modulhandbuch für den masterstudiengang computer aided ... · komplexe fragestellungen konstruktiv...

135
1 Modulhandbuch für den Masterstudiengang Computer Aided Conception and Production in Mechanical Engineering (M.Sc.)

Upload: others

Post on 26-Oct-2019

10 views

Category:

Documents


0 download

TRANSCRIPT

1

Modulhandbuch für den Masterstudiengang „Computer Aided Conception and Production in Mechanical Engineering (M.Sc.)”

2

Inhaltsverzeichnis

Prüfungsordnungsbeschreibung: Computer Aided Conception and Production in Mechanical Engineering

(M.Sc.)............................................................................................................................................................ 4

Module: Advanced Software Engineering ..................................................................................................... 7

Module: Computational Fluid Dynamics I ................................................................................................... 10

Module: Computational Fluid Dynamics II .................................................................................................. 13

Module: Computational Modeling of Membranes and Shells .................................................................... 16

Module: Continuum Mechanics .................................................................................................................. 19

Module: Control Engineering ...................................................................................................................... 22

Module: Modeling, Model Reduction and Simulation in Laser Processing - Design ................................... 25

Module: Failure of Structures and Structural Elements .............................................................................. 28

Module: Advanced Finite Element Methods ............................................................................................... 31

Module: Finite Element Methods in Lightweight Design ............................................................................ 34

Module: Fundamentals of Lightweight Design ........................................................................................... 37

Module: German Language Course ............................................................................................................. 40

Module: Industrial Engineering and Ergonomics ........................................................................................ 43

Module: Industrial Internship...................................................................................................................... 47

Module: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools ...... 49

Module: Machine Tools ............................................................................................................................... 53

Module: Manufacturing Technology I ......................................................................................................... 56

Module: Manufacturing Technology II ........................................................................................................ 59

Module: Master Thesis ................................................................................................................................ 62

Module: Mechanics of Engineering Materials ............................................................................................ 64

Module: Mechatronics and Control Techniques for Production Plants ...................................................... 67

Module: Micro- and Macrosimulation of Casting Processes ...................................................................... 70

Module: Mini Thesis .................................................................................................................................... 74

3

Module: Modeling, Model Reduction and Simulation in Laser Processing - Laser ..................................... 76

Module: Modeling, Model Reduction and Simulation in Laser Processing - Applications .......................... 79

Module: Molecular Mechanics and Multi-scale Modelling ......................................................................... 83

Module: Multibody Dynamics ..................................................................................................................... 86

Module: Nonlinear Structural Mechanics ................................................................................................... 90

Module: Numerical Methods in Mechanical Engineering ........................................................................... 93

Module: Practical Introduction to FEM-Software I ..................................................................................... 96

Module: Practical Introduction to FEM-Software II .................................................................................... 99

Module: Production Management A ......................................................................................................... 102

Module: Production Metrology ................................................................................................................. 105

Module: Quality Management .................................................................................................................. 108

Module: Reliable Simulation in the Mechanics of Materials and Structures ............................................ 111

Module: Selected Topics of Inelasticity Theory......................................................................................... 114

Module: Simulation of Discrete Event Systems ........................................................................................ 117

Module: Simulation Techniques (Modelling and Simulation) in Manufacturing Technology................... 120

Module: Tensor Algebra and Tensor Analysis for Engineering Students I ................................................ 124

Module: Tensor Algebra and Tensor Analysis for Engineering Students II ............................................... 127

Module: Welding and Joining Technologies .............................................................................................. 130

Module: Mechanics of Forming Processes ................................................................................................ 133

4

Prüfungsordnungsbeschreibung:

Computer Aided Conception and Production in Mechanical Engineering (M.Sc.)

Titel Computer Aided Conception and Production in Mechanical Engineering (M.Sc.)

Kurzbezeichnung MSCAME

Beschreibung Übergreifende Ziele der Studiengänge der Fakultät für Maschinenwesen

Die Bachelor- und Masterstudiengänge der Fakultät für Maschinenwesen sind konsekutive bzw. weiterbildende, aber selbstständige Studiengänge.

Ziel der Ausbildung im Bachelorstudiengang Maschinenbau ist die Vermittlung der fachlichen Grundlagen dieses Fachgebiets in der Breite. Der Studiengang soll sicherstellen, dass die Voraussetzungen für spätere Verbreiterungen, Vertiefungen und Spezialisierungen gegeben sind. Er bereitet insbesondere auf das Masterstudium vor. Der Bachelorstudiengang soll dazu befähigen, die vermittelten Fähigkeiten und Kenntnisse anzuwenden und sich im Zuge eines lebenslangen Lernens schnell neue, vertiefende Kenntnisse anzueignen. Er ermöglicht einen Einstieg in den Arbeitsmarkt. Ein qualifizierter Bachelorabschluss ist die Voraussetzung für die Zulassung zu einem Masterstudiengang.

Die Masterstudiengänge der Fakultät für Maschinenwesen sind forschungsorientiert. Sie zielen neben der Verbreiterung auf Vertiefung und Spezialisierung ab. Durch die konsekutive Anlage, die auf einem entsprechenden Bachelorstudiengang aufbaut, wird eine angemessene fachliche Tiefe erreicht. Die Erweiterung und Vertiefung der im zugehörigen Bachelorstudiengang erworbenen Kenntnisse hat insbesondere zum Ziel, die Studierenden auf der Basis vermittelter Methoden- und Systemkompetenz und unterschiedlicher wissenschaftlicher Sichtweisen zu eigenständiger Forschungsarbeit anzuregen. Die Studierenden sollen lernen, komplexe Problemstellungen aufzugreifen und sie mit wissenschaftlichen Methoden, auch über die aktuellen Grenzen des Wissensstandes hinaus, zu lösen und im Hinblick auf die Auswirkungen des technologischen Wandels verantwortlich zu handeln. Die breite wissenschaftliche und ganzheitliche Problemlösungskompetenz legt in besonderer Weise Grundlagen zur Entwicklung von Führungsfähigkeit. Der qualifizierte Abschluss eines Masterstudiengangs ist eine notwendige Voraussetzung für die Zulassung zur Promotion.

Das Konzept der Studiengänge geht vom Master als Regelabschluss aus. Der Master erreicht mindestens das Niveau des bisherigen universitären Diplom-Ingenieurs. Der Bachelorabschluss wird als Drehscheibe gesehen, mit einer Berufsbefähigung für eine industrielle Tätigkeit und zur Weiterqualifizierung in Masterstudiengängen.

Allgemeine Ausbildungsziele

Die konsekutiven Bachelor- und/oder weiterbildenden Masterstudiengänge sind wissenschaftliche, forschungsorientierte Studiengänge, die grundlagen- und methodenorientiert ausgerichtet sind. Sie befähigen die Absolventen durch die Grundlagenorientierung zu erfolgreicher Tätigkeit während des gesamten Berufslebens hinweg, da sie sich nicht auf die Vermittlung aktueller Inhalte beschränken, sondern theoretisch untermauerte grundlegende Konzepte und Methoden vermitteln, die über aktuelle Trends hinweg Bestand haben. In den weiterbildenden Masterstudiengängen wird zudem die explizit vorausgesetzte berufspraktische Erfahrung berücksichtigt.

Die Ausbildung vermittelt den Studierenden die grundlegenden Prinzipien, Konzepte und Methoden des Fachs. Die Studierenden sollen nach Abschluss ihrer Ausbildung insbesondere in der Lage sein, Aufgaben in verschiedenen Anwendungsfeldern des Fachs unter unterschiedlichen technischen, ökonomischen und sozialen Randbedingungen zu bearbeiten. Sie sollen die erlernten Konzepte und Methoden auf zukünftige Entwicklungen übertragen können.

Die Ziele der Masterstudiengänge bestehen zum einen darin, die berufspraktischen Kompetenzen zu erweitern. Die Studiengänge sind so ausgelegt, dass die Absolventinnen und Absolventen das notwendige Rüstzeug für anspruchsvolle Forschungs- und Entwicklungsarbeiten besitzen. Zum anderen wird auch die Ausbildung in den fachspezifischen Grundlagen und in ihren Anwendungen verbreitert. Die Absolventinnen und Absolventen erwerben die wissenschaftliche Qualifikation für eine Promotion.

Problemlösungskonzept

Die Absolventen sollen im Stande sein, komplexe Aufgaben systematisch zu analysieren, Lösungen zu entwickeln und zu validieren. Sie sollen befähigt sein, bei auftretenden Problemen geeignete Maßnahmen zu ergreifen, die zu deren Lösung notwendig sind. Die Absolventen können auch komplexe Fragestellungen konstruktiv in Angriff nehmen. Sie haben gelernt, hierfür Systeme und

5

Methoden des Fachs zielorientiert einzusetzen.

Schlüsselqualifikationen, Interdisziplinarität und Internationalität:

Neben der technischen Kompetenz sollen die Absolventen Konzepte, Vorgehensweisen und Ergebnisse kommunizieren und im Team bearbeiten können. Sie sollen im Stande sein, sich in die Sprache und Begriffswelt benachbarter Fächer einzuarbeiten, um über Fachgebietsgrenzen hinweg zusammenzuarbeiten. Die Integration von im Ausland erbrachten Studienleistungen wird durch geeignete akademische und administrative Maßnahmen gefördert.

Die oben aufgeführten Ausbildungsziele werden beim Bachelor bzw. Masterabschluss auf

unterschiedlichem Niveau erreicht. Insbesondere bzgl. Problemlösungs- und Leitungskompetenz ergibt

sich ein deutlicher Unterschied. Dies impliziert, dass der Anspruch der Aufgaben im Berufsleben nach

Ende des Studiums bei beiden Abschlüssen unterschiedlich sein wird.

Das Qualifikationsprofil von Absolventinnen und Absolventen, die den Abschluss in einem

der Masterstudiengänge erworben haben, zeichnet sich durch die folgenden zusätzlichen Attribute aus:

Die Absolventinnen und Absolventen haben die Ausbildungsziele des Bachelorstudiums in einem längeren fachlichen Reifeprozess weiter verarbeitet und haben eine größere Sicherheit in der Anwendung und Umsetzung der fachlichen und außerfachlichen Kompetenzen erworben.

Die Absolventinnen und Absolventen haben tiefgehende Fachkenntnisse in einem ausgewählten Technologiefeld oder in einem ingenieurwissenschaftlichen Querschnittsthema erworben.

Die Absolventinnen und Absolventen sind fähig, die erworbenen naturwissenschaftlichen, mathematischen und ingenieurwissenschaftlichen Methoden zur Formulierung und Lösung komplexer Aufgabenstellungen in Forschung und Entwicklung in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf auch weiter zu entwickeln.

Die Absolventinnen und Absolventen verfügen über Tiefe und Breite, um sich sowohl in zukünftige Technologien im eigenen Fachgebiet wie auch in die Randgebiete des eigenen Fachgebietes rasch einarbeiten zu können.

Die Absolventinnen und Absolventen haben verschiedene technische und soziale Kompetenzen (Abstraktionsvermögen, systemanalytisches Denken, Team- und Kommunikationsfähigkeit, internationale und interkulturelle Erfahrung usw.) erworben, die für Führungsaufgaben vorbereiten.

Ausbildungsziele für den Masterstudiengang Computer Aided Conception and Production in Mechanical Engineering

Das Studium Computer Aided Conception and Production in Mechanical Enineering (CAME) baut auf dem Grundlagenwissen der Studierenden auf und vermittelt erweiterte und spezialisierte Methoden-, Prozess- und Technologiekenntnisse im Bereich des computergestützten Konstruktionsentwurfs von Einzelteilen, Baugruppen und der Produktion im Maschinenbau. Ferner werden im Masterstudiengang sowohl theoretische, als auch praktische Inhalte, bezogen auf den Einsatz von industriespezifischen Software Systemen des industriellen Maschinenbaus, vermittelt, die den Bedürfnissen und Anforderungen des internationalen Arbeitsmarktes entsprechen. Neben dem zentralen Element des Aufbaus von technologischen und technischen Kompetenzen im Bereich der computergestützten Produktion, Modellierung und Simulation sowie des Softwareengineering erwerben die Studierenden Lösungs- und Beurteilungskompetenzen für das Management von komplexen Modellierungs- und Simulationsprojekten über die Wahl einer Vertiefungsrichtung.

Die Absolventen erwerben die Fähigkeit komplexe technische Zeichnungen zu lesen und zu verstehen und auf Grundlage dessen selbstständig computergestützt Konstruktionen zu entwerfen und bestehende gemäß des betrieblichen Einsatzes weiterzuentwickeln. Die Studierenden können die erworbenen und spezialisierten ingenieurwissenschaftlichen Methoden und Fachkenntnisse zur Formulierung und Lösung komplexer Aufgabenstellungen in der Industrie oder in wissenschaftlichen Forschungseinrichtungen erfolgreich einsetzen.

Zusätzlich werden die Studierenden in der Entwicklung von überfachlichen Kompetenzen unterstützt. Dazu zählen insbesondere Präsentations- und Kommunikationstechniken sowie die Entwicklung von selbstständigen und eigenverantwortlichen Handlungen, Abstraktionsvermögen, systemanalytisches Denken und Teamfähigkeit. Die Ausbildung an der RWTH Aachen qualifiziert die Studierenden, in den verschiedensten Arbeitsfeldern und Branchen weltweit tätig zu werden sowie für eine Tätigkeit in

6

Forschung und Entwicklung in Wissenschaft und Industrie.

Struktur des Masterstudiengang Computer Aided Conception and Production in Mechanical Engineering

Das Masterstudium Computer Aided Conception and Production in Mechanical Engineering (CAME) wurde als moderner und multidisziplinärer Studiengang angelegt.

Das Studium umfasst Pflichtfächer, Wahlpflichtfächer, einen obligatorischen Deutschkurs, ein Berufspraktikum sowie die Anfertigung einer Mini Thesis zur Vorbereitung auf die abschließende Masterarbeit. Die Pflicht- und Wahlpflichtfächer werden in englischer Sprache von Professoren der Fakultät für Maschinenwesen durchgeführt. Die Studierenden können sich im Studium auf eine der beiden Vertiefungsrichtungen spezialisieren:

Conception of Machines

Production of Machines

Der obligatorische Deutschkurs wird als einziges nicht-technisches Modul vom Sprachenzentrum der RWTH Aachen University durchgeführt und schließt mit der DSH Prüfung ab. Die Mini Thesis ist mit einer Seminar- oder Entwurfsarbeit zu vergleichen.

Das vierte Semester ist für das Berufspraktikum und die Anfertigung der Masterarbeit vorgesehen. Das Industriepraktikum dient einerseits den Studierenden erste Berufserfahrungen zu sammeln und Kontakte zu potenziellen Arbeitgebern zu knüpfen. In der Masterarbeit wird eine konkrete Fragestellung zur Entwicklung kreativer Problemlösungen unter Anwendung der erlernten ingenieurewissenschaftlichen Methoden selbstständig bearbeitet.

Informationslink http://www.master-mechanical-engineering.com/

7

Module: Advanced Software Engineering

Module

Modulbezeichnung

Advanced Software Engineering

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

ASE

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Meisen, Tobias

Lecturer

Dozenten

Meisen, Tobias

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Advanced Software Engineering

After successfully completing this course, the student will have acquired the following learning

outcomes:

Knowledge / Understanding:

a) Students comprehend for what purposes, under which conditions and with which

consequences computer systems are used for the solution of problems related to

Mechanical Engineering.

b) Students gain solid knowledge in the Software Development Life Cycle and also the

main activities and core concepts in different software development phases.

Abilities / Skills:

a) They have the ability to transfer the acquired knowledge in object oriented design to

different engineering problems and understand the general structure and the

functionality of software.

Content

Inhalt

Advanced Software Engineering

8

The aim of the course is to explain students for what purposes, under which conditions and

with which consequences computer systems are used for the solution of problems related to

Mechanical Engineering.

Within the first part of the course the steps from problem description to the final software

solution are illustrated. This covers the topics modelling, problem elicitation and analysis,

program design and an introduction to UML (Unified Modelling Language). Then the course

goes on with a closer examination of the various aspects which comprise software

development, concerning topics like design patterns, agile software processes and project

management. Parallel to the lecture the students are given the chance to employ the

theoretical input from the course in small software projects. After an introduction to Java and

object-oriented programming, the students stepwise pass through the particular stages of a

software development process. Moreover, a part of the exercise is implemented by using

physical robots.

