model sht 1

Upload: govindappa-ramappa

Post on 05-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Model sht 1

    1/30

  • 8/2/2019 Model sht 1

    2/30

    Current and voltage transformers

    Current or voltage instrument transformers are necessary for isolating the protection,control and measurement equipment from the high voltages of a power system, and for

    supplying the equipment with the appropriate values of current and voltage - generally

    these are 1A or 5 for the current coils, and 120 V for the voltage coils.

    The behavior of current and voltage transformers during and after the occurrence of a

    fault is critical in electrical protection since errors in the signal from a transformer can

    cause maloperation of the relays.

    In addition, factors such as the transient period and saturation must be taken into

    account when selecting the appropriate transformer.

    When only voltage or current magnitudes are required to operate a relay then therelative direction of the current flow in the transformer windings is not important.

    However, the polarity must be kept in mind when the relays compare the sum or difference

    of the currents.

  • 8/2/2019 Model sht 1

    3/30

    1- Voltage transformers:

    With voltage transformers (VTs) it is essential that the voltage from the secondary

    winding should be as near as possible proportional to the primary voltage.

    In order to achieve this, VTs are designed in such a way that the voltage drops in the

    windings are small and the flux density in the core is well below the saturation value so

    that the magnetization current is small; in this way magnetization impedance is obtained

    which is practically constant over the required voltage range. The secondary voltage of aVTis usually 110 or120 Vwith corresponding line-to-neutral values. The majority of

    protection relays have nominal voltages of110 or63.5 V, depending on whether their

    connection is line-to-line or line-to-neutral.

    Figure 1 Voltage transformer equivalent circuits

    Figure 2 Vector diagram for voltage transformer

    1.1 Equivalent circuits

    VTs can be considered as small power transformers so that their equivalent circuit

    is the same as that for power transformers, as shown in Figure 1a. The magnetization

    branch can be ignored and the equivalent circuit then reduces to that shown in Fig 1b.

    The vector diagram for a VTis given in Figure.2, with the length of the voltage

    drops increased for clarity. The secondary voltage Vs lags the voltage Vp/n and is

    smaller in magnitude. In spite of this, the nominal maximum errors are relatively small.

    VTs have an excellent transient behaviour and accurately reproduce abrupt changes in.

    the primary voltage.

  • 8/2/2019 Model sht 1

    4/30

    1.2 Errors

    When used for measurement instruments, for example for billing and control

    purposes, the accuracy of a VTis important, especially for those values close to the

    nominal system voltage.

    Notwithstanding this, although the precision requirements of a VTfor protection

    applications are not so high at nominal voltages, owing to the problems of having to

    cope with a variety of different relays, secondary wiring bu rd ens and the uncertainty

    of system parameters, errors should he contained within narrow limits over a widerange of possible voltages under fault conditions.

    This range should be between 5 and 173% of the nominal primary voltage for VTs

    connected between line and earth.

    Referring to the circuit in Figure 1a, errors in a VTare clue to differences in

    magnitude and phase between Vp/n, and Vs. These consist of the errors under open-

    circuit conditions when the load impedance B is infinite, caused by the drop in

    voltage from the circulation of the magnetization current through the primary winding,

    and errors due to voltage drops as a result of the load current ILflowing through both

    windings. Errors in magnitude can be calculated fromErrorV T= {(n Vs - Vp) / Vp} x 100%. If the error is positive, then the secondary

    voltage exceeds the nominal value.

    1.3 Burden

    The standard burden for voltage transformer is usually expressed in volt-amperes (V)

    at a specified power factor.

    Table 1 gives standard burdens based onANSIStandard C57.1 3. Voltage

    transformers are specified inIECpublication 186 by the precision class, and the

    value of volt-amperes (V).The allowable error limits corresponding to different class values are shown in

    Table 2, where Vn is the nominal voltage. The phase error is considered positive when

    the secondary voltage leads the primary voltage. The voltage error is the percentage

    difference between the voltage at the secondary terminals, V2, multiplied by the

    nominal transformation ratio, and the primary voltages V1.

    1.4 Selection of VTs

    Voltage transformers are connected between phases, or between phase and earth.

    The connection between phase and earth is normally used with groups of three single-

    phase units connected in star at substations operating with voltages at about 34.5 kV

    or higher, or when it is necessary to measure the voltage and power factor of each

    phase separately.

