modelling and fabrication of high performance schottky

108
Institute of Bio- and Nanosystems Forschungszentrum Jülich

Upload: others

Post on 09-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling and fabrication of high performance Schottky

Jül-

4235

Min

Zha

ng

L

abel

-fre

e de

ctec

tion

of

biom

olec

ules

Jül-4

235

Institute of Bio- and Nanosystems

Modelling and fabrication of high performanceSchottky-barrier SOI-MOSFETs with loweffective Schottky-barriers

Min Zhang

Jül-4235Dezember 2006ISSN 0944-2952

Forschungszentrum Jülichin der Helmholtz-Gemeinschaft

Page 2: Modelling and fabrication of high performance Schottky

Berichte des Forschungszentrums Jülich 4235

Page 3: Modelling and fabrication of high performance Schottky
Page 4: Modelling and fabrication of high performance Schottky

Modelling and fabrication of high performanceSchottky-barrier SOI-MOSFETs with loweffective Schottky-barriers

Min Zhang

Page 5: Modelling and fabrication of high performance Schottky

Berichte des Forschungszentrums Jülich ; 4235ISSN 0944-2952Institute of Bio- and NanosystemsD 82 (Diss., RWTH Aachen, 2006)

Zu beziehen durch: Forschungszentrum Jülich GmbH, • Zentralbibliothek, VerlagD-52425 Jülich • Bundesrepublik Deutschlandin 02461/61-5220 • Telefax: 02461/61-6103 • e-mail: [email protected]

Page 6: Modelling and fabrication of high performance Schottky
Page 7: Modelling and fabrication of high performance Schottky
Page 8: Modelling and fabrication of high performance Schottky
Page 9: Modelling and fabrication of high performance Schottky
Page 10: Modelling and fabrication of high performance Schottky

Contents

1 Introduction 1

2 Principles of SB-MOSFETs 42.1 The SB-MOSFET 42.2 The MOS-capacitor 62.3 Schottky diodes 92.4 Schottky diode current 112.5 Operating principles of SB-MOSFETs 132.6 I-V characteristics of SB-MOSFET devices 15

2.6.1 Long-channel SB-MOSFET 152.6.2 Short-channel SB-MOSFET 182.6.3 SB-MOSFESTs on bulk versus on SOI 20

3 Silicide in SB-MOSFET 223.1 Silicidation of NiSi 23

3.1.1 NiSi films on Si(100) 253.1.2 NiSi films on SOI(100) 26

3.2 Silicidation induced dopant segregation 283.3 Lateral silicidation of NiSi on SOI 30

4 Modelling of SB-MOSFET operation 334.1 Model of device simulation 334.2 Simulation results 34

4.2.1 A 30nm device 344.2.2 Gate oxide thickness 374.2.3 Silicon body thickness 394.2.4 Dopant segregation 39

4.3 Results and discussion 42

5 Schottky diodes 445.1 Fabrication of Schottky diodes 44

Page 11: Modelling and fabrication of high performance Schottky
Page 12: Modelling and fabrication of high performance Schottky
Page 13: Modelling and fabrication of high performance Schottky
Page 14: Modelling and fabrication of high performance Schottky

3

ter 6. Chapter 7 presents the experimental results of fabricated devices andanalyzes the factors affecting the electrical performance of SB-MOSFETs.

Page 15: Modelling and fabrication of high performance Schottky
Page 16: Modelling and fabrication of high performance Schottky

L G

silicide

p-Si

silicid silicidexj

n +

p-Si

silicid xj

n+

(a) Conventional MOSFET

(b) Schottky-barrier MOSFET

silicide silicide

n*-poly n*-poly

Page 17: Modelling and fabrication of high performance Schottky

metal oxide substrate

Page 18: Modelling and fabrication of high performance Schottky

Qs — S

V g

Vg = Vfb + φs − Q^ = Vfb + φs +

√2εCoNbφs

Page 19: Modelling and fabrication of high performance Schottky

(a)

(b)metal oxide p-Si metal oxide p-Si

Ef

Evac

Ec

EiEfEv

(c)

(d)metal oxide p-Si metal oxide p-Si

V gEf-- -----

Ec

Ei

Ef ^VgE vEf

Ec

Ei

EfEv

Page 20: Modelling and fabrication of high performance Schottky
Page 21: Modelling and fabrication of high performance Schottky

q vbiEc

E f

n-Si EvMetal

Page 22: Modelling and fabrication of high performance Schottky

Ef

Page 23: Modelling and fabrication of high performance Schottky

Cexp (kT)

qφbn AA∗∗T2 exp C kT ) ,

nt, A is the diodlfl, 110A

cm2K2

the A∗∗

40Acm2K2 'Or

q ∂Vn =

kT ∂ (ln (I)).