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Advanced Software Engineering

MSCAME 5 0 0 0 15-45

Lecture (Vorlesung): Advanced Software Engineering

MSCAME 0 75 30 45

Exercise (Übung): Advanced Software Engineering

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Advanced Software Engineering Studien-/Prüfungsleistung: Prüfung Advanced Software Engineering Title

Titel

Examination Advanced Software Engineering

Prüfung Advanced Software Engineering Sub-title

Untertitel

Exa: ASE

P: ASE Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Advanced Software Engineering Studien-/Prüfungsleistung: Vorlesung Advanced Software Engineering

Title

Titel

Lecture: Advanced Software Engineering Vorlesung: Advanced Software Engineering

Sub-title

Untertitel

L: ASE

V: ASE Semester

Studiensemester

1

Connection to the curriculum

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

9

Curriculare Verankerung

Teaching Unit / Examinations: Exercise Advanced Software Engineering Studien-/Prüfungsleistung: Übung Advanced Software Engineering

Title

Titel

Exercise: Advanced Software Engineering Übung: Advanced Software Engineering

Sub-title

Untertitel

E: ASE

Ü: ASE Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

10

Module: Computational Fluid Dynamics I

Module

Modulbezeichnung

Computational Fluid Dynamics I

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

CFD I

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Schröder, Wolfgang

Lecturer

Dozenten

Schröder, Wolfgang

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 120h, Lecture Hours 45h, Self-study 85h

Gesamt 120h, Kontaktzeit 45h, Selbststudium 85h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

4

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Computational Fluid Dynamics I

After successfully completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) Knowledge of the partial differential equations (PDE'S) of fluid mechanics

b) Principles of the discretization of PDE's

c) Understanding of stability and consistency of solution schemes

Abilities / Skills:

a) Formulation of numerical methods for the solution of PDE's

b) Ability to determine und understand the properties of truncation errors of numerical

solution schemes

c) Solution of boundary value problems with iterative solution schemes

d) Implementation of solution schemes on different computer architectures

e) Discussion of several examples of numerical flow simulation to understand

different theoretical aspects in proactical applications

11

Discretization on different mesh types

Content

Inhalt

Computational Fluid Dynamics I

Introduction to CFD

Examples of flow simulatiaons

The basic PDE's of Fluid Mechanics

Different Notations

Physical meaning of characteristic lines

Determination of the type of PDE's

Characteristic form of PDE's

The basics of discretization of partial differentials

Truncation error and consistency

Solution schemes for scalar equations

Stability analysis of initial value problems

Discrete disturbance theory

von Neumann ananlysis

CFL-condition

Hirt's stability analysis

Introduction to the numerical solution of boundary value problems

Classical iterative solution methods, Jacobi, Gauß-Seidel methods

Convergence of iterative solution methods

ILU, Krylov subspace methods

Multigrid methods

Transformation of PDE's in curvlinear coordinates

Truncation error on curvelinear grids

Discretization on different unstructured meshes, solution adaptive methods

Triangle or tetrahedral based meshes

Hierarchical Cartesian meshes

Vectorization and parallelization of solution algorithms

Different applications and examples

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Computational Fluid Dynamics I

MSCAME 4 0 0 0 120

Lecture (Vorlesung): Computational Fluid Dynamics I

MSCAME 0 80 30 50

Exercise (Übung): Computational Fluid Dynamics I

MSCAME 0 40 15 35

Teaching Unit / Examinations: Examination Computational Fluid Dynamics I Studien-/Prüfungsleistung: Prüfung Computational Fluid Dynamics I Title Examination Computational Fluid Dynamics I

12

Titel Prüfung Computational Fluid Dynamics I

Sub-title

Untertitel

Exa: CFD I P: CFD I

Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Computational Fluid Dynamics I Studien-/Prüfungsleistung: Vorlesung Computational Fluid Dynamics I Title

Titel

Lecture: Vorlesung:

Sub-title

Untertitel

L: CFD I V: CFD I

Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Computational Fluid Dynamics I Studien-/Prüfungsleistung: Übung Computational Fluid Dynamics I

Title

Titel

Exercise: Computational Fluid Dynamics I Übung: Computational Fluid Dynamics I

Sub-title

Untertitel

E: CFD I

Ü: CFD I Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

13

Module: Computational Fluid Dynamics II

Module

Modulbezeichnung

Computational Fluid Dynamics II

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

CFD II

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Schröder, Wolfgang

Lecturer

Dozenten

Schröder, Wolfgang

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 90h, Lecture Hours 15h, Self-study 75h

Gesamt 90h, Kontaktzeit 15h, Selbststudium 75h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

2

ECTS-Credit Points (CP)

Kreditpunkte

3

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Computational Fluid Dynamics I

Learning Objectives

Angestrebte Lernergebnisse

Computational Fluid Dynamics II

After successfully completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) Principles of the numerical solution of Boundary Layer, Euler and Navier-Stokes

equations for compressible flows

b) Properties and different forms of Euler and Navier-Stokes equations

c) Understanding of central and upwind discretization schemes for Euler and Navier-

Stokes equations

Abilities / Skills:

a) Formulation of efficient explicit and implicit solu-tion schemes for Euler and Navier-Stokes equations

b) Ability to develop solution and simulation algorithms for systems of partial

differential equation

14

Several program examples will show how the theory is applied in the numerical simulation of

different flow problems

Content

Inhalt

Computational Fluid Dynamics II

Introduction to CFD

Examples of flow simulatiaons

The basic PDE's of Fluid Mechanics

Different Notations

Physical meaning of characteristic lines

Determination of the type of PDE's

Characteristic form of PDE's

The basics of discretization of partial differentials

Truncation error and consistency

Solution schemes for scalar equations

Stability analysis of initial value problems

Discrete disturbance theory

von Neumann ananlysis

CFL-condition

Hirt's stability analysis

Introduction to the numerical solution of boundary value problems

Classical iterative solution methods, Jacobi, Gauß-Seidel methods

Convergence of iterative solution methods

ILU, Krylov subspace methods

Multigrid methods

Transformation of PDE's in curvlinear coordinates

Truncation error on curvelinear grids

Discretization on different unstructured meshes, solution adaptive methods

Triangle or tetrahedral based meshes

Hierarchical Cartesian meshes

Vectorization and parallelization of solution algorithms

Different applications and examples

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Computational Fluid Dynamics II

MSCAME 3 0 0 0 90

Lecture (Vorlesung): Computational Fluid Dynamics II

MSCAME 0 70 10 60

Exercise (Übung): Computational Fluid Dynamics II

MSCAME 0 20 5 15

15

Teaching Unit / Examinations: Examination Computational Fluid Dynamics II Studien-/Prüfungsleistung: Prüfung Computational Fluid Dynamics II Title

Titel

Examination Computational Fluid Dynamics II

Prüfung Computational Fluid Dynamics II Sub-title

Untertitel

Exa: CFD II

P: CFD II Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Computational Fluid Dynamics II Studien-/Prüfungsleistung: Vorlesung Computational Fluid Dynamics II Title

Titel

Lecture: Vorlesung:

Sub-title

Untertitel

L: CFD II

V: CFD II Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Computational Fluid Dynamics II Studien-/Prüfungsleistung: Übung Computational Fluid Dynamics II

Title

Titel

Exercise: Computational Fluid Dynamics II Übung: Computational Fluid Dynamics II

Sub-title

Untertitel

E: CFD II

Ü: CFD II Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

16

Module: Computational Modeling of Membranes and Shells

Module

Modulbezeichnung

Computational Modeling of Membranes and Shells

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

CMMS

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Sauer, Roger

Lecturer

Dozenten

Sauer, Roger

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 45h, Self-study 105h

Gesamt 150 h, Kontaktzeit 45 h, Selbststudium 105h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Computational Modeling of Membranes and Shells

During the course students will obtain knowledge of computational modeling of membranes

and shells and study the subject matter by considering realistic problems. After successfully

completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) Students can identify the different aspects of numerical models for membranes and shells

b) Students understand the mathematical and physical origin of those numerical models

c) Students know how to derive numerical discretization methods for those models

Abilities / Skills:

a) Students are able to derive new numerical discretization methods for membranes and shells

b) Students are able to transfer the membrane and shell formulation to other

constitutive laws

17

c) Students are able to implement membrane and shell formulation in existing

software programmes

d) Students are able to evaluate the accuracy of numerical results in software

programmes

Content

Inhalt

Computational Modeling of Membranes and Shells

1. General mathematical foundations

2. Differential geometry

3. Summary of continuum mechanics

4. Membrane kinematics considering large deformation

5. Constitutive laws for membranes

6. Membrane equilibrium in strong and weak form

7. Summary of isogeomatric finite element methods

8. Numerical discretization methods for membranes

9. Extension of the formulation to shells

10. Rotationfree discretization methods for Kirchhoff-Love-Shells

11. Practical implementation of 8. & 10

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Computational Modeling of Membranes and Shells

MSCAME 3 0 0 0 90

Lecture (Vorlesung): Computational Modeling of Membranes and Shells

MSCAME 0 45 15 30

Exercise (Übung): Computational Modeling of Membranes and Shells

MSCAME 0 45 15 30

Teaching Unit / Examinations: Examination Computational Modeling of Membranes and Shells Studien-/Prüfungsleistung: Prüfung Computational Modeling of Membranes and Shells Title

Titel

Examination Computational Modeling of Membranes and Shells

Prüfung Computational Modeling of Membranes and Shells Sub-title

Untertitel

Exa: CMMS

P: CMMS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Examination Computational Modeling of Membranes and Shells Studien-/Prüfungsleistung: Vorlesung Examination Computational Modeling of Membranes and Shells

Title

Titel

Lecture: Vorlesung:

18

Sub-title

Untertitel

L: CMMS

V: CMMS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Examination Computational Modeling of Membranes and Shells

Studien-/Prüfungsleistung: Übung Examination Computational Modeling of Membranes and Shells

Title

Titel

Exercise: Computational Modeling of Membranes and Shells Übung: Computational Modeling of Membranes and Shells

Sub-title

Untertitel

E: CMMS

Ü: CMMS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

19

Module: Continuum Mechanics

Module

Modulbezeichnung

Continuum Mechanics

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

CM

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Continuum Mechanics

During the course students will obtain knowledge of the principles of continuum mechanics

and exercise the subject matter by considering realistic problems. After successfully

completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) Description of the state of strain and stress in a material body that undergoes large elastic deformations

b) Calculation of strain and stress tensors

c) Understanding and applying the principle of virtual work and balance equations of mechanics

d) Understanding the principles of the constitutive theory

Abilities / Skills:

a) Applying material laws

b) Utilization of read scientific literature on continuum mechanics.

20

Throughout the course, the students will use and practice the modern absolute notation for

tensors. Furthermore, examples based on Cartesian and curvilinear coordinates will be

considered.

Content

Inhalt

Continuum Mechanics

Material bodies, configuration, coordinates

Rigid body motion

Deformation gradient

Deformation of surface and volume elements

Strain, stretch and shear

Spectral decomposition of strain tensors

Strain invariants

Polar decomposition of the deformation gradient, stretch tensors

Strain measures

Velocity gradient

Cauchy stress tensor

Linear momentum balance

Scalar form of the linear momentum balance

Rotational momentum balance

Balance of mechanical energy

Work-conjugate stress-strain pairs

General principles of the constitutive theory, Noll axioms

Change of frame, objectivity

General constitutive relation, simple materials

Elastic materials

Material symmetry, isotropic materials

Hyperelastic materials

Project work: inflation of a rubber balloon, experimental study and theoretical modeling

Mock-Examination

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Continuum Mechanics

MSCAME 5 0 0 0 180

Lecture (Vorlesung): Continuum Mechanics

MSCAME 0 75 30 45

Exercise (Übung): Continuum Mechanics

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Continuum Mechanics Studien-/Prüfungsleistung: Prüfung Continuum Mechanics Title

Titel

Examination Continuum Mechanics

Prüfung Continuum Mechanics Sub-title

Untertitel

Exa: CM

P: CM Semester

Studiensemester

2

21

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Continuum Mechanics Studien-/Prüfungsleistung: Vorlesung Continuum Mechanics

Title

Titel

Lecture: Continuum Mechanics Vorlesung: Continuum Mechanics

Sub-title

Untertitel

L: CM

V: CM Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Continuum Mechanics

Studien-/Prüfungsleistung: Übung Continuum Mechanics

Title

Titel

Exercise: Continuum Mechanics Übung: Continuum Mechanics

Sub-title

Untertitel

E: CM

Ü: CM Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

22

Module: Control Engineering

Module

Modulbezeichnung Modeling, Model Reduction and Simulation in Laser Processing - Design

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

CE

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Abel, Dirk

Lecturer

Dozenten

Abel, Dirk

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 90h, Lecture Hours 60h, Self-study 30h

Gesamt 90h, Kontaktzeit 60h, Selbststudium 30h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

3

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Control Engineering

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) know, recognize and classify the most common linear control loop elements

b) the effects of feedback and apply different methods to set up feedback elements

(controllers) such that predefined control goals are met

Abilities / Skills:

a) to analyze dynamical, biological and biomedical systems and identify the relevant

causalities

b) to employ different mathematical descriptions of dynamical systems

c) to solve differential equations by means of Laplace transform

d) to assess of the stability of dynamical systems by using different methods

e) to obtain, interpret and employ the frequency response of dynamical systems

23

Content

Inhalt

Control Engineering

Significance of control theory, examples of biological and biomedical control loops, functional

diagrams, linearization, set up and solving of differential equations, stability, features in time

domain of dynamical systems, Laplace transform, transfer function, frequency response,

functional diagram algebra, features in frequency domain of dynamical systems, bode

diagram, Nyquist plot, Linear control loop elements, principle and goals of controller design,

algebraic stability criteria, steady state analysis and transient performance of a control loop,

controller setting rules, Nyquist stability criterion, phase margin, gain margin, controller

design in bode diagram.

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Control Engineering

MSCAME 3 0 0 0 120

Lecture (Vorlesung): Control Engineering

MSCAME 0 45 30 15

Exercise (Übung): Control Engineering

MSCAME 0 45 30 20

Teaching Unit / Examinations: Examination Control Engineering Studien-/Prüfungsleistung: Prüfung Manufacturing Control Engineering Title

Titel

Examination Control Engineering

Prüfung Control Engineering Sub-title

Untertitel

Exa: CE

P: CE Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Control Engineering Studien-/Prüfungsleistung: Vorlesung Control Engineering

Title

Titel

Lecture: Control Engineering Vorlesung: Control Engineering

Sub-title

Untertitel

L: CE

V: CE Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Control Engineering

Studien-/Prüfungsleistung: Übung Control Engineering

Title

Titel

Exercise: Control Engineering Übung: Control Engineering

24

Sub-title

Untertitel

E: CE

Ü: CE Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

25

Module: Modeling, Model Reduction and Simulation in Laser Processing - Design

Module

Modulbezeichnung

Modeling, Model Reduction and Simulation in Laser Processing - Design

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

DLP

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche Univ.-Prof. Dr. rer. nat. Wolfgang Schulz

Lecturer

Dozenten Univ.-Prof. Dr. rer. nat. Wolfgang Schulz

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Oral Exam (Exa), Lecture (L), Exercise (E)

Mündliche Prüfung (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150h, Kontaktzeit 60h, Selbststudium 90h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Modeling, Model Reduction and Simulation in Laser Processing - Design

Overall goal: Students gain theoretical and practical knowledge to design laser processes by understanding laser induced phenomena and the needs of use to meet the performance suited to current and future markets demand.

After successfully completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) Design of Research is based on formulation of a research question followed by

research hypothesis, state of the art, contributions of theory and experiment;

b) Design Thinking for laser specification and laser processes by formulating specific

research hypothesis leading to Reduced Models using the methods: 1.

Dimensional Analysis, 2. Dimensionless groups, 3. Inertial Manifolds and Central

Manifolds, 4. Length scale analysis and time scale separation;

c) know how to adapt laser properties to high performance processing;

d) understand the interactive cooperation of scientists from engineering, physics and

mathematics for application of model based methods for diagnosis in laser

processing.

26

Abilities / Skills:

a) apply model based methods for solving practical tasks of laser design.

Content

Inhalt

Modeling, Model Reduction and Simulation in Laser Processing - Design

Overview of contents, definition of the 4 methodological (M1-M4) and 5 laser specific (L1-L5)

learning targets:

Learning target M1 - Cooperation Engineering: the contribution of the engineer to the

interactive cooperation of scientific disciplines (“FlowChart” approach)

Learning target M2 - Meta-Modelling: main features of the theories for “design thinking” by

“meta-modelling” are

model reduction methods MRM:

mathematical, empirical and numerical approaches

global approximation and optimization methods

sensitivity analysis and hierarchical models

Learning target M3 - model reduction methods MRM:

Buckingham’s Pi-Theorem(mathematical MRM)

Model hierarchy threshold (empirical MRM))

Kriging global approximation versus response surface

(numerical MRM)

Proper orthogonal decomposition POD(numerical MRM)

Learning target M4 - mathematical MRM:

Analysis of dissipative distributed systems

applied to standard examples

Time scale separation (Inertial manifolds)

Singular perturbation

Learning target L1 – heating and melting phenomena

Laser Polishing (Marangoni effect, evaporation)

Learning target L2 - evaporation phenomena

Laser induced thermal stress analysis

Laser driven EUV-Sources (Extreme Ultra-Violet EUV)

Laser Propulsion - Light Engine

Learning target L3 - linear excitation phenomena

Laser Induced Fluorescence (LIF): biological carrier for TNT detection

Learning target L4 - nonlinear Multi-Photon phenomena

Laser Filamentation – Kerr effect, Multi-photon absorption

Multi-Photon Lithography

Learning target L5 - Coherence phenomena

Optical Coherence Tomography (OCT)

Particle detection (PIV, LDV, DGV, FRS)

Laser Interferometer Space Antenna (LISA)

Laser Time Measurement - Frequency Comb

Physical Limits related to energy manipulation (Laser Fusion, Laser Cooling)

Concluding discussion of the learning targets and

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Modeling, Model Reduction

MSCAME 5 0 0 0 120

27

and Simulation in Laser Processing - Design

Lecture (Vorlesung): Modeling, Model Reduction and Simulation in Laser Processing - Design

MSCAME 0 75 30 45

Exercise (Übung): Modeling, Model Reduction and Simulation in Laser Processing - Design

MSCAME 0 75 30 45

Teaching Unit / Examinations: Modeling, Model Reduction and Simulation in Laser Processing - Design Studien-/Prüfungsleistung: Prüfung Modeling, Model Reduction and Simulation in Laser Processing - Design Title

Titel

Examination Modeling, Model Reduction and Simulation in Laser Processing - Design

Prüfung Modeling, Model Reduction and Simulation in Laser Processing - Design Sub-title

Untertitel

Exa: DLP

P: DLP Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Modeling, Model Reduction and Simulation in Laser Processing - Design Studien-/Prüfungsleistung: Vorlesung Modeling, Model Reduction and Simulation in Laser Processing - Design

Title

Titel

Lecture: Modeling, Model Reduction and Simulation in Laser Processing - Design Vorlesung: Modeling, Model Reduction and Simulation in Laser Processing - Design

Sub-title

Untertitel

L: DLP

V: DLP Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Modeling, Model Reduction and Simulation in Laser Processing - Design

Studien-/Prüfungsleistung: Übung Modeling, Model Reduction and Simulation in Laser Processing - Design

Title

Titel

Exercise: Modeling, Model Reduction and Simulation in Laser Processing - Design Übung: Modeling, Model Reduction and Simulation in Laser Processing - Design

Sub-title

Untertitel

E: DLP

Ü: DLP Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

28

Module: Failure of Structures and Structural Elements

Module

Modulbezeichnung

Failure of Structures and Structural Elements

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

FSSE

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Hachemi, Abdelkader

Lecturer

Dozenten

Hachemi, Abdelkader; Weichert, Dieter

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 45h, Self-study 105h

Gesamt 150h, Kontaktzeit 45h, Selbststudium 105h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Failure of Structures and Structural Elements

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) Knowledge about the physical effects leading to failure of structures and

mechanical systems:

excessive elastic deformations,

buckling of load carrying elements,

permanent plastic deformations,

material damage,

initiation and propagation of cracks.

b) Predictions by means of limit and shakedown theories, failure of structures and

mechanical systems under monotonic and cyclic loads and determination of

corresponding load-carrying capacities.

c) Modelling the phenomenon of fracture and determination of critical loads for crack

propagation

29

d) Knowledge about the most important types of failure and description of their

occurrence with respect to functional requirements of mechanical elements.

Abilities / Skills:

e) Determination of limit loads for structures

f) Modelling the phenomenon of fracture and determine critical loads for crack

propagation

g) Transfer theoretical and mathematical models to actual engineering problems and

implementation into design codes

h) State-of-the-art numerical methods for the use of failure criteria in applied

mechanical engineering.

Exercises are integrated in the lecture so that students work individually or in groups on

practical examples.

Content

Inhalt

Failure of Structures and Structural Elements

Recall of fundamentals in continuum mechanics

Notion of “failure” in mechanical engineering.