    The nominal primary voltage of a VTis generally chosen with the higher nominal

    insulation voltage (kV) and the nearest service voltage in mind. The nominal secondary

    voltages are generally standardized at 110 and 120 V. In order to select the nominal

    power of a VT, it is usualto acid together all the nominal V loadings of the apparatus

    connected to

    Table 1 Standard burdens for voltage TransformerStandard burden Characteristics for 120 V

    and 60 Hz

    Characteristics for 69.3 V

    and 60 Hz

  • 8/2/2019 Model sht 1

    5/30

    design Volt-

    amperes

    power

    factor

    resistance() inductance

    (H)

    impedance

    ( )

    resistance

    ( )

    inductance

    (H)

    impedance

    ( )

    W 12.5 0.10 115.2 3.040 1152 38.4 1.010 384

    25.0 0.70 403.2 1.090 575 134.4 0.364 192

    75.0 0.85 163.2 0.268 192 54.4 0.089 64

    200.0 0.85 61.2 0.101 72 20.4 0.034 24

    400.0 0.85 31.2 0.0403 36 10.2 0.0168 12

    35.0 0.20 82.3 1.070 411 27.4 0.356 137

    Table 2 Voltage transformers error limitsClass Primary

    voltage

    Voltage

    error (

    %)

    Phase error

    (min)

    0.1

    0.8 Vn , 1.0

    Vn and 1.2

    Vn

    0.1 0.5

    0.2 0.2 10.0

    0.5 0.5 20.0

    1.0 1.0 40.0

    0.1

    0.5 Vn

    1.0 40.0

    0.2 1.0 40.0

    0.5 1.0 40.0

    1.0 2.0 80.0

    0.1

    Vn

    0.2 80.0

    0.2 2.0 80.0

    0.5 2.0 80.0

    1.0 3.0 120.0

    Vn = nominal voltageThe VT secondary winding. In addition, it is important to take account of the voltage

    drops in the secondary wiring, especially if the distance between the transformers and the

    relays is large.

    1.5 Capacitor volt age transformers

    In general, the size of an inductive VT is proportional to its nominal voltage and, for

    this reason, the cost increases in a similar manner to that of a high voltage transformer. One

    alternative, and a more economic solution, is to use a capacitor voltage transformer.

    This device is effectively a capacitance voltage divider, and is similar to a resistivedivider in that the output voltage at the point of connection is affected by the load - in fact

    the two parts of the divider taken together can be considered as the source impedance

    which produces a drop in voltage when the load is connected.

  • 8/2/2019 Model sht 1

    6/30

    Figure 4 Capacitor VT equivalent circuit

    The capacitor divider differs from the inductive divider in that the equivalent

    impedance of the source is capacitive and the .fact that this impedance can be

    compensated for by connecting a reactance in series at the point of connection.

    With an ideal reactance there are no regulation problems - however, in an actual

    situation on a network, some resistance is always present. The divider can reduce the

    voltage to a value which enables errors to be kept within normally acceptable limits.

    For improved accuracy a high voltage capacitor is used in order to obtain a biggervoltage at the point of connection, which can be reduced to a standard voltage using a

    relatively inexpensive trans-former as shown in Figure 3.

    simplified equivalent circuit of a capacitorVTis shown in Figure 4 in which Viis equal to the nominal primary voltage, Cis the numerically equivalent impedance equal

    to ( C1 + C2 ),Lis the resonance inductance,Ri represents the resistance of the primary

    winding of transformer plus the losses in CandL, andZe is the magnetization

    impedance of transformer. Referred to the inter-mediate voltage, the resistance of the

    secondary circuit and the load impedance are represented by and respectively,

    while and represent the secondary voltage and current.

    Figure 5 Capacitor VT vector diagram

    It can be seen that, with the exception ofC, the circuit in Figure 4.4 is the same as the

    equivalent circuit of a power transformer. Therefore, at the system frequency when CandL

    are resonating and canceling out each other, under stable system conditions the capacitorVTacts like a conventional transformer.Ri andR's are not large and, in addition, Ie is

    small compared to I' s, so that the vector difference between Vi and V's which constitutes

    the error in the capacitorVT, is very small.

    This is illustrated in the vector diagram shown in Figure 4.5 which is drawn for a

    power factor close to unity. The voltage error is the difference in magnitude between Vi

  • 8/2/2019 Model sht 1

    7/30

    and V's, whereas the phase error is indicated by the angle . From the diagram it can be

    seen that, for frequencies different from the resonant frequency, the values of EL and ECpredominate, causing serious errors in magnitude and phase.

    CapacitorVTs display better transient behaviour than electro-magnetic VTs as the

    inductive and capacitive reactance in series are large in relation to the load impedance

    referred to the secondary voltage, and thus, when the primary voltage collapses, the

    secondary voltage is maintained for some milliseconds because of the combination of the

    series and parallel resonant circuits represented byL, Cand the transformerT.