Page 24: Modelling and fabrication of high performance Schottky
Page 25: Modelling and fabrication of high performance Schottky

Esf

Ed

Vds > 0

(d)

Page 26: Modelling and fabrication of high performance Schottky

Vds (a.u.)

S = ln 10 ∂ log Ids

∂Vgs

−1

Page 27: Modelling and fabrication of high performance Schottky
Page 28: Modelling and fabrication of high performance Schottky

Idsat = μeff CoxW

2(L −ld) (Vgs −Vth)

2.

Vds =Vdsat Vds >Vdsat

Page 29: Modelling and fabrication of high performance Schottky

10-7

-3 -2 -1 0Vgs (V)

Page 30: Modelling and fabrication of high performance Schottky

source channel

drain channel drain

Esf

Page 31: Modelling and fabrication of high performance Schottky

buried oxide

Page 32: Modelling and fabrication of high performance Schottky
Page 33: Modelling and fabrication of high performance Schottky
Page 34: Modelling and fabrication of high performance Schottky

silicide

Page 35: Modelling and fabrication of high performance Schottky

40 00 00 70

Weight Percent Silicon

9418"C

tl

gei'c

4)

24 Silicide in SB-MOSFET

Figure 3.2: Nickel-Silicon phase diagram.

(a) (b)

0 Ni

Figure 3.3: Crystal structure of (a) Silicon (Diamond structure) (b) NiSi(MnP structure)

Page 36: Modelling and fabrication of high performance Schottky
Page 37: Modelling and fabrication of high performance Schottky

600 700T(

o C)800

Page 38: Modelling and fabrication of high performance Schottky

900400 500 600 700 800Channel

cide phase (1nmNi + 1.84nmSi → 2.22nmNiSi, 1nmNi +0.91nm Si → 1.4nm Ni2 Si) [431.

Energy (MeV)0.8 1.00.6

80,

0

Page 39: Modelling and fabrication of high performance Schottky

Energy(MeV)

200.. 0:2 0.4 0.6 0.8 1.0 1.2................

0400 600

Channel

800 1000

MeasurementSimulation Ni/Si=1.08/1

Page 40: Modelling and fabrication of high performance Schottky
Page 41: Modelling and fabrication of high performance Schottky

(b)

0 40 80 120 160 200depth (nm)

2110

1710

0 40 80 120depth (nm)

Page 42: Modelling and fabrication of high performance Schottky

300

250

200

150

100

50

10 20 30 40 50t si (nm)

Page 43: Modelling and fabrication of high performance Schottky
Page 44: Modelling and fabrication of high performance Schottky

(∂2

,∂x2 +

∂2

∂z2 )Φ(x, z) = ρ(x, z)

εsi

otential Φf (x) is o

d2 Φf (x) Φf (x) − Φg + Φbi =

ρtot(x)

^εoxwit

εsi

2 2^l A= tsitox,

dx εsi

Page 45: Modelling and fabrication of high performance Schottky
Page 46: Modelling and fabrication of high performance Schottky

0 8 16 24L (nm)

10-2

10 20L (nm)

Page 47: Modelling and fabrication of high performance Schottky

10-4

10-6

10-8

10-10

10-12

Page 48: Modelling and fabrication of high performance Schottky

10-4(a) Vds = 0.4 .... 1.0V

-0.5 0.0 0.5 1.0 1.5Vg (V)

10-13

0 8 16 24L (nm)

0.4

0.0

-0.4

-0.8

-1.2

-1.6

-0.5 0.0 0.5 1.0Vg (V)

Page 49: Modelling and fabrication of high performance Schottky
Page 50: Modelling and fabrication of high performance Schottky
Page 51: Modelling and fabrication of high performance Schottky

10-3

10-5

,.10-7

10-9

-0.5 0.0 0.5 1.0Vg (V)

0.5 1.0

Vg (V)