Geometry and deformation: strain tensors

Mechanical and thermal loading: stress tensors

Conservation laws

Material behaviour: elasticity, elasto-plasticity, hardening, damage

Anisotropy

Yield-conditions and flow rules in plasticity and visco-plasticity

Direct methods: Lower and upper bound theorems of limit analysis

Examples of application of the theorems of limit analysis

Direct methods: Lower and upper bound theorems of shakedown analysis

Examples of application of shakedown theory

Notion and concepts of fracture mechanics

Linear elastic fracture mechanics

Elastic-plastic fracture mechanics

J-integral and other path-independent integrals

Kinematic criteria

Examples of application of fracture mechanics

Use of finite element methods

Software features, examples

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Failure of Structures and Structural Elements

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Failure of Structures and Structural Elements

MSCAME 0 105 30 75

Exercise (Übung): Failure of Structures and Structural Elements

MSCAME 0 45 15 30

30

Teaching Unit / Examinations: Examination Failure of Structures and Structural Elements Studien-/Prüfungsleistung: Prüfung Failure of Structures and Structural Elements Title

Titel

Examination: Failure of Structures and Structural Elements

Prüfung: Failure of Structures and Structural Elements Sub-title

Untertitel

Exa: FSSE

P: FSSE Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Failure of Structures and Structural Elements Studien-/Prüfungsleistung: Vorlesung Failure of Structures and Structural Elements

Title

Titel

Lecture: Failure of Structures and Structural Elements Vorlesung: Failure of Structures and Structural Elements

Sub-title

Untertitel

L: FSSE

V: FSSE Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Failure of Structures and Structural Elements Studien-/Prüfungsleistung: Übung Failure of Structures and Structural Elements

Title

Titel

Exercise: Failure of Structures and Structural Elements Übung: Failure of Structures and Structural Elements

Sub-title

Untertitel

L: FSSE

V: FSSE Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

31

Module: Advanced Finite Element Methods

Module

Modulbezeichnung

Advanced Finite Element Methods

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

AFEM

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Advanced Finite Element Methods

The aim of the course is to impart the elementary knowledge about finite element methods

and their application to solid and structural mechanics.

After successfully completing this course, the student will have acquired the following

learning outcomes.

The students will

Knowledge / Understanding:

a) understand why the FE-Method and the other numerical methods behind are

important for engineering practice

b) understand the concept of FEM

c) be able to find solutions for truss systems under various boundary conditions

d) understand the concepts of variational calculus

e) be able to find solutions for mechanical problems by using weighted residual

methods

f) be able to use finite element method for plane strain, plane stress and torsion

problems

32

Content

Inhalt

Advanced Finite Element Methods

General introduction, concept of the finite element method

Symbolic assembly procedure

Assembly procedure

Global and local coordinates

Stiffness matrix for trusses / coordinate

transformation

Variational techniques

Solution of truss structures.

Variational techniques, Euler-Lagrange equation

Natural and forced boundary conditions

Multiple integrals, Gauss-Theorem

Variations of elementary algebraic functions

Variational principle for linear self-adjoint diff. operators

Solution of some classical variational problems

Principle of virtual work as a weak form of the momentum balance, variational

principles of mechanics (Lagrange, Hu-Washizu)

Differential equation of a linear elastic bar, analytic solution for various load cases

Rayleigh-Ritz method, weighted residual approximations, Point or subdomain

collocation

Galerkin method, least-squares method, linear elastic bar approximated by a

continuous shape function

Displacement formulation

Three-field (mixed) formulation

Examples to weighted residual approximations

Requirements to shape functions

Continuous shape functions, piecewise defined shape functions, approximation by

piecewise defined shape functions.

Two-dimensional problems of elasticity, triangular element, plain strain and plane

stress problems

Torsion of a prismatic bar

Examples for plain strain and plane stress problems discretized by linear triangular

elements

Axisymmetric stress analysis, 3-D stress analysis

Revision course

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Advanced Finite Element Methods

MSCAME 5 0 0 0 120

Lecturue (Vorlesung): Advanced Finite Element Methods

MSCAME 0 75 30 45

33

Exercise (Übung): Finite Advanced Finite Element Methods

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Advanced Finite Element Methods Studien-/Prüfungsleistung: Prüfung Advanced Finite Element Methods Title

Titel

Examination Advanced Finite Element Methods

Prüfung Advanced Finite Element Methods Sub-title

Untertitel

Exa: AFEM

P: AFEM Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Advanced Finite Element Methods Studien-/Prüfungsleistung: Vorlesung Advanced Finite Element Methods

Title

Titel

Lecture: Advanced Finite Element Methods

Vorlesung: Advanced Finite Element Methods Sub-title

Untertitel

L: AFEM

V: AFEM Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Advanced Finite Element Methods Studien-/Prüfungsleistung: Übung Advanced Finite Element Methods

Title

Titel

Exercise: Advanced Finite Element Methods Übung: Advanced Finite Element Methods

Sub-title

Untertitel

E: AFEM

Ü: AFEM Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

34

Module: Finite Element Methods in Lightweight Design

Module

Modulbezeichnung

Finite Element Methods in Lightweight Design

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

FEMLWD

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Reimerdes, Hans-Günther

Lecturer

Dozenten

Reimerdes, Hans-Günther

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 45h, Self-study 105h

Gesamt 150 h, Kontaktzeit 45 h, Selbststudium 105 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Finite Element Methods in Lightweight Design

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge and Understanding:

Students

a) know the mechanical and mathematical relations used in the Finite Element

Method.

b) understand the structural problems to be solved and the underlying fundamentals

of the solution methods that are provided by commercial codes.

Abilities / Skills:

Students

a) are able to apply the Finite Element Method properly in order to achieve reliable

numerical results for linear structural problems.

35

b) are able to analyse the Finite Element models according to the desired field of

application, taking the assumptions of solution methods into account.

Competencies:

Students

a) have learned to work with commercial codes and to find those solutions from the

software handbook that are suited best for the investigated structural problem.

b) are able to interpret the achieved numerical results and evaluate their correctness.

Content

Inhalt

Finite Element Methods in Lightweight Design

Recapitulation of the principles of the Finite Elements Method

Limitation of elements

Selection criteria

Pre/Postprocessing

meshing, incompatible meshes

Isoparametric element family

Numerical integration schemes

Numerical Integrating schemes

Element locking

Reduced integration to avoid locking

Dynamic problems

Introduction and fundamental equations

Finite element formulation

Eigenvalue problems

Integration in the time domain (implicit and explicit)

Modal superposition

Condensation techniques

substructure

static condensation

dynamic condensation

Introduction to nonlinear analysis

Geometric nonlinearities

Material nonlinarities

Iteration procedures

Stability behaviour of structures

Fundamental equations

Linear stability analysis

Introduction to contact problems

Finite Elements procedures

Introduction to crash and impact

Integration schemes

Hourglass oscillation

Energy balance

Element deletion techniques

Strain-rate dependent material behavior

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Finite Element Methods in Lightweight Design

MSCAME 5 0 0 0 120

36

Lecture (Vorlesung): Finite Element Methods in Lightweight Design

MSCAME 0 105 30 75

Exercise (Übung): Finite Element Methods in Lightweight Design

MSCAME 0 45 15 30

Teaching Unit / Examinations: Examination Finite Element Methods in Lightweight Design Studien-/Prüfungsleistung: Prüfung Finite Element Methods in Lightweight Design Title

Titel

Examination Finite Element Methods in Lightweight Design

Prüfung Finite Element Methods in Lightweight Design Sub-title

Untertitel

Exa: FEMLWD

P: FEMLWD Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Finite Element Methods in Lightweight Design Studien-/Prüfungsleistung: Vorlesung Finite Element Methods in Lightweight Design

Title

Titel

Lecture: Finite Element Methods in Lightweight Design Vorlesung: Finite Element Methods in Lightweight Design

Sub-title

Untertitel

L: FEMLWD

V: FEMLWD Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Finite Element Methods in Lightweight Design Studien-/Prüfungsleistung: Übung Finite Element Methods in Lightweight Design

Title

Titel

Exercise: Finite Element Methods in Lightweight Design Übung: Finite Element Methods in Lightweight Design

Sub-title

Untertitel

E: FEMLWD

Ü: FEMLWD Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

37

Module: Fundamentals of Lightweight Design

Module

Modulbezeichnung

Fundamentals of Lightweight Design

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

FLWD

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Reimerdes, Hans-Günther

Lecturer

Dozenten

Reimerdes, Hans-Günther

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 120h, Lecture Hours 45h, Self-study 75h

Gesamt 120 h, Kontaktzeit 45 h, Selbststudium 75 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

4

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Fundamentals of Lightweight Design

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge and Understanding:

Students

a) know methods to pre-design lightweight structures for various loading and

boundary conditions.

b) understand the conception of structure idealisation and analytical calculation tools

in lightweight structural design.

Abilities / Skills:

Students

a) are able to calculate stresses and deformations ofthin-walled lightweight structures

and to design them properly, taking into account the appropriate idealisation as

well as the assumptions of the theory.

b) are able to analyse lightweight structures according to their desired field of

application.

38

Competencies:

Students

a) have learned to solve structural problems by application of engineering

approaches.

b) are able to assess the validity of results of numerical simulation software.

c) are able to evaluate existing structural concepts, develop ideas for improvements

and communicate their results.

Content

Inhalt

Fundamentals of Lightweight Design

Introduction to Lightweight Design

Motivation, definitions, concepts

Special aspects of light structures

Materials used in Lightweight Design

Equations of continuum mechanics

Idealization of structures

Equilibrium conditions

o Statically determined support of 2-dim and 3-dim structures

o Determination of external and internal forces

2-dim and 3-dim truss type structures

o General equations

o Design concepts

Beams loaded in bending and shear

o General equations

Differential equation of shear rigid beams

Matrix formulations: transfer matrix, stiffness matrix

Shear flexible beam

Shear deformation

Shear flow in thin walled beams

o Open cross section

o Closed cross section

o Shear center

Plastic bending

o Combined normal and bending load

Torsion of beams (St. Venants Torsion)

o Solid sections

o Closed thin walled sections

o Open thin walled sections

o Bending Torsion

Introduction to shear web theory

Open and closed section beams

2-dim shear web structures

rectangular, parallelogram, trapezoidal and general 4node webs

3-dim shear web structures

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Fundamentals of Lightweight Design

MSCAME 4 0 0 0 120

39

Lecture (Vorlesung): Fundamentals of Lightweight Design

MSCAME 0 75 30 45

Exercise (Übung): Fundamentals of Lightweight Design

MSCAME 0 45 15 30

Teaching Unit / Examinations: Examination Fundamentals of Lightweight Design Studien-/Prüfungsleistung: Prüfung Fundamentals of Lightweight Design Title

Titel

Examination Fundamentals of Lightweight Design

Prüfung Fundamentals of Lightweight Design Sub-title

Untertitel

Exa: FLWD

P: FLWD Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Prüfung Fundamentals of Lightweight Design Studien-/Prüfungsleistung: Vorlesung Prüfung Fundamentals of Lightweight Design

Title

Titel

Lecture: Prüfung Fundamentals of Lightweight Design Vorlesung: Prüfung Fundamentals of Lightweight Design

Sub-title

Untertitel

L: FLWD

V: FLWD Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Prüfung Fundamentals of Lightweight Design Studien-/Prüfungsleistung: Übung Prüfung Fundamentals of Lightweight Design

Title

Titel

Exercise: Prüfung Fundamentals of Lightweight Design Übung: Prüfung Fundamentals of Lightweight Design

Sub-title

Untertitel

E: FLWD

Ü: FLWD Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

40

Module: German Language Course

Module

Modulbezeichnung

German Language Course

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

GLC

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Lecturer

Dozenten

Language

Sprache

German

Deutsch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 180h, Lecture Hours 60h, Self-study 120h

Gesamt 180 h, Kontaktzeit 60 h, Selbststudium 120 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

6

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

- none -

Learning Objectives

Angestrebte Lernergebnisse

German Language Course

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) Knowledge on German Culture and Cultural Studies;

b) Qualification to accomplish everyday communication within university surroundings

(dormitory, cafeteria etc.)

c) Understanding cultural situations at German universities

Abilities / Skills:

a) Prerequisites for culturally adequate application documents for internships (CV,

letter of motivation);

41

Content

Inhalt

German Language Course

Getting to know someone

Introducing oneself

City explorations

Orientation in the city

Techniques: learning and remembering words

Buying groceries

Communication on the phone

Techniques: learning grammar systematically

Calendar, festivities

Holidays

Learning and forgetting

Learning psychology

German newspapers

Reading habits

When in Rome, do as the Romans do

Intercultural experience

Media

Geographic German studies

Inventions and progress

Between cultures

Environmental protection/problems

Project Europe

Job market Germany

Applications

CVs

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): German Language Course

MSCAME 6 0 0 0 200

Lecture (Vorlesung): German Language Course

MSCAME 0 90 30 60

Exercise (Übung): German Language Course

MSCAME 0 90 30 60

Teaching Unit / Examinations: Examination German Language Course Studien-/Prüfungsleistung: Prüfung German Language Course Title

Titel

Examination German Language Course

Prüfung German Language Course Sub-title

Untertitel

Exa: GLC

P: GLC Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

42

Teaching Unit / Examinations: Lecture German Language Course Studien-/Prüfungsleistung: Vorlesung German Language Course

Title

Titel

Lecture: German Language Course Vorlesung: German Language Course

Sub-title

Untertitel

L: GLC

V: GLC Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise German Language Course Studien-/Prüfungsleistung: Übung German Language Course

Title

Titel

Exercise: German Language Course Übung: German Language Course

Sub-title

Untertitel

E: GLC

Ü: GLC Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

43

Module: Industrial Engineering and Ergonomics

Module

Modulbezeichnung Industrial Engineering and Ergonomics

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel IE

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 1

Person in Charge

Modulverantwortliche Schlick, Christopher

Lecturer

Dozenten Schlick, Christopher

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 60h, Self-study 90h Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h

Lecture hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Industrial Engineering and Ergonomics

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) know and understand the essentials of work science covering technical, organizational and personnel aspects.

Abilities / Skills:

a) able to interpret respective work situations, predict consequences and future work system states

Competencies:

a) able to independently scrutinize and discuss the proposed methods and theories and also judge their applicability.

b) by using the methods students are able to analyze work systems according to various practical problems.

c) able to apply the theoretical models, methodologies and practical techniques to problem solution and work system design in modern enterprises

44

Content

Inhalt

Industrial Engineering and Ergonomics

Work as a Scientific Field of Research

• Fundamentals of industrial engineering

• Trends and challenges in the field of industrial engineering

Industrial Organization and Work Organization

• Classification of industrial organization and work organization in modern industries

• Modelling options of structure organization and process organization

• Principles of function and object oriented order processing

• Traditional industrial organizations and trends

• Methods of activity planning and scheduling

Work Organization within Direct and Indirect Departments

• The phenomenon ''organization''

• Charateristics of direct and indirect departments

• Types of work organization in direct and indirect departments

Work and Time Study I

• The operational purpose of time data

• REFA types of activities and REFA types of times

• Methods for the determination of time data

• The REFA Stop Watch Time Study method and the work sampling method

Work and Time Study II

• The principles of the sequence-analytic time modelling (predetermined motion-time

systems)

• Application of MTM (,,Methods Time Measurement'')

Ergonomic Design and Usability Engineering

• Design criteria and requirements of ergonomic design

• Anthropometric design

• Methods for the analysis of movement-, sight- and reaching-areas

• Computer aided design and evaluation aids

Computer and Office Work

• Conventional and modern components of a computer workstation

• Overview of display technologies

• Aspects of work psychology

• Risk assessment for computer work stations

• Office concepts

Ergonomic Work Place Design in Production Areas

• Different types of physical and muscular work

• Factors influencing spine damage

• Methods for assessing the danger of spine damage at work places

• Physiological principles of work place design

Occupational Risk Prevention (ORP)

• Effects of occupational safety for the company and national economy

• Terms of safety science

• Technical, organizational and personal measures of occupational risk prevention

Work Ecology - Noise and Hazardous Substances

• Physical and psychological measurement categories of sound

• Noise induced hearing damages

• Organizational and personal noise control

45

• Taxonomy and effects of hazardous substances

Work Ecology II - Illumination

• Physical and physiological essentials of illumination

• Effects of lighting on work performance and health

• Measurement of light

• Relevance of illumination for workplace design

Remuneration and Motivation

• Forms of remuneration

• Relationship between remuneration and motivation

• Approaches to job evaluation

Interorganziational Cooperation and Suitable Information

• Technological (IT) Support

• Terms of network technology

• Software tools for the support of coordination, cooperation and communication

• Effects of the technology on enterprises and employees

• Forms of organizations and conditions suitable for the use of network technology

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Industrial Engineering and Ergonomics

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Industrial Engineering and Ergonomics

MSCAME 0 75 30 45 0

Exercise (Übung): Industrial Engineering and Ergonomics

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Examination Industrial Engineering and Ergonomics Studien-/Prüfungsleistung: Prüfung Industrial Engineering and Ergonomics

Title

Titel Examination Industrial Engineering and Ergonomics Prüfung Industrial Engineering and Ergonomics

Sub-title

Untertitel Exa IE P IE

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Industrial Engineering and Ergonomics Studien-/Prüfungsleistung: Vorlesung Industrial Engineering and Ergonomics

Title

Titel Lecture Industrial Engineering and Ergonomics Vorlesung Industrial Engineering and Ergonomics

Sub-title

Untertitel L IE V IE

Semester

Studiensemester 1

46

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Industrial Engineering and Ergonomics Studien-/Prüfungsleistung: Übung Industrial Engineering and Ergonomics

Title

Titel Exercise Industrial Engineering and Ergonomics Übung Industrial Engineering and Ergonomics

Sub-title

Untertitel E IE Ü IE

Semester

Studiensemester 4

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

47

Module: Industrial Internship

Module

Modulbezeichnung

Industrial Internship

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

Industrial Internship

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

4

Person in Charge

Modulverantwortliche

Es sind keine Modulverantwortliche eingetragen worden.

Lecturer

Dozenten

Language

Sprache

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 9 weeks Gesamt 9 Wochen

Lecture hours / Lecture Hours

Kontaktzeit (SWS)

0

ECTS-Credit Points (CP)

Kreditpunkte

9

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

See Guidelines for Practical Work Experience

Siehe Richtlinien für die berufspraktische Tätigkeit

Content

Inhalt

See Guidelines for Practical Work Experience

Siehe Richtlinien für die berufspraktische Tätigkeit Media

Medienform

Literature

Literatur

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Report (Bericht), Colloquium MSCAME 9 0 0 0 0

Teaching Unit / Examinations: Industrial Internship

48

Studien-/Prüfungsleistung: Industrial Internship

Title

Titel

Industrial Internship

Industrial Internship Sub-title

Untertitel

Exa: IndI

P: IndI Semester

Studiensemester

4

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

49

Module: Machine Design Process and Practical Applications of Computer- Aided

Engineering Tools

Module

Modulbezeichnung

Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

MDP & CAET

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Feldhusen, Jörg

Lecturer

Dozenten

Brezing, Alexander; Feldhusen, Jörg

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 210h, Lecture Hours 75h, Self-study 135h

Gesamt 210 h, Kontaktzeit 75 h, Selbststudium 135 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

5

ECTS-Credit Points (CP)

Kreditpunkte

7

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Machine Design Process and Practical Applications of Computer- Aided Engineering

Tools

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

Students

a) know the most common machine elements and applicable design rules, standards

and understand production drawings including dimensions and tolerances.

b) know structured problem solving strategies, esp. the engineering design process

acc. to VDI 2221.

c) know the structure and some examples of the body of design rules

d) know the functionality of parametric 3D CAD software as well as the common

modelling techniques and the workflow to produce part and assembly models and

drawings.

