multi-junction solar cell - wikipedia, the free encyclopedia

20
8/11/2015 Multijunction solar cell Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Multijunction_solar_cell#Comparison_with_other_technologies 1/20 Black light test of Dawn 's triplejunction gallium arsenide solar cells [1] Multijunction solar cell From Wikipedia, the free encyclopedia Multijunction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's pn junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency. Traditional singlejunction cells have a maximum theoretical efficiency of 34%. Theoretically, an infinite number of junctions would have a limiting efficiency of 86.8% under highly concentrated sunlight. [2] Currently, the best lab examples of traditional crystalline silicon solar cells have efficiencies between 20% and 25%, [3] while lab examples of multi junction cells have demonstrated performance over 43%. [4][5] Commercial examples of tandem, two layer, cells are widely available at 30% under onesun illumination, [6] and improve to around 40% under concentrated sunlight. However, this efficiency is gained at the cost of increased complexity and manufacturing price. To date, their higher price and higher pricetoperformance ratio have limited their use to special roles, notably in aerospace where their high powertoweight ratio is desirable. In terrestrial applications, these solar cells are emerging in concentrator photovoltaics (CPV), with a growing number of installations around the world. [7] Tandem fabrication techniques have been used to improve the performance of existing designs. In particular, the technique can be applied to lower cost thinfilm solar cells using amorphous silicon, as opposed to conventional crystalline silicon, to produce a cell with about 10% efficiency that is lightweight and flexible. This approach has been used by several commercial vendors, [8] but these products are currently limited to certain niche roles, like roofing materials. Contents 1 Description 1.1 Basics of solar cells 1.2 Loss mechanisms 1.3 Multijunction cells 1.3.1 Material Choice 1.4 Structural elements 1.4.1 Metallic contacts 1.4.2 Antireflective coating 1.4.3 Tunnel junctions 1.4.4 Window layer and backsurface field 1.5 JV characteristic

Upload: tapasrout

Post on 16-Aug-2015

216 views

Category:

Documents


1 download

DESCRIPTION

kkkk

TRANSCRIPT

8/11/2015 MultijunctionsolarcellWikipedia,thefreeencyclopediahttps://en.wikipedia.org/wiki/Multijunction_solar_cell#Comparison_with_other_technologies 1/20BlacklighttestofDawn' striplejunctiongalliumarsenidesolarcells[1]MultijunctionsolarcellFromWikipedia,thefreeencyclopediaMultijunction(MJ)solarcellsaresolarcellswithmultiplepnjunctionsmadeofdifferentsemiconductormaterials.Eachmaterial'spnjunctionwillproduceelectriccurrentinresponsetodifferentwavelengthsoflight.Theuseofmultiplesemiconductingmaterialsallowstheabsorbanceofabroaderrangeofwavelengths,improvingthecell'ssunlighttoelectricalenergyconversionefficiency.Traditionalsinglejunctioncellshaveamaximumtheoreticalefficiencyof34%.Theoretically,aninfinitenumberofjunctionswouldhavealimitingefficiencyof86.8%underhighlyconcentratedsunlight.[2]Currently,thebestlabexamplesoftraditionalcrystallinesiliconsolarcellshaveefficienciesbetween20%and25%,[3]whilelabexamplesofmultijunctioncellshavedemonstratedperformanceover43%.[4][5]Commercialexamplesoftandem,twolayer,cellsarewidelyavailableat30%underonesunillumination,[6]andimprovetoaround40%underconcentratedsunlight.However,thisefficiencyisgainedatthecostofincreasedcomplexityandmanufacturingprice.Todate,theirhigherpriceandhigherpricetoperformanceratiohavelimitedtheirusetospecialroles,notablyinaerospacewheretheirhighpowertoweightratioisdesirable.Interrestrialapplications,thesesolarcellsareemerginginconcentratorphotovoltaics(CPV),withagrowingnumberofinstallationsaroundtheworld.[7]Tandemfabricationtechniqueshavebeenusedtoimprovetheperformanceofexistingdesigns.Inparticular,thetechniquecanbeappliedtolowercostthinfilmsolarcellsusingamorphoussilicon,asopposedtoconventionalcrystallinesilicon,toproduceacellwithabout10%efficiencythatislightweightandflexible.Thisapproachhasbeenusedbyseveralcommercialvendors,[8]buttheseproductsarecurrentlylimitedtocertainnicheroles,likeroofingmaterials.Contents1Description1.1Basicsofsolarcells1.2Lossmechanisms1.3Multijunctioncells1.3.1MaterialChoice1.4Structuralelements1.4.1Metalliccontacts1.4.2Antireflectivecoating1.4.3Tunneljunctions1.4.4Windowlayerandbacksurfacefield1.5JVcharacteristic8/11/2015 MultijunctionsolarcellWikipedia,thefreeencyclopediahttps://en.wikipedia.org/wiki/Multijunction_solar_cell#Comparison_with_other_technologies 2/201.5JVcharacteristic1.6TheoreticalLimitingEfficiency2Materials2.1Galliumarsenidesubstrate2.2Germaniumsubstrate2.3Indiumphosphidesubstrate2.4Indiumgalliumnitridesubstrate3Performanceimprovements3.1Structure3.2Spectralvariations3.3Useoflightconcentrators4Fabrication5Comparisonwithothertechnologies6Applications7References8Furtherreading9SeealsoDescriptionBasicsofsolarcellsTraditionalphotovoltaiccellsarecommonlycomposedofdopedsiliconwithmetalliccontactsdepositedonthetopandbottom.Thedopingisnormallyappliedtoathinlayeronthetopofthecell,producingapnjunctionwithaparticularbandgapenergy,Eg.Photonsthathitthetopofthesolarcellareeitherreflectedortransmittedintothecell.TransmittedphotonshavethepotentialtogivetheirenergyhtoanelectronifhEg,generatinganelectronholepair.[10]Inthedepletionregion,thedriftelectricfieldEdriftacceleratesbothelectronsandholestowardstheirrespectivendopedandpdopedregions(upanddown,respectively).TheresultingcurrentIgiscalledthegeneratedphotocurrent.Inthequasineutralregion,thescatteringelectricfieldEscattacceleratesholes(electrons)towardsthepdoped(ndoped)region,whichgivesascatteringphotocurrentIpscatt(Inscatt).Consequently,duetotheaccumulationofcharges,apotentialVandaphotocurrentIphappear.Theexpressionforthisphotocurrentisobtainedbyaddinggenerationandscatteringphotocurrents:Iph=Ig+Inscatt+Ipscatt.TheJVcharacteristics(Jiscurrentdensity,i.e.currentperunitarea)ofasolarcellunderilluminationareobtainedbyshiftingtheJVcharacteristicsofadiodeinthedarkdownwardbyIph.Sincesolarcellsaredesignedtosupplypowerandnotabsorbit,thepowerP=VIphmustbenegative.Hence,theoperatingpoint(Vm,Jm)islocatedintheregionwhereV>0andIphEgEmitterandEgBSF>EgEmitter.Furthermore,thelatticeconstantmustbeclosetotheoneofInGaPandthelayermustbehighlydoped(n1018cm3).[20]JVcharacteristicFormaximumefficiency,eachsubcellshouldbeoperatedatitsoptimalJVparameters,whicharenotnecessarilyequalforeachsubcell.Iftheyaredifferent,thetotalcurrentthroughthesolarcellisthelowestofthethree.Byapproximation,[21]itresultsinthesamerelationshipfortheshortcircuitcurrentoftheMJsolarcell:JSC=min(JSC1,JSC2,JSC3)whereJSCi()istheshortcircuitcurrentdensityatagivenwavelengthforthesubcelli.BecauseoftheimpossibilitytoobtainJSC1,JSC2,JSC3directlyfromthetotalJVcharacteristic,thequantumefficiencyQE()isutilized.Itmeasurestheratiobetweentheamountofelectronholepairscreatedandtheincidentphotonsatagivenwavelength.Leti()bethephotonfluxofcorrespondingincidentlightinsubcelliandQEi()bethequantumefficiencyofthesubcelli.Bydefinition,thisequatesto:[22]Thevalueof isobtainedbylinkingitwiththeabsorptioncoefficient ,i.e.thenumberofphotonsabsorbedperunitoflengthbyamaterial.Ifitisassumedthateachphotonabsorbedbyasubcellcreatesanelectron/holepair(whichisagoodapproximation),thisleadsto:[20]wherediisthethicknessofthesubcelliand isthepercentageofincidentlightwhichisnotabsorbedbythesubcelli.Similarly,because,thefollowingapproximationcanbeused: .Thevaluesof arethengivenbytheJVdiodeequation:TheoreticalLimitingEfficiencyWecanestimatethelimitingefficiencyofidealinfinitemultijunctionsolarcellsusingthegraphicalquantumefficiency(QE)analysisinventedbyC.H.Henry.[23]TofullytakeadvantageofHenrysmethod,theunitoftheAM1.5spectralirradianceshouldbeconvertedtothatofphotonflux(i.e.,numberofphotons/m2/s).Todothat,itisnecessarytocarryoutanintermediateunitconversionfromthepowerof8/11/2015 MultijunctionsolarcellWikipedia,thefreeencyclopediahttps://en.wikipedia.org/wiki/Multijunction_solar_cell#Comparison_with_other_technologies 9/20electromagneticradiationincidentperunitareaperphotonenergytothephotonfluxperphotonenergy(i.e.,from[W/m2/eV]to[numberofphotons/m2/s/eV]).Forthisintermediateunitconversion,thefollowingpointshavetobeconsidered:Aphotonhasadistinctenergywhichisdefinedasfollows.(1):Eph=hf=h(c/)whereEphisphotonenergy,hisPlancksconstant(h=6.626*1034[Js]),cisspeedoflight(c=2.998*108[m/s]),fisfrequency[1/s],andiswavelength[nm].Thenthephotonfluxperphotonenergy,dnph/dh,withrespecttocertainirradianceE[W/m2/eV]canbecalculatedasfollows.(2): =E/{h(c/)}=E[W/(m2eV)](109[m])/(1.9981025[Jsm/s])=E5.031015[(#ofphotons)/(m2seV)]Asaresultofthisintermediateunitconversion,theAM1.5spectralirradianceisgiveninunitofthephotonfluxperphotonenergy,[numberofphotons/m2/s/eV],asshowninFigure1.Figure1.Photonfluxperphotonenergyfromstandardsolarenergyspectrum(AMof1.5).Basedontheaboveresultfromtheintermediateunitconversion,wecanderivethephotonfluxbynumericallyintegratingthephotonfluxperphotonenergywithrespecttophotonenergy.ThenumericallyintegratedphotonfluxiscalculatedusingtheTrapezoidalrule,asfollows.(3):Asaresultofthisnumericalintegration,theAM1.5spectralirradianceisgiveninunitofthephotonflux,[numberofphotons/m2/s],asshowninFigure2.8/11/2015 MultijunctionsolarcellWikipedia,thefreeencyclopediahttps://en.wikipedia.org/wiki/Multijunction_solar_cell#Comparison_with_other_technologies 10/20Figure2.Photonfluxfromstandardsolarenergyspectrum(AMof1.5).Itisshouldbenotedthattherearenophotonfluxdatainthesmallphotonenergyrangefrom0eVto0.3096eVbecausethestandard(AM1.5)solarenergyspectrumforh