Page 52: Modelling and fabrication of high performance Schottky
Page 53: Modelling and fabrication of high performance Schottky

-0.5 0.0 0.5 1.0Vg (V)

1.5 0 10 L (nm) 20

100

10-3

10-6

10 -9

10-12

10-15

0.4

0.2

0.0

-0.2

-0.4

(a)^ ^I i^ -I

% •^Vds = 0.8V

1

— 4

Page 54: Modelling and fabrication of high performance Schottky

Nseg (cm−3 Lseg S

2 × 1020

Page 55: Modelling and fabrication of high performance Schottky

li ». p-type∼ 1015cm− 3

As/B was

side of the

Page 56: Modelling and fabrication of high performance Schottky

100

10-2

ä10-4

10-6

-1.5

I − VF charac

ion. (b) I − VF

ation. VF

kTq \AA s T

2

/φbn,bp = — ln

I

Page 57: Modelling and fabrication of high performance Schottky

1.5

0

0.08

0.04

0

-0.04

Page 58: Modelling and fabrication of high performance Schottky

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5VF (V)

0.08-

0.04

0.00

-0.04

-0.08,

Page 59: Modelling and fabrication of high performance Schottky

I = AA**T2 expf

(q^T ) \

exp \q nkTR

s

) — 11

the SB. On the contrary, the I — VF

iplanted dose of 1015cmm2As is worse5 x 1014cm-2As, which mav be due tc

Page 60: Modelling and fabrication of high performance Schottky

0.08

0.04

0.00

-0.04.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5V

F(V)

Page 61: Modelling and fabrication of high performance Schottky
Page 62: Modelling and fabrication of high performance Schottky
Page 63: Modelling and fabrication of high performance Schottky

gate contact (M2)

Page 64: Modelling and fabrication of high performance Schottky

(a)

gatecontact

Page 65: Modelling and fabrication of high performance Schottky
Page 66: Modelling and fabrication of high performance Schottky
Page 67: Modelling and fabrication of high performance Schottky
Page 68: Modelling and fabrication of high performance Schottky
Page 69: Modelling and fabrication of high performance Schottky

26

32

37

43

49

55

60

66

72

(nm)

15

17

19

21

3 6 9 12(mm)

Page 70: Modelling and fabrication of high performance Schottky
Page 71: Modelling and fabrication of high performance Schottky

(b) ^^+;,-^,

^_=- =`

Page 72: Modelling and fabrication of high performance Schottky

(a)

Si-substrate

(b)

Page 73: Modelling and fabrication of high performance Schottky

2 .4• (a)

2 .2•

2 .0•

1 .8•

1 .6•

0 50 100 150 200 250 300Time (s)

Page 74: Modelling and fabrication of high performance Schottky
Page 75: Modelling and fabrication of high performance Schottky

-1.0 -0.5Vds (V)

Page 76: Modelling and fabrication of high performance Schottky
Page 77: Modelling and fabrication of high performance Schottky
Page 78: Modelling and fabrication of high performance Schottky

102

100

E 10-2

E

E 10-4

10-6

-1.0 -0.5V ds (V)

10-8

-2.0 -1.0 0.0Vgs(V)

-1.2 -0.8 -0.4

V ds (V)

Page 79: Modelling and fabrication of high performance Schottky

0 experiments, t ox

=3.7nm--0—simulation, t

ox=2nm

qi4 simulation, tox

=3.7nm

5 10 15 20 25tox (nm)

Page 80: Modelling and fabrication of high performance Schottky

-1.5 -1.0 -0.5Vds (V)

-1.0 0.0Vgs (V)

Page 81: Modelling and fabrication of high performance Schottky
Page 82: Modelling and fabrication of high performance Schottky

-1.0 -0.5Vds (V)

-2.0 -1.0 0.0Vgs(V)

-1.0 -0.5Vds (V)

1 0-8-3.0 -1.5 -1.0 -0.5

Vds (V)-2.0 -1.0

Vgs(V)

Page 83: Modelling and fabrication of high performance Schottky

700 800S (mV/dec)

0900 170 175 180 185 190 195

S (mV/dec)

tox

tox

Page 84: Modelling and fabrication of high performance Schottky

200,V gs =0.1...1.5Vgm=1 35mS/mm

(b)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Vgs (V)

0 0.0 0.5 1.0 1.5 2.0

Vds

(V)

102- (a) Vds =0.1 ... 1.5V .^

100..^

0-21-

10-4•^.