Abilities / Skills:

50

a) Students are able to operate commercial 3D CAD software and apply the common

modelling techniques to produce part and assembly models and drawings.

Competencies:

Students

a) are able to analyse and design mechanical systems using common machine

elements through the ability to read and understand as well as draft assembly

drawings according to ISO drawing standards and define the production

specifications on machined parts through the ability of drafting production drawings

according to ISO drawing standards.

b) are able to identify possible restrictions on a design task and to develop and select

applicable concept solutions with a systematic approach.

c) are able to assess the applicability of design rules depending on effective design

restrictions. Rules of embodiment design, design principles and guidelines are

applied to draw up technical drafts.

Content

Inhalt

Machine Design Process and Practical Applications of Computer- Aided Engineering

Tools

Topic: Introduction

Topic: Drawing Standards I

Projection drawing and axonometric views

Elements of technical drawings

Dimensioning

Topic: Drawing Standards II

Section views

Broken views

Topic: Joins and Connections

Connection types

Bolted connections

Shaft and hub connections

Topic: Geometrical Irregularities and Tolerances

Dimension tolerances

Form and position tolerances

Technical surfaces

Topic: Bearing of Shafts

Bearing principles

Bearing arrangements

Seals

Topic: Power Transmission

Definitions and principles

Technical representation

Examples

Topic: Engineering Design Process, Requirements List

Introduction to design methodology

General process of engineering design

Requirements list

Topic: Conceptual Design I

Function structures and principle solutions

Design catalogues

Heuristic and analogy methods

Topic: Conceptual Design II

51

Systematic variation, classification schemes

Overall solutions: morphological matrix

Topic: Design Rules I - Essential Rules

Introduction to design rules

Essential rules ´simple´ and ´clear´

Essential rules ´safe´

Topic: Design Rules II - Principles

Principles of fault-free design, force transmission, stability and bi-stability, self-help,

division of tasks

Topic: Design Rules III - Guidelines / DFX

Selected examples: design for assembly and production...

Topic: Parametric 3D CAD

Part Modelling

Assembly modelling

Drafting

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

MSCAME 7 0 0 0 150

Lecture (Vorlesung): Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

MSCAME 0 90 30 60

Exercise (Übung): Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

MSCAME 0 90 30 60

Practical Session (Praktikum) Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

MSCAME 0 30 15 15

Teaching Unit / Examinations: Examination Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Studien-/Prüfungsleistung: Prüfung Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Title

Titel

Examination Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Prüfung Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Sub-title

Untertitel

Exa: MDP & CAET E

P: MDP & CAET Semester

Studiensemester

3

52

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Studien-/Prüfungsleistung: Vorlesung Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Title

Titel

Lecture: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Vorlesung: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Sub-title

Untertitel

L: MDP & CAET

V: MDP & CAET Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Studien-/Prüfungsleistung: Übung Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Title

Titel

Exercise: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Übung: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Sub-title

Untertitel

E: MDP & CAET

Ü: MDP & CAET Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Practical Session Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Studien-/Prüfungsleistung: Praktikum Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Title

Titel

Practical Session: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools Praktikum: Machine Design Process and Practical Applications of Computer- Aided Engineering Tools

Sub-title

Untertitel

P: MDP & CAET

P: MDP & CAET Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

53

Module: Machine Tools

Module

Modulbezeichnung

Machine Tool

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

MT

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Lecturer

Dozenten

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Machine Tools

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) know the most important types of production machinery, and understand their properties and their most relevant parameters as well as the general context

Abilities / Skills:

a) able to determine and calculate the corresponding mechanical and electrical properties;

b) apply this knowledge and able to transfer calculation procedures to related topics

Content

Inhalt

Machine Tools

• L1: An introduction to the machine tool design and machine tools for forming

• E1: Metal-forming machines

54

• L2: Metal-cutting machines with geometrically defined and undefined cutting edges

• E2: Tour around the shop floor of WZL and IPT

• L3: Design of mounts and mount components with respect to the static behavior

• E3: Design of structural components and software tools for the design of machine tools

• L4: Finite-Element-Analysis, Multi- Body- Simulation, Machine Foundations

• E4: Finite-Element-Analysis

• L5: Hydrodynamic, hydrostatic and aerostatic bearings and guidance systems

• E5: Calculation of hydrostatic sildeways

• L6: Linear guidance systems, ball screws, bearings, spindle bearing systems, seals and

covers

• E6: Guideways, Bearings, Spindle Bearing Systems, Ball Screws, Seals

• L7: Measuring instruments, geometric and kinematic behavior of machine tools

• E7: Geometrical, static and thermal characteristics of machine tools

• L8: Metrological investigation of the static and dynamic behavior of machine tools,acoustic

behavior of machine tools

• E8: Principles of Noise Measurement and Rating

• L9: Metrological analysis of the dynamic behavior of machine tools

• E9: Metrological analysis of the dynamic behavior of machine tools

• L10: Drives and inverters

• E10: Drives

• L11: Structure of Feed Drives, Mechanical Components of Feed Drives, Position

Measuring Systems and Control Systems

• E11: Layout of the mechanical components of feed drives

• L12: Programmable logic controllers, numerical controls, NC programming

• E12: Manual programming of machine tools

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Machine Tool

MSCAME 5 0 0 0 120

Lecturue (Vorlesung): Machine Tool

MSCAME 0 75 30 45

Exercise (Übung): Machine Tool

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Machine Tools Studien-/Prüfungsleistung: Prüfung Machine Tools Title

Titel

Examination Machine Tools

Prüfung Machine Tools Sub-title

Untertitel

Exa: MT

P: MT Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

55

Teaching Unit / Examinations: Lecture Machine Tools Studien-/Prüfungsleistung: Vorlesung Machine Tools

Title

Titel

Lecture: Machine Tools Vorlesung: Machine Tools

Sub-title

Untertitel

L: MT

V: MT Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Machine Tools Studien-/Prüfungsleistung: Übung Machine Tools

Title

Titel

Exercise: Machine Tools Übung: Machine Tools

Sub-title

Untertitel

E: MT

Ü: MT Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

56

Module: Manufacturing Technology I

Module

Modulbezeichnung Manufacturing Technology I

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MT I

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 1

Person in Charge

Modulverantwortliche Klocke, Fritz

Lecturer

Dozenten Klocke, Fritz

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 60h, Self-study 90h Gesamt 150h, Kontaktzeit 60h, Selbststudium 90h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Manufacturing Technology I

After successfully completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

Students

a) get an overview on manufacturing technologies. They know and understand the principles of cutting, forming, material removal and additive manufacturing.

b) know and understand process parameters, cutting and forming criteria, tool and workpiece characteristics.

Abilities / Skills:

Students

a) apply this knowledge and are able to choose the right manufacturing processes with regard to geometrical and functional workpiece properties.

b) are able to estimate the effects of process parameter variations on forces, tool life, wear mechanisms and rim zone characteristics.

Competences:

57

Students

a) critically analyse company decisions with technological background and communicate the assessments to non-specialist audiences.

optimize manufacturing processes and assess possible consequences on part functionality.

Content

Inhalt

Manufacturing Technology I

• Introduction to manufacturing technology

• Measuring and testing in manufacturing technology

• Principles of machining with geometrically defined cutting edges

• Cutting criteria

• Cutting materials, tools and lubricants

• Applications of processes with defined cutting edge

• Principles of cutting with undefined cutting edges

• Grinding tools and grinding wheel preparation

• Applications of processes with undefined cutting edge

• Material removal manufacturing processes (EDM, ECM)

• Laser and high pressure water jet machining

• Additive manufacturing (RP, RT)

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Manufacturing Technology I

MSCAME 5 0 0 0 90

Lecturue (Vorlesung): Manufacturing Technology I

MSCAME 0 75 30 45 0

Exercise (Übung): Manufacturing Technology I

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Examination Manufacturing Technology I Studien-/Prüfungsleistung: Prüfung Manufacturing Technology I

Title

Titel Examination Manufacturing Technology I Prüfung Manufacturing Technology I

Sub-title

Untertitel Exa MT I P MT I

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Manufacturing Technology I Studien-/Prüfungsleistung: Vorlesung Manufacturing Technology I

Title

Titel Lecture Manufacturing Technology I Vorlesung Manufacturing Technology I

Sub-title

Untertitel L MT I V MT I

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

58

Teaching Unit / Examinations: Exercise Manufacturing Technology I Studien-/Prüfungsleistung: Übung Manufacturing Technology I

Title

Titel Exercise Manufacturing Technology I Übung Manufacturing Technology I

Sub-title

Untertitel E MT I Ü MT I

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

59

Module: Manufacturing Technology II

Module

Modulbezeichnung Manufacturing Technology II

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MT II

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 2

Person in Charge

Modulverantwortliche Klocke, Fritz

Lecturer

Dozenten Klocke, Fritz

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 60h, Self-study 90h Gesamt 150h, Kontaktzeit 60h, Selbststudium 90h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-None-

Learning Objectives

Angestrebte Lernergebnisse

Manufacturing Technology II

After successfully completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

Students

c) get a deeper understanding in technologically comprehensive topics like material science and tribology.

d) know and understand the mechanisms to improve the performance of powder metallurgical, cutting, forming and hybrid processes.

Abilities / Skills:

Students

c) apply this knowledge and are able to assess manufacturing processes with regard to near surface damages and functional surfaces.

d) are able to evaluate processes by calculation of key figures for productivity, profitability and reliability.

Competences:

Students

60

b) critically analyze company decisions with technological background and communicate the assessments to non-specialist audiences.

are familiar with the latest trends in seminal branches like optical components, mobility and toolmaking.

Content

Inhalt

Manufacturing Technology II

• Metal-based Materials

• Tool Materials

• Powder Metallurgy

• Tribology

• Near Surface Damages and Functional Surfaces

• High-Speed Machining

• Bulk and Sheet Metal Forming

• Computer-aided Technology Planning

• Hybrid Manufacturing Methods

• Productivity and Profitability

• Manufacturing of Optical Components

• Manufacturing of Components for Mobility

• Manufacturing Methods for Toolmaking

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Manufacturing Technology II

MSCAME 5 0 0 0 90

Lecture (Vorlesung): Manufacturing Technology II

MSCAME 0 75 30 45 0

Exercise (Übung): Manufacturing Technology II

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Examination Manufacturing Technology II Studien-/Prüfungsleistung: Prüfung Manufacturing Technology II

Title

Titel Examination Manufacturing Technology II Prüfung Manufacturing Technology II

Sub-title

Untertitel Exa MT II P MT II

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Manufacturing Technology II Studien-/Prüfungsleistung: Vorlesung Manufacturing Technology II

Title

Titel Lecture Manufacturing Technology II Vorlesung Manufacturing Technology II

Sub-title

Untertitel V MT II V MT II

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

61

Teaching Unit / Examinations: Exercise Manufacturing Technology II Studien-/Prüfungsleistung: Übung Manufacturing Technology II

Title

Titel Exercise Manufacturing Technology II Übung Manufacturing Technology II

Sub-title

Untertitel E MT II Ü MT II

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester) Semestervariable Wahlleistung

62

Module: Master Thesis

Module

Modulbezeichnung

Master Thesis

Master Thesis

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MaThe

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 4

Person in Charge

Modulverantwortliche RWTH Aachen

Lecturer

Dozenten RWTH Aachen

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Supervision and assistance by the relevant professor

Betreuung durch den entsprechenden Professor

Workload

Arbeitsaufwand

4 Month

4 Monate

Lecture hours / Lecture Hours

Kontaktzeit (SWS)

ECTS-Credit Points (CP)

Kreditpunkte 20

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

The topic of the Master's thesis cannot be assigned until 92 CPs have been achieved. Reasonable exceptions are governed by the Board of Examiners upon request by the candidate.

Learning Objectives

Angestrebte Lernergebnisse

Master Thesis

The students command general techniques for scientific work and have learnt in the modules

how to independently approach and structure a topic applying scientific methods within a

defined timeframe.

The students are able to demonstrate problem solving competencies; following completion of

the thesis they are able to independently analyse problems using scientific methods and

prepare structured solutions to critically address the problems and develop new solution

methods. The students have the ability to present and communicate the scientific content in

the form of a presentation with subsequent discussion

Content

Inhalt

Master Thesis

The Master thesis is a written work which demonstrates that the students are capable of

independently addressing a problem within a defined timeframe using scientific methods.

Solving and development of a specific scientific research question or practice relevant

problem using desk-top research methods (secondary research). The acquisition of

63

information from existing sources of data which was originally generated for other purposes.

These data can be researched for the preparation of the Master thesis and suitably applied

and reported to solve the problem being addressed.

Media

Medienform -

Literature

Literatur According to the relevant research questions of the Master´s Thesis

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Master Thesis

(Masterarbeit) MSCAME

20

0 0 0 0

Master´s Thesis defense

colloquium

(Masterarbeitskolloquium) MSCAME 0 0 0 30

Teaching Unit / Examinations: Examination Master Thesis

Studien-/Prüfungsleistung: Prüfung Masterarbeit

Title

Titel

Master Thesis

Masterarbeit

Sub-title

Untertitel

Exa MaThe

P MaThe

Semester

Studiensemester 4

Teaching Unit / Examinations: Master´s Thesis Defense Colloquium Studien-/Prüfungsleistung: Masterarbeitskolloquium

Title

Titel

Master´s Thesis Defense Colloquium

Masterarbeitskolloquium

Sub-title

Untertitel

MaThe DC

MaThe DC

Semester

Studiensemester 4

64

Module: Mechanics of Engineering Materials

Module

Modulbezeichnung Mechanics of Engineering Materials

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MEM

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 2

Person in Charge

Modulverantwortliche Dr.-Ing. Jaan-Willem Simon

Lecturer

Dozenten Dr.-Ing. Jaan-Willem Simon

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 45h, Self-study 105h Gesamt 150 h, Kontaktzeit 45h, Selbststudium 105h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 3

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Mechanics of Engineering Materials

After successfully completing this course, the students will have acquired the following

learning outcomes:

Knowledge / Understanding

Students

a) know the different phenomena which can be observed in experiments;

b) know the different material models which have been proposed to describe these phenomena;

c) understand the basic concept of how to achieve an appropriate material model.

Abilities / Skills

Students

a) analyse analytical and numerical results with respect to the quality of the adopted model;

b) transfer theoreticaö models to actual engineering problems from the fields of mechanical, civil, and aeronautical engineering;

c) predict the material response to a given loading scenario.

65

Abilities / Skills

Students

a) critically assess the applicability and correctness of material models.

Content

Inhalt

Mechanics of Engineering Materials

The course aims at the understanding of the behaviour of engineering materials such as metals, plastics, and carbon fiber-reinforced composites. The major objective is the development and discussion of appropriate material models for elastic and inelastic materials. Further, the numerical treatment of these models will be addressed in the context of the finite element method. Finally, the according parameters will be identified by comparison with experiments.

In particular, the following aspects will be addressed:

Elasticity at small and finite strains

Thermo-elasticity

Anisotropic elasticity for composites

Viscoelasticity – Creep an relaxation

Plasticity and hardening

Damage and crack initiation

Parameter identification

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Mechanics of Engineering Materials

MSCAME 5 0 0 0 Oral: 30 Written: 90

Lecture (Vorlesung): Mechanics of Engineering Materials

MSCAME 0 75 30 45 0

Exercise (Übung): Mechanics of Engineering Materials

MSCAME 0 75 15 60 0

Teaching Unit / Examinations: Examination Mechanics of Engineering Materials Studien-/Prüfungsleistung: Prüfung Mechanics of Engineering Materials

Title

Titel

Examination Mechanics of Engineering Materials

Prüfung Mechanics of Engineering Materials

Sub-title

Untertitel

Exa: MEM

P: MEM

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Mechanics of Engineering Materials Studien-/Prüfungsleistung: Vorlesung Mechanics of Engineering Materials

66

Title

Titel

Lecture Mechanics of Engineering Materials

Vorlesung Mechanics of Engineering Materials

Sub-title

Untertitel

L: MEM

V: MEM

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Mechanics of Engineering Materials Studien-/Prüfungsleistung: Übung Mechanics of Engineering Materials

Title

Titel

Exercise Mechanics of Engineering Materials

Übung Mechanics of Engineering Materials

Sub-title

Untertitel

E: MEM

Ü: MEM

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

67

Module: Mechatronics and Control Techniques for Production Plants

Module

Modulbezeichnung Mechatronics and Control Techniques for Production Plants

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MCP

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 1

Person in Charge

Modulverantwortliche Brecher, Christian

Lecturer

Dozenten Brecher, Christian

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 60h, Self-study 90h Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Recommended: Machine Tools

Learning Objectives

Angestrebte Lernergebnisse

Mechatronics and Control Techniques for Production Plants

Students get familiar with the structure, the design and the engineering process of

mechatronic systems.