    2 Current transformers

    Although the performance required from a current transformer(CT) varies with the type of

    protection, high grade CTs must always be used. Good quality CTs are more reliable and

    result in less application problems and, in general, provide better protection.

    Figure 6 Current transformer equivalent circuits

    The quality ofCTs is very important for differential protection schemes where the

    operation of the relays is directly related to the accuracy of the CTs under fault

    conditions as well as under normal load conditions.

    CTs can become saturated at high current values caused by nearby faults; to avoid

    this, care should be taken to ensure that under the most critical faults the CToperates on

    the linear portion of the magnetization curve. In all these cases the CTshould be a bleto supply sufficient current so that the relay operates satisfactorily.

    2.1 Equivalent circuit

    An approximate equivalent circuit for a CTis given in Figure 4.6a,

    Where n2ZH represents the primary impedanceZH referred to the secondary side, and

    the secondary impedance is,ZL,Rm andXm represent the losses and the excitation of the

    core.

    The circuit in Figure 4.6a can be reduced to the arrangement shown in figure 4.6b

    whereZH can be ignored, since it does not influence either the currentIH/nor the voltage

    acrossXm. The current flowing throughXm is the excitation currente.The vector diagram, with the voltage drops exaggerated for clarity, is shown in Figure 4.7.

    In general,ZL, is resistive andelags Vs by 90, so thatIe is the principal source of error.

    Note that the net effect ofIeis to makeIlag and be much smaller thanH /n, the primary

    current referred to the secondary side.

  • 8/2/2019 Model sht 1

    8/30

    Figure 7 Vector diagram for the CT equivalent

    circuit

    2.2 Errors

    The causes of errors in a CTare quite different to those associated with VTs. In effect,

    the primary impedance of a CTdoes not have the same influence

    On the accuracy of the equipment it only adds an impedance in series with the line, which

    can be ignored. The errors are principally due to the current which circulates through the

    magnetizing branch.

    The magnitude error is the difference in magnitude betweenH / n andIL and is equaltoIr the component ofIe in line with k (see Figure 7).

    The phase error, represented by , is related toIq the component ofIe which is in

    quadrature withIL. The values of the magnitude and phase errors depend on the relative

    displacement betweenIe andIL, but neither of them can exceed the vectorial error it should

    be noted that a moderate inductive load, withIe andILapproximately in phase, has a small

    phase error and the excitation component results almost entirely in an error in the

    magnitude.

    2.3 AC saturationCerrors result from excitation current, so much so that, in order to check if a CTis

    functioning correctly, it is essential to measure or calculate the excitation curve. The

    magnetization current of a CTdepends on the cross section and length of the magnetic

    circuit, the number of turns in the windings, and the magnetic characteristics of the material.

    Thus, for a given CT, and referring to the equivalent circuit of Figure 4.6b, it can be

    seen that the voltage across the magnetization impedance,Es, is directly proportional to the

    secondary current. From this it can be concluded that, when the primary current and

    therefore the secondary current is increased, these currents reach a point where the core

    commences to saturate and the magnetization current becomes sufficiently high to producean excessive error.

    When investigating the behaviour of a CT, the excitation current should he measured

    at various values of voltage the so-called secondary injection test. Usually, it ismore

    convenient to apply a variable voltage to the secondary winding, leaving the primary

    winding open-circuited. Figure 4.8a shows the typical relationship between the secondary

    voltage and the excitation current determined in this way.

    In European standards the pointp on the curve is called the saturation or knee point

    and is defined as the point at which an increase in the excitation voltage of ten per cent

    produces an increase of 50 % in the excitation current. This point is referred to in the ANSI /

    IEEE standards as the intersection of the excitation curves with a 45 tangent line, as

    indicated in Figure 4.8b. The European knee point is at a higher voltage than the ANSI/IEEE

    Knee point.

  • 8/2/2019 Model sht 1

    9/30

    2.4 Burden

    The burden of a CTis the value in ohms-of the impedance on the secondary side of

    the CTdue to the relays and the connections between the CTand the relays. By way of

    example, the standard burdens forCTs with a nominal secondary current of 5 A are shown

    in Table 3, based on ANSI Standard C57.13.

    IEC Standard Publication 185(1987) specifies CTs by the class of accuracy followed by the

    letter or P, which denotes whether the transformer is suitable for measurement or

    protection purposes, respectively. The current and phase-error limits for measurement andprotection CTs are given in Tables 4a and 4.4b. The phase error is considered positive when

    the secondary current leads the primary current.