10-6

i)8 . 420mV/dec ii) 70mV/dec

10-

Page 85: Modelling and fabrication of high performance Schottky

Edf

Page 86: Modelling and fabrication of high performance Schottky

60

40

20

-1.

I = WA∗∗T3/2 exp(−qφe f f/kT){exp(qVds/ kT) − 1}

Page 87: Modelling and fabrication of high performance Schottky

101

10 -1

10 -3

10-5

10-7

1.0(a

0.0 0.5 1.0 1.5Vgs (V)

0.0 1.0 2.0Vgs (V)

I 000 01

tox 3.7nm, tsi 8nmtox 3.7nm, tsi 25nmtox 3.7nm, tsi 50nm

,0% - tox 10 nm, tsi 50nmtox 24nm, tsi50nm

e

0.0

t ox 24nm, t si 50nmt ox 10 nm, t si 50nmt ox 3.7nm, t si 50nmt ox 3.7nm, t si 25nmt ox 3.7nm, t si 8nm

4 6 8 10 121000/T

0.3

0.2

0.1

0.0

0.4 0.8 1.2Vgs (V)

-0.4 0.0

Page 88: Modelling and fabrication of high performance Schottky
Page 89: Modelling and fabrication of high performance Schottky

0.0 0.5 1.0 1.5Vds (V)

0Vgs (V)

0

102

100

10 -2

10 -4

10 -6

10 -8

Page 90: Modelling and fabrication of high performance Schottky

Page 91: Modelling and fabrication of high performance Schottky

L=22 nmVdd = 2.5 V

fT=280Ghz !

JülichL=1 umVds=1.5VVgs- Vh =1.5V

10000

1000

100

10

1

0,1

0,01

0,0010

Wang - Vgs=-1.2V /'bs=-1.2V (a)Ikeda Vgs=-1.5V / Vds=-1.5V (b)Saitoh - Vgs=-1.5V / Vds=-1.5V (c)

Itoh - Vgs=-1.5V / Vds=-1.5V (d)Kedzierski - Vgs=-2.2V / Vds=-1.5V (e)

sodamos -Vgs=-2V / Vds=-1.6V (f)sodamos - Vgs=Vds=-2V (f)Spinnaker - Vgs=-2.6V /%s=-1V [g]

500 600 700

Page 92: Modelling and fabrication of high performance Schottky

7.4 Results 81

The comparison of the on-current between the experimental and simulatedresults (not shown) for device with dopant segregation shows a relatively largedeviation indicating that the scattering in a long-channel device becomes se-rious if SBH is low. In contrast, the experimental results of a long-channeldevice with high SB agree well with Simulation results, in spite of the as-sumption of a ballistic transport. Figure 7.16 shows the state-of-the-artSB-MOSFETs of different research groups. The present SB-MOSFET de-vice with dopant segregation has already achieved comparable performance.However, such a device still has an enormous potential for further improvedelectrical performance. Therefore, future work should focus an the combi-nation of ultra-thin oxides, ultra-thin SOI and dopant segregation into anultra-short channel SB-MOSFET device to achieve a higher performance.

Page 93: Modelling and fabrication of high performance Schottky
Page 94: Modelling and fabrication of high performance Schottky
Page 95: Modelling and fabrication of high performance Schottky

Appendix A

Abbreviation

APMCMOSCVDDSHPMICPLPCVDMIGSMOSMOSFETPECVDRBSRIERTPSalicdeSB-MOSFETSBHSEMSIISSIMSSOISPMTEMUHVUTBXRDXTEM

Ammonia peroxide mixtureComplementary metal-oxide-semiconductorChemical vapor depositionDopant segregationHydrochloric acid peroxide mixtureInductive coupled plasmaLow pressure chemical vapor depositionMetal-induced gap statesMetal -oxide -semiconductorMetal-oxide-semiconductor field-effect transistorPlasma enhanced chemical vapor depositionRutherford backscattering spectroscopyReactive ion etchingRapid thermal processingSelf aligned silicideSchottky barrier metal-oxide-semiconductor field-effect transistorSchottky barrier heightScanning electron microscopySilicidation induced impurity segregationSecondary ion mass spectrometrySilicon an insulatorSulfuric acid peroxide mixtureTransmission electron microscopyUltra high vacuumUltra-thin bodyX-ray diffractionCrosssectional transmission electron microscopy

Page 96: Modelling and fabrication of high performance Schottky

Bibliography

[1] ITRS International Technology Roadmap for Semiconductors,http://public.itrs.net/.