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

d) understand the characteristics of the behavior and control of feed axes in machine tools;

e) know different types of sensors and their application within machine tools

Abilities / Skills:

b) apply this knowledge to create control programs in different programming tools

c) get to know the essential features and applications of logical, numerical and motion controls of machines

Content

68

Inhalt Mechatronics and Control Techniques for Production Plants

Introduction to Mechatronics and control for production

- Overview of mechatronic systems

- Construction of feed drives

Information processing in mechatronic systems

- Theory and examples of embedded systems

- Programmable logic circuits

Measurement systems and sensors

- Position and angle measuring systems

- Acceleration and vibration measurement

Mechanical control

- Single and multi-spindle turning machines

- Further developments

Gripping technology

- Gripping principles

- Sensor technology and applications

Position control of feed drives

- Control concept of a machine axis

- Accuracy and synchronous control of multi-axis

Numerical Control 1: structure, programming, CAM

- Construction of NC controls

- NC programming process

Numerical Control 2: Interpolation

- Kinematic transformations and compensations

- Interpolation

Industrial robots and handling systems, robot control

- Structure and kinematic transformations

- RC programming

Programmable Logic Control (PLC) and motion control (MC)

- Fundaments of information Processing

- Programmable Controllers

Signal processing, process and condition monitoring

- Tasks of process and condition monitoring

- Use of sensors and signal processing

Mechatronic Engineering, Simulation environments for virtual commissioning

- Essentials of modeling of mechatronic systems

- Behavior modeling and data management

- Introduction: complexity of software and systems

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Mechatronics and Control

MSCAME 5 0 0 0 120

69

Techniques for Production Plants

Lecture (Vorlesung): Mechatronics and Control Techniques for Production Plants

MSCAME 0 75 30 45 0

Exercise (Übung): Mechatronics and Control Techniques for Production Plants

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Examination Mechatronics and Control Techniques for Production Plants Studien-/Prüfungsleistung: Prüfung Mechatronics and Control Techniques for Production Plants Title

Titel

Examination Mechatronics and Control Techniques for Production Plants

Prüfung Mechatronics and Control Techniques for Production Plants

Sub-title

Untertitel

Exa: MCP

P: MCP

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Mechatronics and Control Techniques for Production Plants Studien-/Prüfungsleistung: Vorlesung Mechatronics and Control Techniques for Production Plants

Title

Titel

Lecture Mechatronics and Control Techniques for Production Plants

Vorlesung Mechatronics and Control Techniques for Production Plants

Sub-title

Untertitel

L: MCP

V: MCP

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Examination Mechatronics and Control Techniques for Production Plants Studien-/Prüfungsleistung: Prüfung Mechatronics and Control Techniques for Production Plants Title

Titel

Exercise Mechatronics and Control Techniques for Production Plants

Übung Mechatronics and Control Techniques for Production Plants

Sub-title

Untertitel

E: MCP

Ü: MCP

Semester

Studiensemester 1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

70

Module: Micro- and Macrosimulation of Casting Processes

Module

Modulbezeichnung

Micro- and Macrosimulation of Casting Processes

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

MMCP

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Bührig-Polaczek, Andreas

Lecturer

Dozenten

Bührig-Polaczek, Andreas

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 120h, Lecture Hours 45h, Self-study 75h

Gesamt 120 h, Kontaktzeit 45 h, Selbststudium 75 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

4

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Micro- and Macrosimulation of Casting Processes

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) Thermal and thermomechanical simulation of casting processes,

b) Casting processes (investment, chill, high pressure die, gravity, …)

c) Numerical methods for latent heat release during solidification, for radiation

exchange

d) phase field approach to predict microstructure formation

e) how to handle free surface in mold filling

f) the high temperature behavior of materials, mainly the unknown mushy state

Abilities / Skills:

a) to select of an appropriate numerical scheme for the simulation of solidification

processes (thermal, thermomechanical and mould filling analysis)

71

b) to specify the correct boundary conditions for a thermal and/or mechanical

analysis of a casting process, f.ex. choose the appropriate radiation B.C: either

free surface radiation or with view factors

c) to analyse the results (cooling curve, stress-strain evolution) of the macro-

simulation of the considered casting process

d) to set-up a transient nonlinear thermomechanical analysis with mould/metal

interaction

e) to understand the evolution of different microstructures during cooling processes

Competencies:

a) For a specific casting process, identification of the most relevant transport

phenomena to be modelled

b) Modification of a thermal and/or thermo-mechanical analysis model for another

casting process.

c) Basic knowledge about different dendritic growth morphologies occurring during

solidification and modelled via the phase-field approach.

Content

Inhalt

Micro- and Macrosimulation of Casting Processes

General overview

transport phenomena in solidification processes

conservation equations for a solid-liquid mixture

discretization of the transport phenomena

FV and FE methods, hybrid FE-CV method,

upwind schemes

Transient thermal simulation of casting processes

Modelling of phase changes

3-D net radiation method

industrial applications

Process optimization and calibration

definition of an optimization problem: objective function, constraints

application: optimization of the Brigdman investment casting process of turbine

blades

calibration of the mould/cast heat transfer coefficient

Thermomechanical analysis (I)

nonlinear material models (elastoplasticity, viscoplasticity)

finite element discretization

modelling of the coherent mushy zone

Thermomechanical analysis(II)

heat transfer model function of gap or contact

master/slave contact algorithm

industrial applications

Mould filling simulation

Equations and fluid flow properties

surface capturing/tracking methods (e.g. VOF)

industrial applications

Introduction to microsimulation

phenomena of microstructure evolution

thermodynamic calculation of phase diagrams

kinetics of nucleation

cellular automaton versus phase field method

Phase field theory (I)

thermodynamical background

motion driven by mean curvature

Phase field theory (II): thermal dendrites

moving free boundary problem

dendritic growth modes (Ivantsov solution)

coupling to temperature

72

industrial applications

Phase field theory (III)

coupling to solute diffusion

coupling to fluid flow

multicomponent phase field model

Macrosimulation tutorial with CASTS

sand casting of steel lever

Bridgman casting of a cluster of three single-crystal turbine blades

Microsimulation tutorial with MICRESS

eutectic solidification

equiaxed dendritic solidification

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Micro- and Macrosimulation of Casting Processes

MSCAME 4 0 0 0 120

Lecturue (Vorlesung): Micro- and Macrosimulation of Casting Processes

MSCAME 0 75 30 45

Exercise (Übung): Practical Micro- and Macrosimulation of Casting Processes

MSCAME 0 45 15 30

Teaching Unit / Examinations: Examination Micro- and Macrosimulation of Casting Processes Studien-/Prüfungsleistung: Prüfung Micro- and Macrosimulation of Casting Processes Title

Titel

Examination Micro- and Macrosimulation of Casting Processes

Prüfung Micro- and Macrosimulation of Casting Processes Sub-title

Untertitel

Exa: MMCP

P: MMCP Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Micro- and Macrosimulation of Casting Processes Studien-/Prüfungsleistung: Vorlesung Micro- and Macrosimulation of Casting Processes

Title

Titel

Lecture: Micro- and Macrosimulation of Casting Processes Vorlesung: Micro- and Macrosimulation of Casting Processes

Sub-title

Untertitel

L: MMCP

V: MMCP Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Micro- and Macrosimulation of Casting Processes Studien-/Prüfungsleistung: Übung Micro- and Macrosimulation of Casting Processes

73

Title

Titel

Exercise: Micro- and Macrosimulation of Casting Processes Übung: Micro- and Macrosimulation of Casting Processes

Sub-title

Untertitel

E: MMCP

Ü: MMCP Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

74

Module: Mini Thesis

Module

Modulbezeichnung

Mini Thesis

Mini Thesis

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel Mini Thesis

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 3

Person in Charge

Modulverantwortliche RWTH Aachen

Lecturer

Dozenten RWTH Aachen

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Supervision and assistance by the relevant professor

Betreuung durch den entsprechenden Professor

Workload

Arbeitsaufwand

Total 260h

Gesamt 260h

Lecture hours / Lecture Hours

Kontaktzeit (h)

ECTS-Credit Points (CP)

Kreditpunkte 9

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Mini Thesis

Subject-specific competences:

Students will learn to solve a specific problem in the field of mechanical engineering under

time constraints. Students will apply theoretical and methodological knowledge to complete

the project successfully. They will also be able to document their project according to

scientific standards. Students will have gained problem-solving skills and competences in

applying theoretical knowledge to practice.

Non-subject-specific competences:

Project management

Time management.

Content

Inhalt

Mini Thesis

Project management

Time planning

75

Evaluation of results

Media

Medienform -

Literature

Literatur According to the relevant research questions of the Mini Thesis

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Mini Thesis

Mini Thesis MSCAME 9 260 0 0 0

Teaching Unit / Examinations: Examination Master Thesis

Studien-/Prüfungsleistung: Prüfung Masterarbeit

Title

Titel

Mini Thesis

Mini Thesis

Sub-title

Untertitel

Mini Thesis

Mini Thesis

Semester

Studiensemester 3

Curriculare Verankerung Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

76

Module: Modeling, Model Reduction and Simulation in Laser Processing - Lase

Module

Modulbezeichnung

Modeling, Model Reduction and Simulation in Laser Processing - Laser

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

MMRSLP I

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Schulz, Wolfgang

Lecturer

Dozenten

Schulz, Wolfgang

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Modeling, Model Reduction and Simulation in Laser Processing - Laser

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) experimental evidence of Maxwell equations

b) refraction, diffraction and scattering, Fresnel- number Nf, and applications

c) can perform the derivation of SVE-approximation

d) Laser light, can perform the calculation imaging and focussing

e) know at least 3 types of laser systems, temporal and spatial distribution of laser

radiation, Fresnel-number, invariant quantity of light propagation

f) understand the structure of solution for the Helmholtz-equation, diffraction, 5

parameter pairs of optical material equations, transmission, reflection, absorption,

Fresnel Formulae, polarisation of matter and radiation

g) know the main properties of the solution in the asymptotic case of paraxial light

propagation and can explain the relation between optical and material parameters

77

h) know the effect of coupling between atoms and can explain the relation between

band structure and optical properties

i) understand the interactive cooperation of scientists from engineering, physics and

mathematics for application of model based methods for diagnosis in laser

processing

Abilities / Skills:

a) Application of model based methods for solving practical tasks of laser design from

discussion of project examples

Content

Inhalt

Modeling, Model Reduction and Simulation in Laser Processing - Laser

Overview of contents, definition of the 10 learning targets

the contribution of the engineer to the interactive cooperation of scientific disciplines

main features of the theory of cognition (Karl Popper)

Light:

amplitude and phase, Fermat’s principle, laser radiation, Helmholtz equation,

diffraction, Fresnel- number Nf,, reduced model: SVE-approximation

Learning target 1: experimental origin of Maxwell equations, Rayleigh scattering,

Laser Principle

Learning target 2: ABCD-matrix, ABCD-law

Learning target 3:

beam parameter product, optical invariant

Matter:

emission spectra, band structure, reflection, transmission and absorption of light,

Learning target 4: isolator, semiconductor, metal, gas

Learning target 5: Rydberg constant, Planck’s law

Learning target 6: reduced model of the Fresnel Formulae for the limiting case of

small discplacement current, optical parameters

Gaussian Beam:

beam quality, beam guiding and forming

Learning target 7: quality features of light, Plane-, spherical- and Gouy-phase

Quality number K and focussing F-number

Resonator:

frequency filter, axial mode structure

Learning target 8: feedback-axial mode structure, g-parameter, aperture-lateral mode,

Fresnel number Nf, rod and tube design

Active Medium:

entropy, phase transition of 2. Kind, Einstein rate equations

Learning target 9: Gas and Solid-state and Diode Laser

Learning target 10: laser threshold, cooling, pumping

Modulation:

Gain switch µs, Q-Switch ns, Mode locking fs

Learning target 11: phase coupling

concluding discussion of the learning targets

actual research and development of laser processing

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Modeling, Model Reduction and Simulation in Laser Processing - Laser

MSCAME 5 0 0 0 120

78

Modeling, Model Reduction and Simulation in Laser Processing - Laser

MSCAME 0 75 30 45

Modeling, Model Reduction and Simulation in Laser Processing - Laser

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Modeling, Model Reduction and Simulation in Laser Processing - Laser Studien-/Prüfungsleistung: Prüfung Modeling, Model Reduction and Simulation in Laser Processing - Laser Title

Titel

Examination Modeling, Model Reduction and Simulation in Laser Processing - Laser

Prüfung Modeling, Model Reduction and Simulation in Laser Processing - Laser Sub-title

Untertitel

Exa: MMRSLP I

P: MMRSLP I Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Modeling, Model Reduction and Simulation in Laser Processing - Laser Studien-/Prüfungsleistung: Vorlesung Modeling, Model Reduction and Simulation in Laser Processing - Laser

Title

Titel

Lecture: Modeling, Model Reduction and Simulation in Laser Processing - Laser Vorlesung: Modeling, Model Reduction and Simulation in Laser Processing - Laser

Sub-title

Untertitel

L: MMRSLP I

V: MMRSLP I Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Modeling, Model Reduction and Simulation in Laser Processing - Laser Studien-/Prüfungsleistung: Übung Modeling, Model Reduction and Simulation in Laser Processing - Laser

Title

Titel

Exercise: Modeling, Model Reduction and Simulation in Laser Processing - Laser Übung: Modeling, Model Reduction and Simulation in Laser Processing - Laser

Sub-title

Untertitel

E: MMRSLP I

Ü: MMRSLP I Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

79

Module: Modeling, Model Reduction and Simulation in Laser Processing -

Applications

Module

Modulbezeichnung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MMRSLP II

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 3

Person in Charge

Modulverantwortliche Schulz, Wolfgang

Lecturer

Dozenten Schulz, Wolfgang

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective module

Semestervariable Wahlpflichtleistung

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand

Total 150h, Contact hours 60h, Self-study 90h

Gesamt 150h, Kontaktzeit 60h, Selbststudium 90h

Lecture hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Modeling, Model Reduction and Simulation in Laser Processing - Applications

After successfully completing this course, the student will have acquired the following learning

outcomes:

Knowledge / Understanding:

a) Free Boundary Problems and integral methods of solution,

b) non-linear stability analysis using spectral methods,

c) analysis of the structural stability of model equations and

d) 5 parameter pairs of optical material equations, transmission, reflection, absorption,

Fresnel Formulae, polarisation of matter and radiation

Learning target 2: optical parameters

e) Slow surfaces in dynamical Systems: applications

for separation of time scales

Learning target 6: Thermal effect of large and small Peclet-number,

80

f) know and understand the 5 different, dominant phenomena of drilling, welding and cutting

with laser radiation

Learning target 5: quality features

g) know the physical meaning of the terms contained in the Navier-Stokes equations for

mass, momentum, and energy balance

h) know the main properties of the solution in the asymptotic case of thin film flow (boundary

layer) and can explain the relation between dynamical properties of the solution and quality

features of the product as well as productivity of the process for drilling and cutting

i) know the effect of dissipation in distributed dynamical systems (inertial manifold) and know

examples for the application of methods for the reduction of the dimension in dissipative

systems, understand and perform the separation of length and time scales in simple systems

Learning target 7: heating and melting phase of ablation

j) understand the interactive cooperation of scientists from engineering, physics and

mathematics for application of model based methods for diagnosis in laser processing

Leraning target 8: reduced modeling

Abilities / Skills:

a) Application of model based methods for solving practical tasks from discussion of project

examples

Content

Inhalt

Modeling, Model Reduction and Simulation in Laser Processing - Applications

Overview of contents, definition of the 10 learning targets

the contribution of the engineer to the interactive cooperation of scientific disciplines

main features of the theory of cognition (Karl Popper)

recapitulation of the 10 learning targets from Module I: Laser

Learning target 1: at least 10 industrial applications of laser radiation

Learning target 2: reduced model of the Fresnel Formulae for the limiting case of

small displacement current, optical parameters

technical task and examples:

cutting with laser radiation

Learning target 3: quality features of the high quality cut

physical task of cutting and identification of quality defined processing domains

Learning target 4: relation of physical phenomena to the built up of quality

degradations

technical task and examples:

drilling with laser radiation

physical task formulation and 5 dominant phenomena

Learning target 5: quality features of the drilled hole

mathematical modelling Ia: length and time scales

degrees of freedom in phase space of dependent variables

separation of time scales in simple dynamical systems

Learning target 6a: separation of time scales

mathematical modelling Ib: singular perturbation and asymptotic expansion

thermal boundary layer in heat conduction with moving boundaries

Learning target 6b: separation of length scales

mathematical modelling II:

Free Boundary Problems (FBP) for the solid phase

reduced model for the FBP :

motion of the melting front, integral methods, variational formulation

Learning target 7: heating and melting phase of ablation

mathematical modelling III: Meta-Modeling

Morse-Smale-Complex

Leraning target 8: reduced model of drilling and cutting

mathematical model reduction: melt flow

reduced model for thin film flow

81

Learning target 9: ripple and dross formation in cutting

model reduction and solution with controlled error:

melt flow at low Reynolds-number

structural stability of the reduced model:

lubrication approximation, fingering and droplet formation

global properties of the solution of balance equations for mass, momentum and

thermal energy – example: cutting

Learning target 10: scales for parameter estimation in laser processing

parameters in cutting and drilling

concluding discussion of the learning targets

actual research and development of laser processing

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Modeling, Model Reduction and Simulation in Laser Processing - Applications

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Modeling, Model Reduction and Simulation in Laser Processing - Applications

MSCAME 0 75 30 45

Exercise (Übung): Modeling, Model Reduction and Simulation in Laser Processing - Applications

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Modeling, Model Reduction and Simulation in Laser Processing - Applications

Studien-/Prüfungsleistung: Prüfung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Title

Titel

Examination Modeling, Model Reduction and Simulation in Laser Processing - Applications

Prüfung Modeling, Model Reduction and Simulation in Laser Processing – Applications

Sub-title

Untertitel MMRSLP II

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

Teaching Unit / Examinations: Lecture Modeling, Model Reduction and Simulation in Laser Processing - Applications

Studien-/Prüfungsleistung: Vorlesung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Title

Titel

Lecture Modeling, Model Reduction and Simulation in Laser Processing - Applications

Vorlesung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Sub-title

Untertitel V MMRSLP II

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

82

Teaching Unit / Examinations: Exercise Modeling, Model Reduction and Simulation in Laser Processing - Applications

Studien-/Prüfungsleistung: Übung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Title

Titel

Exercise Modeling, Model Reduction and Simulation in Laser Processing - Applications

Übung Modeling, Model Reduction and Simulation in Laser Processing - Applications

Sub-title

Untertitel Ü MMRSLP II

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

83

Module: Molecular Mechanics and Multi-scale Modelling

Module

Modulbezeichnung Molecular Mechanics and Multi-scale Modelling

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MMMM

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 3

Person in Charge

Modulverantwortliche Univ.-Prof. Dr.-Ing. Bernd Markert

Lecturer

Dozenten Dr.-Ing. Sandeep P. Patil

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective module

Semestervariable Wahlpflichtleistung

Teaching form

Lehrformen Oral Examination, Lecture, Exercise Mündliche Prüfung, Vorlesung, Übung

Workload

Arbeitsaufwand

Total 150h, Contact hours 60h, Self-study 90h

Gesamt 150h, Kontaktzeit 60h, Selbststudium 90h

Lecture hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Molecular Mechanics and Multi-scale Modelling

The need for multi-scale modelling comes usually from the fact that the available macro-scale models are not accurate enough, and the micro-scale models are not efficient enough and/or offer too much information. By combining both viewpoints, one hopes to arrive at a reasonable compromise between accuracy and efficiency. Multi-scale models allow us to formulate models that couple together models at different scales.

Overall goal: Students are able to bridge the wide range of time and length scales of methods that are inherent in a number of essential phenomena and processes in materials science and engineering.

After successfully completing this course, the students will have acquired the following learning outcomes:

Knowledge / Understanding

Students:

a) understand the theoretical background of both methods, molecular dynamics and continuum mechanics;

b) compute mechanical properties at molecular level c) reproduce molecular behaviour at macroscopic level;

84

d) perform multi-scale modelling of hierarchical bio-materials.

Abilities / Skills

Students:

a) apply contents of the lecture to natural as well as artificial materials.