    The current error is the percentage deviation of the secondary current, multiplied by

    the nominal transformation ratio, from the primary current, i.e. {(CTR x 2) I1} I1 (%),

    whereI1 = primary current (A),I2 = secondary current (A) and CTR = current transformer

    transformation ratio. Those CTclasses marked with `ext' denote wide range (extended)

    current transformers with a rated continuous current of 1.2 or 2 times the nameplate current

    rating.

    2.5 Selection of CTsWhen selecting a CT, it is important to ensure that the fault level and normal load

    conditions do not result in saturation of the core and that

    CT magnetization curves

    Figure 8a CT magnetization curves

  • 8/2/2019 Model sht 1

    10/30

    Figure 8b CT magnetization curves

    a Defining the knee point in a CT excitation curve according to Europeanstandards

    b Typical excitation curves for a multi ratio class C CT (From IEEE Standard

    C57.13-1978; reproduced by permission of the IEEE).

    Table 4.3 Standard burdens for protection

    CTs with 5 secondary current

    Designation Resistance

    ()

    Inductance

    (mH)

    Impedance

    ()

    Volt-

    amps

    (at 5 A)

    Power

    factor

    B-10.5

    2.3 1.0 25 0.5

    B-2 1.0 4.6 2.0 50 0.5

    B-4 2.0 9.2 4.0 100 0.5

    B-8 4.0 18.4 8.0 200 0.5

    The errors do not exceed acceptable limits. These factors can be assessed from: formulae;

    CT magnetization curves;

    CT classes of accuracy.

  • 8/2/2019 Model sht 1

    11/30

    The first two methods provide precise facts for the selection of the CT. The third only

    provides a qualitative estimation. The secondary voltage in Figure 4.6U has to be

    determined for all three methods. If the impedance of the magnetic circuit, Xm is high,

    this can be removed from the equivalent circuit with little error' givingEs=Vs and thus:

    Vs=IL (ZL+ZC+ZB) (1)

    Where

    Vs = r.m.s. voltage induced in the secondary winding=maximum secondary current in amperes;

    this can be determined by dividing the maximum

    Fault current on the system by the transformer

    turns ratio selected

    ZB = ex ter na l impedance connected

    ZL = impedance of the secondary winding

    ZC=impedance of the connecting wiring

    Use of the formulaThis method utilizes the fundamental transformer equation:

    Vs= 4.44.f. . N. Bmax.10 -8 V (2)

    Where

    f =frequency in Hz,

    =cross-sectional area of core (cm2)

    =number of turns

    Bmax =flux density (lines/cm2)

    Table 4 Error limits for measurement current transformers

    Class % current error at the given

    proportion of rated current shown

    below

    % phase error at the given proportion of the rated

    current shown below

    2.0

    *

    1.2 1.0

    0

    0.5

    0

    0.2

    0

    0.10

    0.05

    2.0

    *

    1.2 1.

    0

    0.5 0.

    2

    0.1 0.0

    5

    0.1

    0.1 0.1

    0.2 0.25 5 5

    8 10

    0.2 0.2 0.2 0.35

    0.50 10 10 15 20

    0.5 0.5 0.5 0.75

    1.00 30 30 45 60

    1.0 1.0 1.0 1.5 2.00 60 60 - 90 120

    -

    3.0 3.0 3.0 - - - - _ 120

    - 120

    - - -

    0.1 0.1 0.1 0.2 0.25 0.4 5 - 5 8 10 15

    0.2ext

    0.2 0.2 0.35

    0.50 0.75

    10 - 10 15 20 30

    0.5ext

    0.5 0.5 0.75

    1.00 1.5 30 - 30 45 60 90

    1.0ext

    1.0 1.0 1.5 2.00 60 - 60 - 90 120 -

    3.0ext

    3.0 - - 3.0 - - - 120 - - 120 - - -

  • 8/2/2019 Model sht 1

    12/30

    *ext = 200 %

    Table 4b Error limits for protection current transformers

    Accuracy

    Class

    +/- percentage

    Current

    ratio error

    +/- Phase error

    (minutes)

    % Current 5 20 100 120 5 20 100 1200.1 0.4 0.2 0.1 0.1 15 8 5 5

    0.2 0.75 0.35 0.2 0.2 30 15 10 10

    0.5 1.5 0.75 0.5 0.5 90 45 30 30

    1.0 3 1.5 1.0 1.0 180 90 60 60

    Total error for nominal error limit current and nominal load is five per cent for 5P and 5

    ext CTs and ten per cent for 10P and 10P ext CTs.The cross-sectional area of metal and the saturation flux density are sometimes

    difficult to obtain.