[2] Plummer, J. D.; Griffin, P. B.; Material and process limits in siliconVLSI technology, Proceedings of the IEEE, vol.89, no.3, March 2001. p.240-58.

[3] Säll, E.; Vesterbacka, M.; Silicon-on-Insulator CMOS technology forSystem-on-Chip, System-on-Chip Conference 2004, Bastad, Sweden,April 13-14, 2004.

[4] Yagishita, A.; King, T. J.; Bokor, J.; Schottky barrier height reductionand drive current improvement in metal source/drain MOSFET withstrained-Si channel. Japanese Journal of Applied Physics, Part 1, vol.43,no.4B, April 2004. p. 1713-16.

[5] Kedzierski, J.; Xuan, P.; Anderson, E.H.; Bokor, J.; Complementarysilicide source/drain thin-body MOSFETs for the 20 nm gate lengthregime. In: International Electron Devices Meeting 2000. Technical Di-gest. IEDM (Cat. No.00CH37138). Piscataway, NJ, USA: IEEE, 2000.p. 57-60.

[6] Kedzierski, J.; Xuan, P. Q.; Subramanian, V.; Bokor, J.; A 20 nmgate-length ultra-thin body p-MOSFET with silicide source/drain, Su-perlattices and Microstructures, vol.28, no.5-6, 2000. p. 445-52.

[7] Huang, C. K.; Zhang, W. E.; Yang, C. H.; Two-dimensional numericalsimulation of Schottky barrier MOSFET with channel length to 10 nm,IEEE Transactions an Electron Devices, vol.45, no.4, April 1998. p. 842-8.

[8] Connelly, D.; Faulkner, C.; Grupp, D. E.; Performance advantage ofSchottky source/drain in ultrathin-body silicon-on-insulator and dual-

Page 97: Modelling and fabrication of high performance Schottky
Page 98: Modelling and fabrication of high performance Schottky
Page 99: Modelling and fabrication of high performance Schottky

88 BIBLIOGRAPHY

[30] Low, T.; Li, M. F.; Fan, W. J.; Ng, S. T.; Impact of surface roughnesson silicon and germanium ultra-thin-body MOSFETs. In: 2004 Inter-national Electron Devices Meeting (IEEE Cat. No.04CH37602). Piscat-away, NJ, USA: IEEE, 2005. p. 151-4.

[31] Choi, Y. K.; Asano, K.; Lindert, N.; Subramanian, V.; Ultra-thin bodySOI MOSFET for deep-sub-tenth micron era. In: International ElectronDevices Meeting 1999. Technical Digest (Cat. No.99CH36318). Piscat-away, NJ, USA: IEEE, 1999. p. 919-21.

[32] Knoch, J.; Appenzeller, J.; Impact of the channel thickness on theperformance of Schottky barrier metal-oxide-semiconductor field-effecttransistors. Applied Physics Letters, vo1.81, no.16, p. 3082-4, 14 Oct.2002.

[33] Maex, K.; Simly irresistable silicides, Physcis World, Nov. 1998, 35.

[34] Kittl, J. A.; Hong, Q. Z.; Ti and Co silicide phase formation and trans-formations on deep-sub-micron gates for ULSI applications, AIP Con-ference Proceedings, no.418, 1998. p. 439-50.

[35] Beyers, R.; Sinclair, R.; Metastable phase formation in titanium-siliconthin films, Journal of Applied Physics, vo1.57, no.12, 15 June 1985. p.5240-5.

[36] Iwai, H.; Ohguro, T.; Ohmia, S.-I.; NiSi salicide technology for scaledCMOS, Microelectronic Engineering, vo1.60, no.1-2, Jan. 2002. p. 157-69.

[37] Kim, Y. C.; Kim, C.; Choy, J. H.; Park, J. C.; Effects of cobalt sili-cidation and postannealing on void defects at the sidewall spacer edgeof metal-oxide-silicon field-effect transistors, Applied Physics Letters,vol.75, no.9, 30 Aug. 1999. p. 1270-2.