Content

Inhalt

Molecular Mechanics and Multi-scale Modelling

Lectures:

- Introduction to multi-scale modelling

- Molecular dynamics

- Theoretical background of molecular dynamics

- Force-probe molecular dynamics simulations

- Compute mechanical properties at molecular level

- Continuum mechanics

- Theoretical background of continuum mechanics

- Phase-field modelling

- Reproduce molecular mechanical properties

- Validations

- Multi-scale modelling

- Scale bridging

- Bottom-up approach

- Applications, e.g., spider silk, nacre

Exercises:

- Molecular dynamics simulations

- Force-probe molecular dynamics simulations

- Compute mechanical properties at molecular level, e.g., Young's modulus

- Finite element simulations based on force-probe molecular dynamics simulations

- Validations

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Molecular Mechanics and Multi-scale Modelling

MSCAME 5 0 0 0 30

Lecture (Vorlesung): Molecular Mechanics and Multi-scale Modelling

MSCAME 0 75 30 45

85

Exercise (Übung): Molecular Mechanics and Multi-scale Modelling

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Molecular Mechanics and Multi-scale Modelling

Studien-/Prüfungsleistung: Prüfung Molecular Mechanics and Multi-scale Modelling

Title

Titel

Examination Molecular Mechanics and Multi-scale Modelling

Prüfung Molecular Mechanics and Multi-scale Modelling

Sub-title

Untertitel MMMM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

Teaching Unit / Examinations: Lecture Molecular Mechanics and Multi-scale Modelling

Studien-/Prüfungsleistung: Vorlesung Molecular Mechanics and Multi-scale Modelling

Title

Titel

Lecture Molecular Mechanics and Multi-scale Modelling

Vorlesung Molecular Mechanics and Multi-scale Modelling

Sub-title

Untertitel MMMM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

Teaching Unit / Examinations: Exercise Molecular Mechanics and Multi-scale Modelling

Studien-/Prüfungsleistung: Übung Molecular Mechanics and Multi-scale Modelling

Title

Titel

Exercise Molecular Mechanics and Multi-scale Modelling

Übung Molecular Mechanics and Multi-scale Modelling

Sub-title

Untertitel Ü MMRSLP II

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module

Semestervariable Wahlpflichtleistung

86

Module: Multibody Dynamics

Module

Modulbezeichnung

Multibody Dynamics

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

MD

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Corves, Burkhard

Lecturer

Dozenten

Corves, Burkhard

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Multibody Dynamics

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) The students have a profound knowledge of theory of vibrations.

b) The students are capable of comprehending, describing and analyzing vibratory

systems.

c) The students are familiar with the most important matrix based procedures for the

calculation of eigenmotions and the behavior of linear systems under forced

excitations.

d) For the calculation of nonlinear system the students can select suitable program

systems and carry out proper simulations.

87

Abilities / Skills:

a) The students have the ability of describing mathematically any mechanical system

with its inherent physical effects like elasticity, damping and friction.

b) The students are able to properly interpret simulation results especially under

consideration of simplifications within the model compared to the real system.

Competencies:

a) The students are able to derive from their knowledge the necessary methods and

proceedings for the analysis and synthesis of the systems in regard. Thus they are

capable to solve - accessing their acquired theoretical knowledge - complex

problems concerning the choice and design of industrial vibratory systems.

Content

Inhalt

Multibody Dynamics

Introduction

Fundamentals

Fields of application

Model Building

Methods of Approach for Equivalent Models

Multi-body Systems

Determination of the Model Parameters

General mathematical description

Kinematics of Multi Body Systems

Position and Orientation of Bodies

Translational Kinematics

Rotational Kinematics

Equations of Motion

Lagrangian Equations of 2nd Kind

Newton-Euler equations

Linearisation

Eigen Value Approach

Undamped non-gyroscopic systems

Damped gyroscopic systems

Eigen Value Stability Criteria

Linear Systems with Harmonic Excitation

Real Frequency Matrix

Complex Frequency Matrix

State Equation

System Matrix

Eigen Value Approach

Fundamental Matrix

Modal Matrix

Theorem of Cayley-Hamilton

Analytical Solution

Numerical Solution

Step Excitation

Harmonic Excitation

Periodical Excitation

Introduction of Multi Body Simulation Software

ADAMS

SIMPACK

SimMechanics

88

Hands-On-Laboratory for Multi Body Simulation Software

ADAMS

SIMPACK

SimMechanics

Example

Modelling

Determination of Parameters

Calculation

Evaluation

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Multibody Dynamics

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Multibody Dynamics

MSCAME 0 75 30 45

Exercise (Übung): Multibody Dynamics

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Multibody Dynamics Studien-/Prüfungsleistung: Prüfung Multibody Dynamics Title

Titel

Examination Multibody Dynamics

Prüfung Multibody Dynamics Sub-title

Untertitel

Exa: MD

P: MD Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Multibody Dynamics Studien-/Prüfungsleistung: Vorlesung Multibody Dynamics

Title

Titel

Lecture: Multibody Dynamics Vorlesung: Multibody Dynamics

Sub-title

Untertitel

L: MD

V: MD Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Multibody Dynamics

Studien-/Prüfungsleistung: Übung Multibody Dynamics

Title

Titel

Exercise: Multibody Dynamics Übung: Multibody Dynamics

Sub-title E: MD

Ü: MD

89

Untertitel

Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

90

Module: Nonlinear Structural Mechanics

Module

Modulbezeichnung

Nonlinear Structural Mechanics

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

NSM

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Schmidt, Rüdiger

Lecturer

Dozenten

Weichert, Dieter; Schmidt, Rüdiger; Stoffel, Marcus

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul Maschinenbau

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Nonlinear Structural Mechanics

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) The students know the important steps and features of consistent modeling of 2-D

and 1-D structures for linear and nonlinear static and dynamic analysis.

b) They know the criteria how to assess structural theories (e.g. in commercial FE-

codes, in scientific publications etc.), to classify them, and to estimate the

consequences of underlying hypotheses for the quality of obtainable simulation

results.

Abilities / Skills:

a) The students are able to analyse static and dynamic simulation results with

respect to the quality of the adopted structural model.

91

b) The students can transfer theoretical models to actual engineering problems of

statically or dynamically loaded beam, plate and shell structures (e.g. arbitrary

geometries, arbitrary boundary conditions, arbitrary material and ply lay-up).

Competencies:.

a) The students are able to critically assess the applicability, consistency and

correctness of structural models.

b) The students are able to use their obtained knowledge in order to develop new

theoretical models in the sense of a generalization.

Content

Inhalt

Nonlinear Structural Mechanics

Introduction and motivation:

Brief review of FE discretisation (solid vs. shell elements)

Brief review of linear statics and dynamics of structures

Structural nonlinearity: stress stiffening/softening, buckling, effect on nonlinear

vibrations

Review of classical kinematical hypotheses (Bernoulli / Kirchhoff-Love),

shortcomings, necessity of refined hypotheses

Index notation, Einstein summation convention

Kronecker symbol and associated rules

Scalar and vector product, matrix multiplication in index notation

Convected coordinates, parameter lines for a 3-D body

Co- and contravariant base vectors

Examples: cylindrical and spherical geometry

Co- and contravaiant metric tensor components

Co- and contravariant vector and tensor components

Vector product of base vectors, permutation tensor, metric tensor determinant

Surface parameter lines

Co- and contravariant surface base vectors, normal vector

Surface metric and permutation tensor

Equations of Gauss and Weingarten

Christoffel symbols

Curvature tensor of a surface

Geometrical considerations (length, area and volume elements) in the shell space,

at the reference surface, at the bounding surfaces, and at the lateral boundary

Deformed configuration

Base vectors of the deformed configuration

Covariant derivative

Shifter tensor, mean and Gaussian curvature

Principle of virtual displacements

Internal and external virtual work

Definition of stresses and strains

Strain tensor for von Kármán-type nonlinearity

Strain-displacement relations for tangential, transverse shear and transverse

normal strains

First-order shear deformation hypothesis

Interpretation of the kinematical variables, rotations at the reference surface

Outlook: Refined hypotheses

Nonlinear strain-displacement relations for first-order shear deformation (Reissner-

Mindlin) plate and shell theory

Transition to Kirchhoff-Love plate and shell theory / Bernoulli beam theory

Internal virtual work

Internal stress resultants

Theorem of Gauss

External virtual work (surface tractions, body forces, inertia forces)

Surface load couples, boundary load couples

Body couples, inertia couples

Nonlinear equilibrium equations

92

Static boundary conditions

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Nonlinear Structural Mechanics

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Nonlinear Structural Mechanics

MSCAME 0 75 30 45

Exercise (Übung): Nonlinear Structural Mechanics

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Nonlinear Structural Mechanics Studien-/Prüfungsleistung: Prüfung Nonlinear Structural Mechanics Title

Titel

Examination Nonlinear Structural Mechanics

Prüfung Nonlinear Structural Mechanics Sub-title

Untertitel

Exa: NSM

P: NSM Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Nonlinear Structural Mechanics Studien-/Prüfungsleistung: Vorlesung Nonlinear Structural Mechanics

Title

Titel Lecture: Nonlinear Structural Mechanics Vorlesung: Nonlinear Structural Mechanics

Sub-title

Untertitel

L: NSM

V: NSM Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Nonlinear Structural Mechanics Studien-/Prüfungsleistung: Übung Nonlinear Structural Mechanics

Title

Titel Exercise: Nonlinear Structural Mechanics Übung: Nonlinear Structural Mechanics

Sub-title

Untertitel

E: NSM

Ü: NSM Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

93

Module: Numerical Methods in Mechanical Engineering

Module

Modulbezeichnung

Numerical Methods in Mechanical Engineering

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME-1005/12

Subtitle

Untertitel

NMME

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Weichert, Dieter Ban, Michael

Lecturer

Dozenten

Ban, Michael

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 210h, Lecture Hours 75h, Self-study135h

Gesamt 210 h, Kontaktzeit 75 h, Selbststudium 135 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

5

ECTS-Credit Points (CP)

Kreditpunkte

7

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Numerical Methods in Mechanical Engineering

This course presents the theoretical background of the numerical methods commonly used in

mechanical engineering. In particular, the path from the physical formulation of a problem to

its mathematical formulation which is appropriate for large-scale numerical approximation

methods is shown.

After successfully completing this course, the students will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) Knowledge of theoretical foundations of current numerical methods in engineering.

b) Knowledge to bridge between the physical formulation of a problem and a

mathematical formulation suited to numerical approximation methods.

c) Comprehending the individual steps and specific transformations required for

approximate numerical solution.

d) Choosing an appropriate approximation technique and analyzing the results

obtained by various approximation methods.

e) Applying acquired knowledge to develop new approximation methods.

94

f) Critical reflection on the consistency and correctness of numerical methods.

Abilities / Skills:

a) Applying variational methods to obtain equivalent formulations of a problem of

differential equations.

b) Constructing basis functions compatible with the boundary conditions.

c) Constructing and applying a variety of approximation methods based on the WRM

(collocation by points, collocation by subdomains, Galerkin's method, least

squares method, Ritz method)

d) Solving constrained optimization problems by using the Lagrange Multipliers

Method.

e) Constructing the associated energy potential and applying the stationarity principle

for a conservative mechanical problem.

f) Applying tools of numerical integration.

Content

Inhalt

Numerical Methods in Mechanical Engineering

From intuitional perception to the mathematical formulation of engineering

problems; examples. Choice of assumptions and mathematical tools to formulate

problems.

Classes of solution methods (overview):

Analytical solutions, approximate solutions, direct approximation, approximate

solution after transformation of the problem.

Classes of physical problems: discrete systems, continuous systems. Equilibrium,

eigenvalue, and propagation problems.

Integral forms.

Weak formulation of problems.

The Method of Weighted Residuals (WRM).

Introduction to variational calculus.

Functionals and Functionals associated with an integral form.

The stationarity principle and stationarity conditions.

Examples from mechanics.

The method of Lagrange multipliers. Mixed and complementary formulations.

Catalogue of functionals used in continuum mechanics and their specific features.

Discretisation of integral forms. Collocation by points. Collocation by subdomains.

Galerkin’s method. Least Squares Method. Examples:

Ritz' method. Examples.

Numerical integration. Newton-Cotes method.

Gauss method. Examples.

The Finite Element Method. Shape functions, construction of finite elements.

Matrix representation in the FEM. Stiffness matrix. Boundary conditions.

Examples from structural engineering. Software packages in engineering.

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Numerical Methods in Mechanical Engineering

MSCAME 7 0 0 0 150

95

Lecture (Vorlesung): Numerical Methods in Mechanical Engineering

MSCAME 0 150 45 105

Exercise (Praktikum): Numerical Methods in Mechanical Engineering

MSCAME 0 60 30 30

Teaching Unit / Examinations: Examination Numerical Methods in Mechanical Engineering Studien-/Prüfungsleistung: Prüfung Numerical Methods in Mechanical Engineering Title

Titel

Examination Numerical Methods in Mechanical Engineering

Prüfung Numerical Methods in Mechanical Engineering Sub-title

Untertitel

Exa: NMME

P: NMME Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Numerical Methods in Mechanical Engineering Engineering Studien-/Prüfungsleistung: Vorlesung Numerical Methods in Mechanical Engineering

Title

Titel

Lecture: Numerical Methods in Mechanical Engineering Vorlesung: Numerical Methods in Mechanical Engineering

Sub-title

Untertitel

L: NMME

V: NMME Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Numerical Methods in Mechanical Engineering Studien-/Prüfungsleistung: Übung Numerical Methods in Mechanical Engineering

Title

Titel

Practical Session: Numerical Methods in Mechanical Engineering Praktikum: Numerical Methods in Mechanical Engineering

Sub-title

Untertitel

E: NMME

Ü: NMME Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

96

Module: Practical Introduction to FEM-Software I

Module

Modulbezeichnung

Practical Introduction to FEM-Software I

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

PIFEM I

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 90h, Lecture Hours 45h, Self-study 45h

Gesamt 90 h, Kontaktzeit 45 h, Selbststudium 45 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

3

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Practical Introduction to FEM-Software I

The aim of the course is to give an overview of the possibilities and an introduction to the use

of FEM software.

After successfully completing this course, the student will have acquired the following

learning outcomes:

The students will

Knowledge / Understanding:

a) have sufficient knowledge of ANSYS and CALCULIX

b) obtain a practical feeling how to deal with FE programs

c) understand the concept of solid modeling and automatic meshing

d) understand the commands to create input-files

e) know how to define boundary conditions and loads

97

Abilities / Skills:

f) be able to create 2D/3D FE models

g) be able to solve typical linear structural and heat transfer problems

h) be able to validate FE models and analyze errors

i) to write a project report

Content

Inhalt

Practical Introduction to FEM-Software I

General introduction, structure of the FEM program

ANSYS (GUI)

Modeling and calculation of truss structures with ANSYS.

Modeling beam structures

ANSYS commands, working with input files

Post processing for beam elements

General introduction to the FEM program CACULIX

Modeling and calculating beam structures with CALULIX

Data exchange between ANSYS <-> CALCULIX.

Introduction to 2D solid modeling in ANSYS (part 1)

Types of plane elements, free mesh, boundary conditions, mesh size, post

processing

Commands for 2D Problems in CALCULIX

Data exchange between ANSYS <-> CALCULIX

Boundary conditions, mesh size, post processing

Introduction to 2D solid modeling in ANSYS (part 2)

Mapped mesh, bottom up / top down approach

ANSYS commands, heat transfer problems

APDL, element types, boundary conditions, h- and p-method.

Post processing, error estimation.

ANSYS 3D modeling (part 1), creating the geometry, selecting and grouping

commands.

3D modeling (part 2), ANSYS and CALCULIX commands, 3D element types.

3D modeling (part 3), ANSYS and CALCULIX commands, extrusion of 2D Models.

Project work, modeling

Project work, modeling, solving, post processing

Project work, documentation, report

Revision course

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Practical Introduction to FEM-Software I

MSCAME 3 0 0 0 120

Lecture (Vorlesung): Practical Introduction to FEM-Software I

MSCAME 0 30 15 15

Practical Session (Praktikum): Practical Introduction to FEM-Software I

MSCAME 0 60 30 30

Teaching Unit / Examinations: Examination Practical Introduction to FEM-Software I Studien-/Prüfungsleistung: Prüfung Practical Introduction to FEM-Software I

98

Title

Titel

Examination Practical Introduction to FEM-Software I Prüfung Practical Introduction to FEM-Software I

Sub-title

Untertitel

Exa: PIFEM I

P: PIFEM I Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Practical Introduction to FEM-Software I Studien-/Prüfungsleistung: Vorlesung Practical Introduction to FEM-Software I Title

Titel

Lecture: Practical Introduction to FEM-Software I Vorlesung: Practical Introduction to FEM-Software I

Sub-title

Untertitel

L: PIFEM I

V: PIFEM I Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Practical Session Practical Introduction to FEM-Software I Studien-/Prüfungsleistung: Praktikum Practical Introduction to FEM-Software I

Title

Titel

Exercise: Practical Introduction to FEM-Software I Übung: Practical Introduction to FEM-Software I

Sub-title

Untertitel

E: PIFEM I

Ü: PIFEM I Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

99

Module: Practical Introduction to FEM-Software II

Module

Modulbezeichnung

Practical Introduction to FEM-Software II

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

PIFEM II

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 90h, Lecture Hours 45h, Self-study 45h

Gesamt 90 h, Kontaktzeit 45 h, Selbststudium 45 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

3

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Recommended: Practical Introduction to FEM-Software I

Learning Objectives

Angestrebte Lernergebnisse

Practical Introduction to FEM-Software II

In part II of the course the considered examples are extended to nonlinear problems and

applications.

After successfully completing this course, the student will have acquired the following

learning outcomes:

The students will

Knowledge / Understanding:

a) obtain an overview about various kinds of FE calculations.

b) get understanding of the difficulties concerned with nonlinear calculations.

Abilities / Skills:

a) be able to calculate nonlinear problems with ANSYS and CALCULIX.

Content

Inhalt

100

Practical Introduction to FEM-Software II

Time depending Problems, multi load steps, sub modeling.

Sub modeling

Non-linear Material, Plasticity

Non-linear Material, rubber-like materials, viscoelastic

Composite materials.

Solver for non-linear problems.

Contact problems part 1, coupling and constraint equations.

Contact problems part 2, CAD-Import.

Harmonic response

Modal analysis

Death and birth option, harmonic response.

Multiphysics problems 1, heat transfer, voltage.

Multiphysics problems 2, heat radiation.

