moment generating function

26
EDWIN OKOAMPA BOADU

Upload: eddyboadu

Post on 03-Dec-2014

1.070 views

Category:

Education


1 download

DESCRIPTION

Mathematics

TRANSCRIPT

Page 1: Moment generating function

EDWIN OKOAMPA BOADU

Page 2: Moment generating function

DEFINITIONDefinition 2.3.3. Let X be a random variable

with cdf FX. The moment generating function (mgf) of X (or FX), denoted MX(t), is

provided that the expectation exists for t in some neighborhood of 0. That is, there is an h>0 such that, for all t in –h<t<h, E[etX] exists.

tXX eEtM

Page 3: Moment generating function

If the expectation does not exist in a neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, the moment generating function can be defined as:

variablesrandom discretefor

and , variablesrandom continuousfor

x

txX

txX

xXPetM

dxxfetM

Page 4: Moment generating function

Theorem 2.3.2: If X has mgf MX(t), then

where we define

0

)( 0

t

Xn

nnX tM

dt

dM

0nnXE X M

Page 5: Moment generating function

First note that etx can be approximated around zero using a Taylor series expansion:

2 30 0 2 0 3 0

2 32 3

1 10 0 0

2 6

12 6

tx t t tXM t E e E e te x t e x t e x

t tE x t E x E x

Page 6: Moment generating function

Note for any moment n:

Thus, as t0

1 2 2n

n n n nX Xn

dM M t E x E x t E x t

dt

nnX xEM 0

Page 7: Moment generating function

Leibnitz’s Rule: If f(x,θ), a(θ), and b(θ) are differentiable with respect to θ, then

b

a

b

a

dxxf

bd

dafa

d

dbfdxxf

d

d

,

,,,

Page 8: Moment generating function

Berger and Casella proof: Assume that we can differentiate under the integral using Leibnitz’s rule, we have

dxxfxe

dxxfedt

d

dxxfedt

dtM

dt

d

tx

tx

txX

Page 9: Moment generating function

Letting t->0, this integral simply becomes

This proof can be extended for any moment of the distribution function.

xf x dx E x

Page 10: Moment generating function

Moment Generating Functions for Specific DistributionsApplication to the Uniform Distribution:

abt

eee

tabdxab

etM

atbtb

a

txb

a

tx

X

11

Page 11: Moment generating function

Following the expansion developed earlier, we have:

222

3222

333222

333222

6

1

2

11

6

1

2

11

621

61

21

11

tbabatba

t

t

ab

aabbab

t

t

ab

abab

tab

tab

tab

tab

tab

tabtabtabtM X

Page 12: Moment generating function

Letting b=1 and a=0, the last expression becomes:

The first three moments of the uniform distribution are then:

32

24

1

6

1

2

11 ttttM X

Page 13: Moment generating function

4

16

24

10

3

12

6

10

2

10

3

2

1

X

X

X

M

M

M

Page 14: Moment generating function

Application to the Univariate Normal Distribution

dxx

tx

dxeetMx

txX

2

2

2

1

2

1exp

2

1

2

1 2

2

Page 15: Moment generating function

Focusing on the term in the exponent, we have

2

222

2

222

2

222

2

22

2

2

2

2

1

2

2

1

22

2

1

2

2

1

2

1

txx

txxx

txxx

txxxtx

Page 16: Moment generating function

The next state is to complete the square in the numerator.

422

42222

22

222

2

022

0

02

ttc

tttxx

tx

ctxx

Page 17: Moment generating function

The complete expression then becomes:

2 2 2 4 2

2 2

2

2 22

21 1

2 2

1 1

2 2

x t t txtx

x tt t

Page 18: Moment generating function

The moment generating function then becomes:

22

2

222

2

1exp

2

1exp

2

1

2

1exp

tt

dxtx

tttM X

Page 19: Moment generating function

Taking the first derivative with respect to t, we get:

Letting t->0, this becomes:

2221

2

1exp ttttM X

01XM

Page 20: Moment generating function

The second derivative of the moment generating function with respect to t yields:

Again, letting t->0 yields

2222

2222

2

1exp

2

1exp

tttt

tttM X

222 0 XM

Page 21: Moment generating function

Let X and Y be independent random variables with moment generating functions MX(t) and MY(t). Consider their sum Z=X+Y and its moment generating function:

t x ytz tx tyZ

tx tyX Y

M t E e E e E e e

E e E e M t M t

Page 22: Moment generating function

We conclude that the moment generating function for two independent random variables is equal to the product of the moment generating functions of each variable.

Page 23: Moment generating function

Skipping ahead slightly, the multivariate normal distribution function can be written as:

where Σ is the variance matrix and μ is a vector of means.

xxxf 1'

2

1exp

2

1

Page 24: Moment generating function

In order to derive the moment generating function, we now need a vector t. The moment generating function can then be defined as:

1exp ' '

2XM t t t t

Page 25: Moment generating function

Normal variables are independent if the variance matrix is a diagonal matrix.

Note that if the variance matrix is diagonal, the moment generating function for the normal can be written as:

Page 26: Moment generating function

1 2 3

21

22

23

2 2 2 2 2 21 1 2 2 3 3 1 1 2 2 3 3

2 2 2 21 1 1 1 2 2 2 3 3 3

0 01

exp ' ' 0 02

0 0

1exp

2

1 1 1exp

2 2 2

X

X X X

M t t t t

t t t t t t

t t t t

M t M t M t