[38] Tsai, J. Y.; Tsui, B. Y.; Chen, M. C.; High-temperature stability of plat-inum silicide associated with fluorine implantation, Journal of AppliedPhysics, vol.67, no.7, 1 April 1990. p. 3530-3.

[39] Wittmer, M.; Tu, K. N.; Low-temperature diffusion of dopant atomsin silicon during interfacial silicide formation, Physical Review B (Con-densed Matter), vol.29, no.4, 15 Feb. 1984. p. 2010-20.

[40] Kittl, J. A.; Lauwers, A.; Chamirian, 0.; Van Dal, M.; Ni- and Co-basedsilicides for advanced CMOS applications, Microelectronic Engineering,vol.70, no.2-4, Nov. 2003. p. 158-65.

Page 100: Modelling and fabrication of high performance Schottky
Page 101: Modelling and fabrication of high performance Schottky

90 BIBLIOGRAPHY

[51] Guo, J.; Lundstrom, M. S.; A Computational Study of Thin Body, Dou-ble Gate, Shottky Barrier MOSFETs, IEEE Transaction on ElectronDevice, vol.49, no.11, Nov. 2002, p. 1897-1902.

[52] Matsuzawa, K.; Uchida, K.; Nishiyama, A.; A unified simulation ofSchottky and ohmic contacts, IEEE Transactions on Electron Devices,vol.47, no.1, Jan. 2000. p. 103-8.

[53] Nishisaka, M.; Asano, T.; Reduction of the floating body effect in SOIMOSFETs by using Schottky source/drain contacts, Japanese Journalof Applied Physics, Part 1, vol.37, no.3B, March 1998. p. 1295-9.

[54] Subramanian, V.; Kedzierski, J.; Lindert, N.; Tam, H.; A bulk-Si-compatible ultrathin-body SOI technology for sub-100 nm MOS-FETs. In: 1999 57th Annual Device Research Conference Digest (Cat.No.99TH8393). Piscataway, NJ, USA: IEEE, 1999. p. 28-9.

[55] Takagi, S.; Mizuno, T.; Tezuka, T.; Sugiyama, N.; Sub-band struc-ture engineering for advanced CMOS channels, Solid-State Electronics,vol.49, no.5, May 2005. p. 684-94.

[56] Knoch, J.; Modeling and Realization of an Ultra-Short Channel MOS-FET, Ph.D thesis, RWTH Aachen 2001.

[57] Doyle, B.; Arghavani, R.; Barlage, D.; Datta, S.; Transistor elementsfor 30nm physical gate lengths and beyond, Intel Technology Journal,no.2, 2002, http://developer.intel.com/technology/itj/index.htm.

[58] Lu, Y.; Buiu, 0.; Hall, S.; Hurley, P. K.; Optical and electrical char-acterization of hafnium oxide deposited by MOCVD, MicroelectronicsReliability, vol.45, no.5-6, May-June 2005. p. 965-8.

[59] Lee, B. H.; Choi, R.; Kang, L.; Gopalan, S.; Characteristics of TaNgate MOSFET with ultrathin hafnium oxide (8 AA-12 AA). In: Inter-national Electron Devices Meeting 2000. Technical Digest. IEDM (Cat.No.00CH37138). Piscataway, NJ, USA: IEEE, 2000. p. 39-42.

[60] Osvald, J.; Comment on negative Schottky barrier between titanium andn-type Si(001) for low-resistance ohmic contacts, Solid-State Electronics,vol.48, no.12, Dec. 2004. p. 2347-9.

[61] Rhoderick, E. H.; Williams, R. H.; Metal-Semiconductor Contacts, Sec-ond edition, Oxford Science Publications, 1988.

Page 102: Modelling and fabrication of high performance Schottky

BIBLIOGRAPHY 91

[62] Morin, F. J.; Maita, J. P.; Electrical Properties of Silicon ContainingArsenic and Boron, Physical Review, vol.96, 1954. p. 28-35.

[63] Choi, Y. K.; King, T. J.; Hu, C. M.; A spacer patterning technology fornanoscale CMOS, IEEE Transactions an Electron Devices, vol.49, no.3,March 2002. p. 436-41.

[64] Hong, S. I; Surface roughness of utra-thin oxide depending an oxidationmethod, SMDL annual report 2000.