Revision course

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Multibody Dynamics

MSCAME 3 0 0 0 120

Lecture (Vorlesung): Multibody Dynamics

MSCAME 0 30 15 15

Practical Session (Praktikum): Multibody Dynamics

MSCAME 0 60 30 30

Teaching Unit / Examinations: Examination Practical Introduction to FEM-Software II Studien-/Prüfungsleistung: Prüfung Practical Introduction to FEM-Software II Title

Titel

Examination Practical Introduction to FEM-Software II

Prüfung Practical Introduction to FEM-Software II Sub-title

Untertitel

Exa: PIFEM II

P: PIFEM II Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Practical Introduction to FEM-Software II Studien-/Prüfungsleistung: Vorlesung Practical Introduction to FEM-Software II Title

Titel

Lecture: Practical Introduction to FEM-Software II Vorlesung: Practical Introduction to FEM-Software II

Sub-title

Untertitel

L: PIFEM II

V: PIFEM II Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

101

Teaching Unit / Examinations: Practical Session Practical Introduction to FEM-Software II Studien-/Prüfungsleistung: Praktikum Practical Introduction to FEM-Software II

Title

Titel

Practical Session: Practical Introduction to FEM-Software II Praktikum: Practical Introduction to FEM-Software II

Sub-title

Untertitel

E: PIFEM II

Ü: PIFEM II Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

102

Module: Production Management A

Module

Modulbezeichnung Production Management A

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel PM

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 3

Person in Charge

Modulverantwortliche Schuh, Günther

Lecturer

Dozenten Schuh, Günther

Language

Sprache English Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module Pflichtmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand Total 150h, Lecture Hours 60h, Self-study 90h Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h

Lecture hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Production Management A

Markets and manufacturing conditions are frequently changing. This imposes the necessity

of long-range and intensive planning in enterprises of the manufacturing industry, as only

early accommodation of actual conditions guarantees competitiveness. Students will gain

knowledge which topics have to be considered in this context and how the gained knowledge

can be transferred to daily business of a company. For the purposes of manufacturing

engineering, Students know the following tasks that have to be carried out. After successfully

completing this course, the student will have acquired the following learning outcomes:

Knowledge / Understanding:

a) know and follow the problems of producing companies;

Abilities / Skills:

a) apply this knowledge to elaborate possibilities for rationalization and automation issues;

b) able to analyze problems in all enterprise domains which are involved in the manufacturing process

Competencies:

103

a) have the ability to elaborate rationalization methods and tools

b) find solutions best suited for the investigated subject in concerning the manufacturing domains design, operations planning and scheduling, production and assembly as well as the superior domains cost accounting, E.D.P., overall organization

Content

Inhalt

Production Management A

• From Taylorism To Virtual Factory

• Production Strategies

• Business and Process Modelling

• Product Planning & Engineering

• Variant Management

• Structured Innovation Process

• Process Planning

• Planning for Manufacture & Assembly

• Operations Management

• Materials Management

• Lean Production - Production Systems

• Technology Management I

• Technology Management II

Media

Medienform e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Production Management A

MSCAME 5 0 0 0 90

Lecture (Vorlesung): Production Management A

MSCAME 0 75 30 45 0

Exercise (Übung): Production Management A

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Examination Production Management A Studien-/Prüfungsleistung: Prüfung Production Management A

Title

Titel Examination Production Management A Prüfung Production Management A

Sub-title

Untertitel Exa PM P PM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Production Management A Studien-/Prüfungsleistung: Vorlesung Production Management A

Title

Titel Lecture Production Management A Vorlesung Production Management A

Sub-title

Untertitel L PM V PM

Semester

Studiensemester 3

Connection to the curriculum

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

104

Curriculare Verankerung

Teaching Unit / Examinations: Exercise Production Management A Studien-/Prüfungsleistung: Übung Production Management A

Title

Titel Exercise Production Management A Übung Production Management A

Sub-title

Untertitel E PM Ü PM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

105

Module: Production Metrology

Module

Modulbezeichnung

Production Metrology

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

PMet

Lecture

Lehrveranstaltungen

See list of lectures and examinations of the module

Siehe Liste der Prüfungsleistungen des Moduls Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Schmitt, Robert

Lecturer

Dozenten

Schmitt, Robert

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Learning Objectives

Angestrebte Lernergebnisse

Production Metrology

The aim of this lecture is to create the awareness, that “measuring” comprehends a lot more

than plain data acquisition and that metrology is a vital part of modern production processes.

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

Students

a) know the function and the responsibility of metrology for production

b) know the theoretical essentials which have to be taken into consideration while the

measuring process is planned, controlled, analysed, are discussed

c) know current measuring principles and devices in the field of industrial production

d) know statistical essentials being necessary for analysis of the measured values

Abilities / Skills:

Students

a) are able to define measuring task on the basis of given features

106

b) are able to select adequate measuring devices for measuring tasks

c) are able to interpret measuring results

Competencies:

Students

a) can make their decision (having arguments) on using metrology within production

b) have learned to make decisions concerning measurement on the base of different

parameters

Content

Inhalt

Production Metrology

Introduction

Relevance of metrology for quality assurance and its integration in production

processes.

Metrological principles

Metrological concepts and definitions (Calibration, Uncertainty etc.)

Tolerancing

Form and positional tolerances, tolerancing principles and fundamentals

Inspection Planning

Tasks and workflow of inspection planning, Procedure for creation of inspection

plans

Shop floor measuring devices/ Measuring sensors

Commonly used manual inspection devices for the shop floor, Function and

application of inductive, capacitive and pneumatical sensors

Optoelectronic inspection devices

Optical inspection systems for geometry testing and applications

Form and surface inspection devices

Tactile and optical system for the characterisation of forms and surfaces, surfaces

parameters

Coordinate measurement technology

Principles, types and applications of coordinate measuring machines

Gauging inspection

Form and positional gauging, Gauging Procedures

Statistical fundamentals

Statistical parameters for the description of production and

measuring processes, tests on normal distribution

SPC, Process Capability

Statistical analysis and control of processes, Process capability indices

Inspection device management

Tasks and procedures of inspection device management, Calculation of measuring

device capability, Calibration chain Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

107

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Production Metrology

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Production Metrology

MSCAME 0 75 30 45

Exercise (Übung): Production Metrology

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Production Metrology Studien-/Prüfungsleistung: Prüfung Production Metrology Title

Titel

Examination Production Metrology

Prüfung Production Metrology Sub-title

Untertitel

Exa: PMet

P: PMet Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Production Metrology Studien-/Prüfungsleistung: Vorlesung Production Metrology

Title

Titel

Lecture: Production Metrology Vorlesung: Production Metrology

Sub-title

Untertitel

L: PMet

V: PMet Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Production Metrology Studien-/Prüfungsleistung: Übung Production Metrology

Title

Titel

Exercise: Production Metrology Übung: Production Metrology

Sub-title

Untertitel

E: PMet

Ü: PMet Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

108

Module: Quality Management

Module

Modulbezeichnung

Quality Management

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

QM

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Schmitt, Robert

Lecturer

Dozenten

Schmitt, Robert

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Learning Objectives

Angestrebte Lernergebnisse

Quality Management

Due to the growing importance of quality assurance in industrial production and economy,

the lecture ''Quality Management'' was initiated at the Faculty of Production Engineering.

Quality issues of industrial applications and necessary underlying theories are emphasized

during the course of this lecture. It is the main aim of this lecture to present the students with

the abstract concept of quality, its importance and social relevance, possible organizational

forms of quality systems and relating quality management methods and tools.

During the turn, a broader perspective can also be given via discussions about more

advanced and detailed topics such as strategic quality planning, balancing quality costs and

quality related legal questions.

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding: The students…

a) understand the abstract concept of quality;

109

b) know the standards (norms); c) understand main quality issues of industrial applications; d) know necessary underlying management theories; e) understand essential quality tools, their function, the benefit and their

interdependence; f) know the organization of management systems; g) know the organization of quality systems

Abilities / Skills: The students…

a) have deepen their statistic knowledge; b) have improved their computer skills; c) have improved their economic thinking; d) analyse problematic quality issues: e) apply tools to contexts

Competencies: The students…

a. critically assess topics such as quality planning, quality costs and quality legal questions via discussions;

b. critically reflect approaches, methods and guiding principles while communicating their opinions

Content

Inhalt

Quality Management

01 Introduction:

• The concept of quality, Quality Management structures, poor quality and defects, Deming-

Chain, quality improvement and failure prevention

02 Normative QM Systems:

• Total Quality Management (TQM), normative quality management standards,

implementation of quality management systems, auditing and certification concepts

03 Strategic Quality Programs:

• Strategic Quality Programs, EFQM, RADAR, Six Sigma, Sigma Levels, ACQMM

(Aachener QM Modell) , Quality Stream (Statistics in the exercise)

04 Quality and Economics:

• Quality controlling, quality cost accounting, cost-related process performance, cost-related

quality performance indicators, balanced scorecard, target costing

05 QM in Field Data Evaluation:

• Field Data analysis, Weibull-Analysis, Isochron-Diagram, MIS-Diagram

06 QM in Manufacturing:

• Statistical Process Control, 5S, Value Stream Mapping

07 QM in the Early Phases - Focus Product:

• Kano-Model, Quality Function Deployment (QFD), House of Quality, TRIZ

08 QM in the Early Phases - Focus Process:

• Process Optimization , Design of Experiments (DoE), Factorial Designs, Shainin

Methodology

09 QM in the Early Phases - Deviation:

• Design Review, Quality Assessment, Fault Tree Analysis, FMEA, DRBFM, Rapid Quality

Deployment

10 QM in the Procurement:

• Procurement Strategies, supplier selection, incoming inspection, accepted quality level

11 Quality and Information:

• Quality control loops, quality data basis, Computer Aided Quality Management (CAQ),

computer-aided test planning, implementation of CAQ systems

12 QM in Service Industries:

• Service Engineering, Service Level Agreement, Service Blueprinting, ServQual, Vignette

Techniques, Service FMEA, Conjoint Analyses

110

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature Lectures / Examinations Studien-/Prüfungsleistungen

Title

Titel Code Kürzel

ECTS Kredit- punkte

Workload Arbeits- aufwand (h)

Lecture H. Kontakt- zeit (h)

Self-Study Selbst- studium (h)

Duration of Exam Prüfungs- dauer (min)

Examination (Prüfung): Quality Management

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Quality Management

MSCAME 0 75 30 45

Exercise (Übung): Quality Management

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Quality Management Studien-/Prüfungsleistung: Prüfung Quality Management

Title

Titel Examination Quality Management Prüfung Quality Management

Sub-title

Untertitel Exa QM P QM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Quality Management Studien-/Prüfungsleistung: Vorlesung Quality Management

Title

Titel Lecture Quality Management Vorlesung Quality Management

Sub-title

Untertitel L QM V QM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Quality Management Studien-/Prüfungsleistung: Übung Quality Management

Title

Titel Exercise Quality Management Übung Quality Management

Sub-title

Untertitel E QM Ü QM

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

111

Module: Reliable Simulation in the Mechanics of Materials and Structures

Module

Modulbezeichnung

Reliable Simulation in the Mechanics of Materials and Structures

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

RS

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Univ.-Prof. Dr.-Ing. Bernd Markert

Lecturer

Dozenten

Dr.-Ing. Yousef Heider

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 180h, Lecture Hours 60h, Self-study 120h

Gesamt 180h, Kontaktzeit 60h, Selbststudium 120h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

6

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Reliable Simulation in the Mechanics of Materials and Structures:

After successfully completing this course, the students will have acquired the following learning outcomes:

Knowledge / Understanding:

a) adjust the model complexity in relation with the modelling objective;

b) know how the level of model complexity influences the computational efforts;

c) understand the process of determining how a model implementation accurately

represents the developer’s conceptual description and specification (verification);

d) know the process of determining the degree to which a model is an accurate

representation of the real world response;

e) understand the choice of a suitable constitutive model based on experimental

results;

f) know the influence of the chosen time-integration scheme on the numerical

results;

g) understand how time scale and space dimensions affect the choice of the

numerical scheme.

112

Abilities / Skills:

a) determine the suited level of model complexity in order to simulate a given physical problem efficiently and reliably;

b) select the appropriate simulation techniques, e.g. in the case of FEM: explicit/ implicit or splitting time stepping schemes, element types and orders;

c) interpret computed results and asses their reliability.

Competencies:

a) will have better understanding and critical thinking with regard to material modelling and numerical simulation;

b) justify the efficiency and accuracy of the simulation when applying either commercial numerical tools (as often applied in companies) or also when using open-source computational tools (as often used in universities and research centers).

Content

Inhalt

Reliable Simulation in the Mechanics of Materials and Structures

Detailed course content:

Verification, validation and prediction: general definitions within the field of Computational Mechanics.

Abstraction and idealization of a physical problem: based on examples, the processes of abstraction and idealization from a real world problem into a mathematical model (depending on the aim of simulation) will be clarified. The influence of faulty idealization will be thoroughly discussed.

Verification of a model: to ensure the accuracy of the numerical implementation of the mathematical model, the results will be compared with a reference solution (e.g. analytical solution).

Factors affecting the FEM implementation: time integration scheme (explicit or implicit) , time step size, element type, static or dynamic model, linear or non-linear model geometric non-linearity, etc. .

Validation of a model: by comparison of a numerical model with reality (e.g. experimental results, complete systems).

Solving coupled problems: suitable solution strategies for weakly and strongly coupled problems. Example: differential equations of a coupled spring, damper and mass system.

Example of strongly coupled problems: multiphase porous media.

Introduction to multi-scale modeling: Effect of the time scale and space

dimensions on the choice of the modeling method (nano- to micro- to macro-

scale).

Example: applying the molecular-dynamics simulation to solve problems on the

nano-scale.

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Reliable Simulation in the Mechanics of Materials and Structures

MSCAME 6 0 0 0 120

Lecture (Vorlesung): Reliable Simulation in the

MSCAME 0 90 30 60

113

Mechanics of Materials and Structures

Exercise (Übung): Reliable Simulation in the Mechanics of Materials and Structures

MSCAME 0 90 30 60

Teaching Unit / Examinations: Examination Reliable Simulation in the Mechanics of Materials and Structures Studien-/Prüfungsleistung: Prüfung Practical Reliable Simulation in the Mechanics of Materials and Structures Title

Titel

Examination Reliable Simulation in the Mechanics of Materials and Structures

Prüfung Reliable Simulation in the Mechanics of Materials and Structures Sub-title

Untertitel

Exa: RS

P: RS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Reliable Simulation in the Mechanics of Materials and Structures Studien-/Prüfungsleistung: Vorlesung Reliable Simulation in the Mechanics of Materials and Structures

Title

Titel

Lecture: Reliable Simulation in the Mechanics of Materials and Structures Vorlesung: Reliable Simulation in the Mechanics of Materials and Structures

Sub-title

Untertitel

L: RS

V: RS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Reliable Simulation in the Mechanics of Materials and Structures

Studien-/Prüfungsleistung: Exercise Reliable Simulation in the Mechanics of Materials and Structures

Title

Titel

Exercise: Reliable Simulation in the Mechanics of Materials and Structures Übung: Reliable Simulation in the Mechanics of Materials and Structures

Sub-title

Untertitel

E: RS

Ü: RS Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

114

Module: Selected Topics of Inelasticity Theory

Module

Modulbezeichnung

Selected Topics of Inelasticity Theory

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

STIP

Lecture

Lehrveranstaltungen

See list of lectures and examinations of the module

Siehe Liste der Prüfungsleistungen des Moduls Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Heider, Yousef

Lecturer

Dozenten

Heider, Yousef

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 180h, Lecture Hours 60h, Self-study 120h

Gesamt 180 h, Kontaktzeit 60 h, Selbststudium 120 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

6

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Learning Objectives

Angestrebte Lernergebnisse

Selected Topics of Inelasticity Theory

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding

a) understand the concepts of plasticity and viscoelasticity as important classes of

inelastic material response with a wide range of engineering applications.

Abilities / Skills

a) obtain a detailed understanding of selected aspects of the theories of plasticity and viscoelasticity, including specific algorithmic treatments.

Content

Inhalt

Selected Topics of Inelasticity Theory

It is the superior goal of the lecture to foster the understanding of general inelastic material behavior

with regard to the theoretical modeling and the numerical treatment based on selected model

problems. As an example, the selected material models under consideration may cover

115

micromechanically motivated approaches to inelastic material response such as crystal

plasticity or

purely phenomenological formulations of an inelastic material response such as

viscoelasticity

Detailed course content:

12. Introduction to inelastic material behavior

13. Kinematics of finite inelastic deformations in natural basis

14. Constitutive modeling with internal state variables

15. Derivation and evaluation of the dissipation inequality

16. Formulation of thermodynamical consistent inelastic evolution quations on the example of finite viscoelasticity and finite viscoplasticity

Local stress computation; numerical treatment of the evolution equations

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature Lectures / Examinations Studien-/Prüfungsleistungen

Title

Titel Code Kürzel

ECTS Kredit- punkte

Workload Arbeits- aufwand (h)

Lecture H. Kontakt- zeit (h)

Self-Study Selbst- studium (h)

Duration of Exam Prüfungs- dauer (min)

Examination (Prüfung): Selected Topics of Inelasticity Theory

MSCAME 6 0 0 0 30 (oral) or 120 (written)

Lecture (Vorlesung): Selected Topics of Inelasticity Theory

MSCAME 0 90 30 60

Exercise (Übung): Selected Topics of Inelasticity Theory

MSCAME 0 90 30 60

Teaching Unit / Examinations: Examination Selected Topics of Inelasticity Theory Studien-/Prüfungsleistung: Prüfung Selected Topics of Inelasticity Theory

Title

Titel Examination Selected Topics of Inelasticity Theory Prüfung Selected Topics of Inelasticity Theory

Sub-title

Untertitel Exa STIP P STIP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Selected Topics of Inelasticity Theory Studien-/Prüfungsleistung: Vorlesung Selected Topics of Inelasticity Theory

Title

Titel Lecture Selected Topics of Inelasticity Theory Vorlesung Selected Topics of Inelasticity Theory

Sub-title

Untertitel L STIP V STIP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Selected Topics of Inelasticity Theory Studien-/Prüfungsleistung: Übung Selected Topics of Inelasticity Theory

Title

Titel Exercise Selected Topics of Inelasticity Theory Übung Selected Topics of Inelasticity Theory

116

Sub-title

Untertitel E STIP Ü STIP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester) Semestervariable Pflichtleistung

117

Module: Simulation of Discrete Event Systems

Module

Modulbezeichnung

Simulation of Discrete Event Systems

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

SDES

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Schlick, Christopher

Lecturer

Dozenten

Schlick, Christopher

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Simulation of Discrete Event Systems

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

a) Students know important theories and techniques for modelling discrete event

systems;

b) understand the principles of simulation based on advance approaches.

Abilities / Skills:

a) Students are able to analyse real systems and build quantitative models of these

systems

b) using the proposed methods for analysis and simulation;

c) are able to predict future states and properties of the modelled systems.

118

Competencies:

a) Students have learned to describe, analyse and evaluate event systems, apply

their knowledge and skills to real-life engineering systems and come to well-

founded conclusions;

b) understand how to model robust, effective and efficient systems which improve the

satisfaction and the safety of the persons involved.

