Titanium alloys Ti6Al4V with insitu formed TiB

Polished

Etched

C.Poletti et al., 2007

Institute of Materials Science and Technology 36

Axial View

Sagittal View

(0.28 µm)³ /voxelVolume: (5.7µm)³ Energy: 20.5 KeV

TiB Nadeln (ca.2µm∅ x >30 µm)

Frontal View

- Some bigger TiB (> 1µm diameter) can be segmented

- Contrast too poor- Holotomography

to segment as well α- and β-phase in progress

10 µm

F.Warchomicka et al., 2008 (work in progress)

Phase contrast tomography (ESRF/ID19) to see TiB distribution

3D Reconstruction

Page 19: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

19

Institute of Materials Science and Technology 37

Ti6Al4V + 3vol% TiB

ß-phase transparent

FIB-SEM tomography trialreconstruction in progress

Ca. 10 µm

α-phase

TiB platelets

C.Poletti, et al., 2008 (work in progress)

Institute of Materials Science and Technology 38

Zoom tomography of Ti64 + TiBESRF/ID22

phase contrastNov.24th, 2008 work in progress

Sample diameter 0.5 mm29 keV

KB-mirrors focus (ca. 0.1 µm)

Pixel (50 nm)² at 29 mm

C.Poletti with P.Cloetens, ESRF/ID22, in progress

10 µm

Primary TiB intragranular

Secondary TiB at α−/β−boundaries

Series of distances for holotomography

Page 20: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

20

Institute of Materials Science and Technology 39

Porosity in continuously cast C-steel slabs

1 mm

A.Kottar et al., FHOÖ & TU-Wien, 2007

µ-focus radiography of 4mm thick section

Pores quantified byX-ray tomography

Cen

ter o

f sla

b

Gas pores

Shrinkage pores

Institute of Materials Science and Technology 40

Distinction of gas pores/inclusions from shrinkage pores

Volume view

Shrinkage pores InclusionsBy quantifying the sphericity S = 6 √π

Volumen

√ Oberfläche3Ideal sphere S = 1

XCT cross section XCT cross sectionmetallography metallography

Inclusions

Shrinkage pores

B.Harrer et al., Sdb,Prakt.Metallogr. 2007

XCT (12 µm)³/voxel

Page 21: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

21

Institute of Materials Science and Technology 41

Pores with inclusions in steel – slabs

10 µm

#2 #3

10 µm#4

High densityinclusion

Synchrotron tomography absorption contrast ESRF/ID19 (0,3 µm)³/voxel

Pores and inclusions > 1 µm

H.P.Degischer et al., E.Boller (ID19), P.Cloetens (ID22) in progress

Low density inclusions

pore

pore

High densityinclusion (NbC)

pore

Oxides

ID22 / 29 keV, (90nm)²/ pixel recorded Nov.25th, 2008

projection

Uncorrected slice

Institute of Materials Science and Technology 42

Formation of deformation pores in steel3D µXCT: (8 µm)³/voxel reconstruction of pores produced at 790°C by

global tensile deformationε = 0.3 (where localisation starts)

Tens

ile

M.Hochegger et al., Sbd.Prakt.Metallogr.2008

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

2 8

%

2 9

%

3 0

%

3 1

%

3 2

%

3 3

%

3 4

%

3 5

%

3 6

%

3 7

%

3 8

%

3 9

%

4 0

%

4 1

%

4 2

%

4 3

%

4 4

%

4 5

%

4 6

%

4 7

%

4 8

%

4 9

%

5 0

%

5 1

%

5 2

%

5 3

%

Local strain [%]100 40

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

Porosity [vol%]

710°C3*10-3/s

750°C3*10-3/s1,25*10-2/s

770-790°C3*10-3/s

Porosity vs. local strain at 0.3 global strain at

different temperatures and strain rates

2nd ductilityminimum

2 mm

Fracture > 3 vol% pores

Page 22: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

22

Institute of Materials Science and Technology 43

XCTfracture region

(8µm)³/voxel

Reconstructedsurface of damaged

region

Deformation pores

segmented in transparent

steel

Central longitudinal

section

1 mm

Institute of Materials Science and Technology 44

Reconstruction of cluster of deformation pores close to the fracture surfaceof a hot tensile sample3D-XCT (8µm)³/voxel

Light optical targetmetallography revealing thepore formation at ferrite filmsat the original austenite grain

boundaries

1 mm

200µm

Pore formation within intergranular ferrite during tension (>A3)

M.Hochegger et al., Sbd.Prakt.Metallogr.2008

Page 23: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

23

Institute of Materials Science and Technology 45

Continuous C-fibrereinforced Al

6 unidirectional fibre layers: 0°/+60°/-60°/-60°/60°/0°

Skyscan µXCT(8µm)³/voxel

(> fibre diameter 7 µm)

Scan through sample showsmatrix interlayers,

matrix veins, cracks

0.5

mm

E.Cornelis (Univ.Antwerp) et al., ECCM 2005

1

2

3

4

5

6

Institute of Materials Science and Technology 46

Quantification of fibre packingGray value histogram of densest layer as benchmarkCFRM qualification by relative fibre packing density

E.Cornelis (Univ.Antwerp) et al., ECCM 2005

Page 24: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

24

Institute of Materials Science and Technology 47

Local volume fraction (LVF) of continuous fibre reinforced compositesGeometrically representative element?- In z-direction whole length