[65] Celler, G. K.; Barr, D. L.; Rosamilia, J. M.; Thinning of Si in SOI wafersby the SC1 standard clean. In: 1999 IEEE International SOI Conference.Proceedings (Cat. No.99CH36345). Piscataway, NJ, USA: IEEE, 1999.p. 114-15.

[66] Appenzeller, J.; del Alamo, J.A.; Martel, R.; Chan, K.; Ultrathin 600degrees C wet thermal silicon dioxide. Electrochemical and Solid-StateLetters, vol.3, no.2, Feb. 2000. p. 84-6,

[67] Waite, A. M.; Lloyd, N. S.; Ashburn, P.; Evans, A. G. R.; Raisedsource/drain (RSD) for 50nm MOSFETs - effect of epitaxy layer thick-ness an short channel effects. In: ESSDERC 2003. Proceedings of the33rd European Solid-State Device Research - ESSDERC '03 (IEEE Cat.No. 03EX704). Piscataway, NJ, USA: IEEE, 2003. p. 223-6.

[68] Hisamoto, D.; FD/DG-SOI MOSFET-a viable approach to overcomingthe device scaling limit, In: International Electron Devices Meeting.Technical Digest (Cat. No.01CH37224). Piscataway, NJ, USA: IEEE,2001. p . 19.3.1-4.

[69] Dubois, E.; Larrieu, G.; Low Schottky barrier source/drain for advancedMOS architecture: device design and material considerations, Solid-State Electronics, vol.46, no.7, July 2002. p. 997-1004.

[70] Liu, H. Y.; A patterning process with sub-10 nm 3-s CD control for 0.1CMOS Technologies, SPIE vol.3331, 1997. p.375-381.

[71] Zheng, S. D.; Han, R. Q.; Liu, X. Y.; Guan, X. D.; A novel sub-50 nmpoly-Si gate patterning technology. Chinese Journal of Semiconductors,vol.22, no.5, May 2001. p. 565-8.

[72] Maex, K.; Rossurn, M. van; Properties of Metal Silicides, Institution ofElectrical Engineers, London, 1995.

Page 103: Modelling and fabrication of high performance Schottky

92 BIBLIOGRAPHY

[73] Kluth, P.; Selbstassemblierte Nanostrukturierung ultradünner Silizid-schichten und Entwicklung von Nano-MOSFET-Bauelementen, Ph.Dthesis, RWTH Aachen 2002.

[74] Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Field-modulatedcarrier transport in carbon nanotube transistors. Physical Review Let-ters, vol.89, no.12, 16 Sept. 2002. p. 126801/1-4.

[75] Pikus, F. G.; Likharev, K. K.; Nanoscale field-effect transistors: anultimate size analysis, Applied Physics Letters, vol.71, no.25, 22 Dec.1997. p. 3661-3.

[76] Kinoshita, A.; Tsuchiya, Y.; Yagishita, A.; Uchida, K.; Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier heightengineering with dopant segregation technique. In 2004 Symposium anVLSI Technology. p. 168-9.

[77] Topuria, T.; Browning, N. D.; Ma, Z.; Characterization of ultrathindopant segregation layers in nanoscale metal-oxide-semiconductor fieldeffect transistors using scanning transmission electron microscopy, Ap-plied Physics Letters, vol.83, no.21, 24 Nov. 2003. p. 4432-4434.

[78] Calvet, L. E.; Luebben, H.; Reed, M. A.; Wang, C.; Subthresholdand scaling of PtSi Schottky barrier MOSFETs, Superlattices and Mi-crostructures, vol.28, no.5-6, 2000. p. 501-6.

[79] Appenzeller, J.; Radosavljevic, M.; Knoch, J.; Avouris, P.; Tunnelingversus thermionic emission in one-dimensional semiconductors, PhysicalReview Letters, vol.92, no.4, 30 Jan. 2004. p. 048301/1-4.

[80] Snyder, J. P.; Helms, C. R.; Nishi, Y.; Experimental investigation of aPtSi source and drain field emission transistor, Applied Physics Letters,vol.67, no.10, 4 Sept. 1995. p. 1420-2.

[81] Andrews, J. M., Jr.; Lepselter, M. P.; Reverse current-voltage character-istics of metal-silicide Schottky diodes. In: International electron devicesmeeting. New York, NY, USA: IEEE, 1968. p. 78.