Content

Inhalt

Simulation of Discrete Event Systems

Definition of Discrete Event Systems and fundamentals of simulation, modelling

and application

Deterministic approaches

o Languages, various kinds of automata, automata-generated languages

o Properties and relations of state charts

o Petri nets and coverability trees

o Timed models

Stochastic approaches

o Stochastic timed models

o Markov Chains and Variable Length

o Queuing models

o Bayesian Networks and Dynamic Bayesian Networks

o Event scheduling schemes and output analysis with terminating and

non-terminating simulations

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Simulation of Discrete Event Systems

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Simulation of Discrete Event Systems

MSCAME 0 75 30 45

Exercise (Übung): Simulation of Discrete Event Systems

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Simulation of Discrete Event Systems Studien-/Prüfungsleistung: Prüfung Simulation of Discrete Event Systems Title

Titel

Examination Simulation of Discrete Event Systems

Prüfung Simulation of Discrete Event Systems Sub-title

Untertitel

Exa: SDES

P: SDES Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Simulation of Discrete Event Systems Studien-/Prüfungsleistung: Vorlesung Simulation of Discrete Event Systems

119

Title

Titel

Lecture: Simulation of Discrete Event Systems Vorlesung: Simulation of Discrete Event Systems

Sub-title

Untertitel

L: SDES

V: SDES Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Simulation of Discrete Event Systems Studien-/Prüfungsleistung: Übung Simulation of Discrete Event Systems

Title

Titel

Exercise: Simulation of Discrete Event Systems Übung: Simulation of Discrete Event Systems

Sub-title

Untertitel

E: SDES

Ü: SDES Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

120

Module: Simulation Techniques (Modelling and Simulation) in Manufacturing

Technology

Module

Modulbezeichnung

Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME-3402/12

Subtitle

Untertitel

MSMT

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

3

Person in Charge

Modulverantwortliche

Klocke, Fritz

Lecturer

Dozenten

Klocke, Fritz

Language

Sprache

English

Assignment to the curriculum

Zuordnung zum Curriculum

Compulsory Module

Pflichtmodul Maschinenbau

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 45h, Self-study 105h

Gesamt 150 h, Kontaktzeit 45 h, Selbststudium 105 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

3

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

In the last years, the simulation of manufacturing processes has developed to an essential

tool for planning and improving processes. In almost every kind of manufacturing process

(e.g. forming, cutting, grinding etc.) the simulation assists the engineer in designing,

optimising and controlling processes as well as designing of equipment or just to understand

and predict fundamental mechanisms.

After successfully completing this course, the student will have acquired the following

learning outcomes:

Knowledge / Understanding:

Students

a) the basic methods in modelling and simulation of selective manufacturing

processes.

121

b) overview of the main applicability’s of simulation techniques in the following

manufacturing and planning processes:

Forming processes

Fine blanking

Sheet metal forming

Cutting processes

Grinding

Process chains

Virtual Reality

Rapid Prototyping.

c) the understanding of manufacturing processes is a basic requirement in setting up

models. Therefore the lecture provides the basics of manufacturing technologies,

subsequent the modelling of these processes is an objective of this lecture.

Abilities / Skills:

d) to use commercial software like DEFORM2D and DEFORM3D. In small groups

the participants work with this software supported by students who already gained

experience in handling this software.

Content

Inhalt

Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

In the first lecture an introduction into the subject simulation techniques in

manufacturing technology is given.

The contents of the second lecture are the fundamental aspects and processes in

metal forming, particular bulk forming.

After the student have learned the fundamental aspect of metal forming, in this lecture

the focus are the actual simulation techniques in metal forming.

The forth lecture deals about the fundamental aspects and the simulation of sheet

metal forming.

In lecture no. 5 an introduction to the fundamentals and the simulation techniques in

blanking and fine blanking processes is given.

The contents of the sixth lecture are the principles of cutting processes.

The lecture no. 7 gives a general overview about the different cutting processes.

One method in modelling cutting processes is the usage of Finite Element Modelling

(FEM). This lecture shows different current examples for the FE simulation of cutting

processes.

Lecture gives an introduction to cutting with undefined cutting edges.

The focus of lecture no. 10 is the presentation of actual modelling methods in grinding.

Special emphasis in lecture no. 11 will be placed on Rapid Prototyping, Rapid Tooling

and Virtual Reality.

The content of the last lecture deals about the design of process chains and

technology planning.

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

122

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

MSCAME 0 105 30 75

Exercise (Übung): Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

MSCAME 0 45 15 30

Teaching Unit / Examinations: Examination Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Studien-/Prüfungsleistung: Prüfung Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Title

Titel

Examination Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Prüfung Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Sub-title

Untertitel

Exa: MSMT

P: MSMT Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Lecture Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Studien-/Prüfungsleistung: Vorlesung Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Title

Titel

Lecture: Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Vorlesung: Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Sub-title

Untertitel

L: MSMT

V: MSMT Semester

Studiensemester

3

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

Teaching Unit / Examinations: Exercise Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Studien-/Prüfungsleistung: Übung Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Title

Titel

Exercise: Simulation Techniques (Modelling and Simulation) in Manufacturing Technology Übung: Simulation Techniques (Modelling and Simulation) in Manufacturing Technology

Sub-title

Untertitel

E: MSMT

Ü: MSMT Semester

Studiensemester

3

123

Connection to the curriculum

Curriculare Verankerung

Compulsory module (variable to the semester)

Semestervariable Pflichtleistung

124

Module: Tensor Algebra and Tensor Analysis for Engineering Students I

Module

Modulbezeichnung

Tensor Algebra and Tensor Analysis for Engineering Students I

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

TATA I

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

1

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Learning Objectives

Angestrebte Lernergebnisse

Tensor Algebra and Tensor Analysis for Engineering Students I

Tensor algebra is the language of modern continuum mechanics and material theory.

After successfully completing this course, the student will have acquired the following

learning outcomes:

The students will

Knowledge / Understanding:

a) be able to read and understand modern scientific literature in this area, formulate

and interpret tensor identities in absolute as well as index notation.

b) understand principles of differential geometry and field theory

The students will

Abilities / Skills:

a) be able to apply field operators

125

Content

Inhalt

Tensor Algebra and Tensor Analysis for Engineering Students I

Notion of the vector space

Geometrical illustration of vectors

Examples of vector spaces

Basis and dimension of the vector space

Components of a vector, summation convention

Scalar product of vectors, Euclidean space

Orthonormal basis

Dual basis

Second-order tensor as a linear mapping

Right and left mapping

Tensor product

Representation of a tensor with respect to a basis

Change of the basis, transformation rules

Special operations with second-order tensors

Tensor functions, exponential tensor function

Transposition, symmetric and skew-symmetric t

tensors

Inversion

Scalar product of tensors

Decomposition of second-order tensors

Vector and tensor valued functions, differential calculus

Coordinates in Euclidean space, tangent vectors

Coordinate transformation, covariant and contravariant components

Gradient, covariant derivative

Christoffel symbols, representation of the covariant derivative

Mock-Examination

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Tensor Algebra and Tensor Analysis for Engineering Students I

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Tensor Algebra and Tensor Analysis for Engineering Students I

MSCAME 0 75 30 45

Exercise (Übung): Tensor Algebra and Tensor Analysis for Engineering Students I

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Tensor Algebra and Tensor Analysis for Engineering Students I Studien-/Prüfungsleistung: Prüfung Tensor Algebra and Tensor Analysis for Engineering Students I Title

Titel

Examination Tensor Algebra and Tensor Analysis for Engineering Students I

Prüfung Tensor Algebra and Tensor Analysis for Engineering Students I Sub-title

Untertitel

Exa: TATA I

P: TATA I

126

Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Tensor Algebra and Tensor Analysis for Engineering Students I Studien-/Prüfungsleistung: Vorlesung Tensor Algebra and Tensor Analysis for Engineering Students I Title

Titel

Lecture: Tensor Algebra and Tensor Analysis for Engineering Students I Vorlesung: Tensor Algebra and Tensor Analysis for Engineering Students I

Sub-title

Untertitel

L: TATA I

V: TATA I Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Tensor Algebra and Tensor Analysis for Engineering Students I Studien-/Prüfungsleistung: Übung Tensor Algebra and Tensor Analysis for Engineering Students I

Title

Titel

Exercise: Tensor Algebra and Tensor Analysis for Engineering Students I Übung: Tensor Algebra and Tensor Analysis for Engineering Students I

Sub-title

Untertitel

E: TATA I

Ü: TATA I Semester

Studiensemester

1

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

127

Module: Tensor Algebra and Tensor Analysis for Engineering Students II

Module

Modulbezeichnung

Tensor Algebra and Tensor Analysis for Engineering Students II

Modul level

Modulniveau

Master

Code

Kürzel

MSCAME

Subtitle

Untertitel

TATA II

Lecture

Lehrveranstaltungen

Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester

2

Person in Charge

Modulverantwortliche

Itskov, Mikhail

Lecturer

Dozenten

Itskov, Mikhail

Language

Sprache

English

Englisch Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module

Wahlmodul

Teaching form

Lehrformen

Written examination (Exa), Lecture (L), Exercise (E)

Klausur (Kl), Vorlesung (V), Übung (Ü) Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60h, Self-study 90h

Gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h Lecture hours / Lecture Hours

Kontaktzeit (SWS)

4

ECTS-Credit Points (CP)

Kreditpunkte

5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

Learning Objectives

Angestrebte Lernergebnisse

Tensor Algebra and Tensor Analysis for Engineering Students II

Additionally to the results of the first part of the course, the students obtain the following

learning outcomes:

The students will

Knowledge / Understanding:

a) acquire knowledge of material symmetry.

Abilities / Skills:

a) be able to formulate constitutive relations for isotropic and anisotropic materials

like fiber-reinforced composites or soft biological tissues

b) be able to formulate various balance equations for solids and fluids in absolute and

index notation on the basis of the field theory and differential calculus

Content

Inhalt

Tensor Algebra and Tensor Analysis for Engineering Students II

128

Three-dimensional vector fields

Divergence and curl

Eigenvalue problem for second-order tensors

Eigenvalues and eigenvectors

Characteristic polynomial

Principal invariants of a second-order tensor

Relationships between principal invariants, principal traces and eigenvalues

Spectral representation and eigenprojections

Spectral decomposition of symmetric tensors

Cayley-Hamilton theorem

Scalar-valued isotropic tensor functions

Representations of isotropic tensor functions

Scalar-valued anisotropic tensor functions

Rychlewski´s theorem

Material symmetry

Isotropic, transversely isotropic and orthotropic materials

Derivatives of scalar-valued tensor functions

Tensor differentiation rules

Derivatives of principal invariants, principal traces and eigenvalues of a second-

order tensor

Constitutive relations for hyperelastic materials

Tensor-valued isotropic tensor functions

Representation theorem

Example: constitutive relations for isotropic and anisotropic elastic materials

Mock-Examination

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur

Lecture Notes

Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel

Code

Kürzel

ECTS

Kredit- punkte

Workload

Arbeits- aufwand (h)

Lecture H.

Kontakt- zeit (h)

Self-Study

Selbst- studium (h)

Duration of Exam

Prüfungs- dauer (min)

Examination (Prüfung): Prüfung Tensor Algebra and Tensor Analysis for Engineering Students II

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Prüfung Tensor Algebra and Tensor Analysis for Engineering Students II

MSCAME 0 75 30 45

Exercise (Übung): Prüfung Tensor Algebra and Tensor Analysis for Engineering Students II

MSCAME 0 75 30 45

Teaching Unit / Examinations: Examination Tensor Algebra and Tensor Analysis for Engineering Students II Studien-/Prüfungsleistung: Prüfung Tensor Algebra and Tensor Analysis for Engineering Students II Title

Titel

Examination Tensor Algebra and Tensor Analysis for Engineering Students II

Prüfung Tensor Algebra and Tensor Analysis for Engineering Students II Sub-title

Untertitel

Exa: TATA II

P: TATA II Semester

Studiensemester

2

129

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Tensor Algebra and Tensor Analysis for Engineering Students II Studien-/Prüfungsleistung: Vorlesung Tensor Algebra and Tensor Analysis for Engineering Students II Title

Titel

Lecture: Tensor Algebra and Tensor Analysis for Engineering Students II Vorlesung: Tensor Algebra and Tensor Analysis for Engineering Students II

Sub-title

Untertitel

L: TATA II

V: TATA II Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Tensor Algebra and Tensor Analysis for Engineering Students II Studien-/Prüfungsleistung: Übung Tensor Algebra and Tensor Analysis for Engineering Students II

Title

Titel

Exercise: Tensor Algebra and Tensor Analysis for Engineering Students II Übung: Tensor Algebra and Tensor Analysis for Engineering Students II

Sub-title

Untertitel

E: TATA II

Ü: TATA II Semester

Studiensemester

2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

130

Module: Welding and Joining Technologies

Module

Modulbezeichnung Welding and Joining Technologies

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel WJT

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 2

Person in Charge

Modulverantwortliche Reisgen, Uwe

Lecturer

Dozenten Reisgen, Uwe

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen Written examination, Lecture, Exercise Klausur (Kl), Vorlesung (V), Übung (Ü)

Workload

Arbeitsaufwand

Total 150h, Lecture Hours 60 h, Self-study 90h

gesamt 150 h, Kontaktzeit 60 h, Selbststudium 90 h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Welding and Joining Technologies

Welding is an interdisciplinary technology. All fields of industrial manufacturing require the

joining of individual parts to functional groups. Many welding and cutting technologies are

applicable for this purpose. After successfully completing this course, the student will have

acquired the following learning outcomes:

Knowledge / Understanding:

a) know and understand the main welding technologies

Abilities / Skills:

b) capable to select the suitable welding technologies for a welding task and to substantiate the selection by specifying the advantages and the disadvantages of the individual methods

Content

Inhalt

Welding and Joining Technologies

Introduction

131

Welding of steel

Gas Fusion Welding

Manual Metal Arc Welding

Submerged Arc Welding

TIG Welding

Plasma Welding

MIG Welding

Electro Gas Welding

Electro Slag Welding

Pressure Welding

Resistance Welding

Electron Beam Welding

Laser Beam Welding

Special Processes

Mechanisation / Automation

Sensor Technology

Brazing

Mechanical Joining / Adhesive Bonding

Essentials in Design and Calculation

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel Code Kürzel

ECTS Kredit- punkte

Workload Arbeits- aufwand (h)

Lecture H. Kontakt- zeit (h)

Self-Study Selbst- studium (h)

Duration of Exam Prüfungs- dauer (min)

Examination (Prüfung): Welding and Joining Technologies

MSCAME 5 0 0 0 120

Lecture (Vorlesung): Welding and Joining Technologies

MSCAME 0 75 30 45 0

Exercise (Übung): Welding and Joining Technologies

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Welding and Joining Technologies Studien-/Prüfungsleistung: Prüfung Welding and Joining Technologies

Title

Titel

Examination Welding and Joining Technologies

Prüfung Welding and Joining Technologies

Sub-title

Untertitel

Exa WJT

P WJT

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Lecture Welding and Joining Technologies Studien-/Prüfungsleistung: Vorlesung Welding and Joining Technologies

Title

Titel

Lecture Welding and Joining Technologies

Vorlesung Welding and Joining Technologies

Sub-title

Untertitel

L WJT

V WJT

Semester

Studiensemester 2

132

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Exercise Welding and Joining Technologies Studien-/Prüfungsleistung: Übung Welding and Joining Technologies

Title

Titel

Exercise Welding and Joining Technologies

Übung Welding and Joining Technologies

Sub-title

Untertitel

E WJT

Ü WJT

Semester

Studiensemester 2

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

133

Module: Mechanics of Forming Processes

Module

Modulbezeichnung Mechanics of Forming Processes

Modul level

Modulniveau Master

Code

Kürzel MSCAME

Subtitle

Untertitel MFP

Lecture

Lehrveranstaltungen See list of lectures and examinations of the module Siehe Liste der Prüfungsleistungen des Moduls

Semester

Studiensemester 3

Person in Charge

Modulverantwortliche Markert, Bernd

Lecturer

Dozenten Jenkouk, Vahid

Language

Sprache

English

Englisch

Assignment to the curriculum

Zuordnung zum Curriculum

Elective Module Wahlmodul

Teaching form

Lehrformen

Examination (Exa), Lecture (L), Exercise (E) – Written or oral examination depending on number of students Prüfung (Kl), Vorlesung (V), Übung (Ü) – Schriftliche oder mündliche Prüfung in Abhängigkeit der Teilnehmerzahl

Workload

Arbeitsaufwand

Total 180h, Lecture Hours 60 h, Self-study 120h

gesamt 180 h, Kontaktzeit 60 h, Selbststudium 120 h

Lecture hours / Lecture Hours

Kontaktzeit (SWS) 4

ECTS-Credit Points (CP)

Kreditpunkte 5

Requirements according to examination regulation

Voraussetzungen nach Prüfungsordnungen

-none-

Learning Objectives

Angestrebte Lernergebnisse

Mechanics of Forming Processes

Knowledge / Understanding

Overall goal: After successfully completing this course, the student will have acquired the

following learning outcomes:

1. Understand the theoretical backgrounds of forming processes and plasticity.

2. Know state of the art metal forming processes such as sheet bending, cupping,

drawing, hydroforming, detonation forming, spinning, rolling, closed die forging and

extrusion

3. Know analytical and numerical modelling techniques in forming (e.g. slab analysis,

upper bound analysis, finite element method)

4. Understand the challenges of modelling forming processes and limitations of the

techniques (e.g. numerical instabilities)

5. Have a notion of ongoing research questions in metal forming

134

Abilities / Skills

Students are able to:

1. Develop mechanicalmodels for describing forming processes 2. Select the appropriate modelling technique for a given forming problem; 3. Determine the right level of model complexity for efficient and reliable simulation 4. Determine load and motion requirements for forming machines/processes

Content

Inhalt

Mechanics of Forming Processes

Course content:

1. Introduction to forming: common industrial metal forming processes and main challenges related to modelling

2. Review of continuum mechanics basics and tensor calculus, kinematic and balance relations

3. Constitutive models of plastic deformation and material properties

4. Boundary conditions: e.g. friction and lubrication, heat transfer, applied loading

5. Analytical methods in forming: e.g. Slab analysis, upper bound method, slip line field analysis

6. Numerical methods in forming: e.g. finite element method, finite difference method

7. Modelling of industrial forming processes demonstrated by examples

8. Ongoing research questions in metal forming

9. Case study e.g. high-speed forming

Media

Medienform

e-Learning L2P, Power Point

Literature

Literatur Lecture Notes Students also receive a list of relevant literature

Lectures / Examinations

Studien-/Prüfungsleistungen

Title

Titel Code Kürzel

ECTS Kredit- punkte

Workload Arbeits- aufwand (h)

Lecture H. Kontakt- zeit (h)

Self-Study Selbst- studium (h)

Duration of Exam Prüfungs- dauer (min)

Examination (Prüfung): Mechanics of Forming Processes

MSCAME 5 0 0 0 30 (oral) or 120 (written)

Lecture (Vorlesung): Mechanics of Forming Processes

MSCAME 0 75 30 45 0

Exercise (Übung): Mechanics of Forming Processes

MSCAME 0 75 30 45 0

Teaching Unit / Examinations: Mechanics of Forming Processes Studien-/Prüfungsleistung: Mechanics of Forming Processes

Title

Titel

Examination Mechanics of Forming Processes

Prüfung Mechanics of Forming Processes

Sub-title

Untertitel

Exa MFP

P MFP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Mechanics of Forming Processes Studien-/Prüfungsleistung: Mechanics of Forming Processes

Title

Titel

Lecture Mechanics of Forming Processes

Vorlesung Mechanics of Forming Processes

135

Sub-title

Untertitel

L MFP

V MFP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung

Teaching Unit / Examinations: Mechanics of Forming Processes Studien-/Prüfungsleistung: Mechanics of Forming Processes

Title

Titel

Exercise Mechanics of Forming Processes

Übung Mechanics of Forming Processes

Sub-title

Untertitel

E MFP

Ü MFP

Semester

Studiensemester 3

Connection to the curriculum

Curriculare Verankerung

Elective module (variable to the semester)

Semestervariable Wahlleistung