- In xy-plane two-point probability function

CFRM (facets ~16x16 µm²)

CFRP (Ø ~21 µm)

Optical micrograph of cross sectionof Epoxy/T300/55f

Density map in one slicerecorded at ESRF ID19 (1,6 µm)³/voxel

1150x1300x490 voxels (∼ 0.25 mm³)

fibre bundles I-VII vf>50%channels vf<20%

G.Requena, Comp.Sci.A, 2008

Institute of Materials Science and Technology 48

with pores

E.Cornelis (Univ.Antwerp) et al., ECCM 2005

Quantification of infiltration quality of UD C-fibre reinforced plate (i.e. porosity in Epoxy/C-T300/55f)

200 µm

Porous bundle core

Fibre free channels

Dense bundle borders

Dense bundle bordersPorous bundle core

SkyScan-1072 desktop slice of tomogram (10µm)³/voxel

Page 25: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

25

Institute of Materials Science and Technology 49

CFRM samplemisorientation

Θ = 6±1°

CFRP sample misorientation: Θ = 2±1°, Φ = 130 ± 30°

Orientation distribution of continuous fibres in composites

G.Requena, Comp.SciA, 2008

Misorientationbetween bundles

Bundles parallel, misorientations within channels

ΔΦ

>90% of fibers

Institute of Materials Science and Technology 50

Fibre orientation in SiC-monofilament reinforced Cu

Fibre misorientation < 10°decreases the longitudinal stiffness

CuZr1/SiC/15m

µXCT(10 µm)³/voxel

M.Schöbel et al., EXTREMAT 2008

Page 26: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

26

Institute of Materials Science and Technology 51

Diamond particle reinforced AlDiamond particle (~100µm) reinforced copper Cu/CD/50p (IFAM)

for high conductivity and low expansion:

SEI micrograph of fracture surface X-ray computed tomographyCu/CD/50p

[M.Schöbel, B.Harrer , EXTREMAT 2008]

Diamond particles (dark)

Institute of Materials Science and Technology 52

In situ synchrotron tomography of AlSi7/CD/60p during thermal cycling

volume: (40µm)³

void volume fraction~1.5 vol.%

voxel size: (0.6µm)³volume: (200µm)³ 10 µm10 µm

RT (25°C)150°C350°C150°CRT (25°C)

[M.Schöbel et al., EXTREMAT 2008].

RT (25°C)

void volume fraction~0.7 vol.%

350°C

50 µm

Breathing interface voids of a single diamondparticle during a RT - 350°C - RT cycle

Voids mainly at the interfaces between the particles (20 µm) and the Al matrix.These voids “breath” during thermal cycling (RT – 350°C)

Debonding in Al-diamond composite

Page 27: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

27

Institute of Materials Science and Technology 53

Synchrotron tomography and diffraction of AlSiC

in situ measurements at ESRF ID15A during temperature cycles (1.6 µm)³/voxel:

AlSi7Mg/SiC/70p (Electrovac),trimodal SiC-particles (white), 0.15 vol.% 0.15 vol.% porespores (red)(red)

RT

400°C

0.15 vol%

0.04 vol%

+40 MPa

-200 MPa

Pore volume fraction decreases with increasing temperature,

internal matrix tensile stresses convert into compression,

CTE is reduced !

Temperature cycle

Pore volume fraction

Matrix stress

G.Requena, M.Schöbel, 2007

Institute of Materials Science and Technology 54

Tomography is quite helpful to look intomy head.

There is something in it,but X-ray tomography does notallow to determine what it is !

Some questions remain.

Many thanks to my creative partners, co-workers and students !

Thank you for your attention !

H.P.Degischer, Hospital of Mödling /Austria, 2007

SKULL

BRAIN ?

Eyes

Page 28: Multi-scale Tomography of heterogeneous Metals3 Institute of Materials Science and Technology 5 Multi-scale tomography Graphite Crack 200 µm Crack in cast iron X-ray computed tomography

28

Institute of Materials Science and Technology 55

Image processing

• Recorded 3D-data reconstructed into grey values/voxel• Stapling to full volume• Segmentation and analysis:

smoothing, filtering, growing, erosion, etc.,application of image analysis software (IDL, ImageJ, Amira, VG-studio…)

• 3D image/data presentation

Required effort• ½ - 2h recording per scanned volume (ID19: 32 Gb)• 12-18 h /scan (½ h/Gb) preprocessing (data transfer, back up)• 15-20 h (½ h/Gb) reconstruction of one scan• 20-3000 h /scan (5-1000h/Gb) image processing,

quantitative analysis ⇒ Evaluation requires 10 – 10.000 x recording time !

Institute of Materials Science and Technology 56

2D SE cross section2D SE cross section

10 µm

Mg

Si

SiSi

Mg2SiSi

2D EDX Maps2D EDX Maps

AlAl

Al

AlAl

~ 5 SEI ~ 5 SEI automaticallyautomatically+ 1 EDS + 1 EDS performed per 1hperformed per 1h

Mg2Si

Siα-Al

FIBFIB aanalysednalysed regionregion 10 µm

AlMg5Si8, SEM top viewAlMg5Si8, SEM top view

AlFeMgSiSi

Fe10 µm

Phase identification by FIB-SEM tomography

F. Lasagni et al., AEM 10 (2008)Univ.Saarland (Prof.Mücklich)