[82] Wang, C.; Snyder, J. P.; Tucker, J. R.; Sub-40nm PtSi Schottkysource/drain metal-oxide-semiconductor-field-effect transistors, AppliedPhysics Letters, vol.74, no.8, 22 Feb. 1999. p. 1174-6.

[83] Ikeda, K.; Yamashita, Y.; Endoh, A.; Fukano, T.; 50-nm gate Schottkysource/drain p-MOSFETs with a SiGe channel, IEEE Electron DeviceLetters, vol.23, no.11, Nov. 2002. p. 670-2.

Page 104: Modelling and fabrication of high performance Schottky

lille1. f r/sites−perso/baie/index.html

Page 105: Modelling and fabrication of high performance Schottky

Acknowledgements

I would like to thank everyone that contributed in various ways to this thesis.My especial thanks goes to:

Prof. Dr. S. MantlI clearly remember the interview three years ago and I think it is my luck thatI can be accepted into his research group. I thank him for giving me suchan opportunity and providing a very interesting topic for my Ph.D thesis.Throughout the present work, he has shown tremendous care and Supportto solve different encountered problems. His kindly encouragement helps mebreak through the most difficult time of this work.

Prof. Dr. H. LüthI appreciate him for the possibility of the Promotion and advice for this work.

Dr. J. KnochI would like to thank him for lots of interesting discussions and the correc-tions of my Ph.D thesis. Thanks to his enthusiastic help, I can go an theright track and complete the work smoothly. I am impressed by his solidfundamental knowledge in physics and have learned a lot from him throughcountless hot discussions.

Dr. Q.T. ZhaoHe is my good teacher in processing technology. Without his instructions andhelp, I can not master the processing technology so quickly to begin with thefabrication of the devices. Throughout the present work, he has also givenme a lot of meaningful suggestions and advices. I cannot thank him enoughfor all that he has done for me.

Dipl. Phys. S. FesteHis generous help, insightful discussion and intimate cooperation made pos-sible for the on-going as well as future work. Especially, thank for the friend-

Page 106: Modelling and fabrication of high performance Schottky

Acknowledgements 95

ship and for the good time we had together during summer school in Greno-ble.

Dipl. Ing. M. Wagner, my roommate in the office for his help with RBSmeasurements and interesting talk about different topics.

Steffi LenkThe high quality cross section TEM micrographs in the thesis make possibleto have more finding of device itself. Her generous help and kindness has leftme deep impression.

W. Michelsen, K. Panitz, A. Dahmen, Dr. Helge Bay for lots of Implan-tation and MBE growth.

H. Wingens and Dipl. Ing. A. Steffen for PECVD deposition and E-beamevaporation. They both are always so friendly to help me, I appreciate themvery much.

Dipl. Ing. H-P. Bochem for lots of SEM micrographs and Dr. U. Breuerfor a lot of SIMS data.

Dr. Bernd Holländer for the introduction to the RBS-system.

J. Müller for the introduction of the cleaning room, lots of gate oxidationand his Sense of humor and friendship.

K-H. Deussen for the LPCVD deposition every Wednesday for almost twoyears.

Dipl. Phys. E. Rije for the help with XRD measurements and Dr. T.Stoica for selective epitaxy growth.

Dipl. Ing. A. Fox for his help with low temperature measurements andH. Schwalbach for the maintenance of RBS-system.

Dr. J. moers and Dr. M. Goryll for the constructive discussions.

Last but not least, my thanks go to my wife Li, BeiQing. I am indebtedto her so much, but she waits for me patiently and gives me tremendousencouragement. Without her generous mutual understanding, I would notbe able to concentrate an my work and get good results.

Page 107: Modelling and fabrication of high performance Schottky
Page 108: Modelling and fabrication of high performance Schottky

Jül-

4235

Min

Zha

ng

L

abel

-fre

e de

ctec

tion

of

biom

olec

ules

Jül-4

235

Institute of Bio- and Nanosystems

Modelling and fabrication of high performanceSchottky-barrier SOI-MOSFETs with loweffective Schottky-barriers

Min Zhang

Jül-4235Dezember 2006ISSN 0944-2952

Forschungszentrum Jülichin der Helmholtz-Gemeinschaft