    The latter can be taken as equal to 100 000lines/Cm2, which is a typical value for

    modern transformers. To use the formula, V is determined from eqn. 4.1 and Bmax. is then

    calculated using eqn. 2. IfBmax.

    Exceeds the saturation density, there could be appreciable errors in the secondary current

    and the CT selected would not be appropriate.

    Example 1.

    Assume that a CT with a ratio of 2000/5 is available, having a steel core of highpermeability, a cross-sectional area of 3.25 In cm2 and a secondary winding with a

    resistance of 0.31 . The impedance of the relays, including connections, is 2 . Determine

    whether the CT would be saturated by a fault of 35 000 A at 50 Hz.

    Solution

    If the CT is not saturated, then the secondary current, IL, is

    35 000x 5/2000=87.5 A. N= 2000/5 = 400 turns

    And Vs=87.5x (0.31+2) =202.1 V. Using eqn. 4.2, Bmax, can now becalculated:Bmax = 202.1X108/4.44X50X3.25X400=70 030 lines/ cm2

    Since the transformer in this example has a steel core of high permeability, this relativelylow value of flux density should not result in saturation.

    Using the magnetization curve

    Typical CT excitation curves which are supplied by manufacturers state the r.m.s.

    current obtained on applying an r.m.s. voltage to the secondary winding, with the primary

    winding open-circuited.

    The curves give the magnitude of the excitation current required order to obtain a

    specific secondary voltage.

    The method consists of producing a curve which shows the relationship between the

    primary and secondary currents for one tap and specified load conditions, such as shown in

    Figure 4.9.

    Starting with any value of secondary current, and with the help of the magnetisation

    curves, the value of the corresponding primary current can be determined. The process is

    summarized in the following steps:

  • 8/2/2019 Model sht 1

    13/30

    (a) Assume a value for IL.

    (b) Calculate Vs in accordance with eqn. 4.1.

    (c) Locate the value of Vs on the curve for the tap selected, and find the associated value of

    the magnetization current, Ie.

    d) Calculate I H / n (=IL + Ie) and multiply this value by n to refer it to the primary side of

    the CT.

    (e) This provides one point on the curve of IL against IH, and the process is then repeated

    to obtain other values of IL and the resultant values of IH. By joining the points together

    the curve of IL against IH is obtained.

    Figure 4.9 using the

    magnetization curve

    a - assume a value for IL.

    b - Vs = IL ( Z L + Z C + Z B )

    c - find I e from the curve

    d - IH=n(I1,+ I e )

    e - draw the point on the curve

    This method incurs an error in calculating IH /n by adding I e and IL togetherarithmetically and not vectorially, which implies not taking account of the load angle

    and the magnetizations branch of the equivalent circuit. However, this error is not great

    and the simplification snakes it easier to carry out the calculations.

    After construction, the curve should be checked to confirm that the maximum

    primary fault current is within the transformer saturation zone. If not, then it will be

    necessary to repeat the process, changing the tap until the fault current is within the

    linear part of the characteristic.

    In practice it is not necessary to draw the complete curve because it is sufficient to

    take the known fault current and refer to the secondary winding, assuming that there is nosaturation for the tap selected.

    This converted value can be taken as IL initially for the process described earlier.

    If the tap is found to be suitable after finishing the calculations, then a value of IH can be

    obtained which is closer to the fault current.

  • 8/2/2019 Model sht 1

    14/30

  • 8/2/2019 Model sht 1

    15/30

    (I) limitation of size of CTs and more importantly

    (II) the fact that the open circuit volts would be dangerously high for large CTs Primary

    ratings, such as those encountered on large turbo alternators, e.g. 5,000 amperes. It is

    standard practice in such applications to use a cascade arrangement of say 5,000/20A

    together with 20/1A interposing auxiliary CTs

    Instantaneous over current relays

    Class P method of specification will a suffice. A secondary accuracy limit current greatly inexcess of the value t o cause relay operation serves no useful purpose and a rated accuracy

    limit of5 will usually be adequate.

    When such relays are set to operate at high values of over current, say from 5 to 15 times the

    rated current o f the transformer, the accuracy limit factor must be at least as high as the

    value of the setting current used in order to ensure fast relay operation.

    Rated outputs higher than 15VA and rated accuracy limit factors higher than 10 are not

    recommended for general purposes. It ispossible, however, to combine a higher rated

    accuracy limit factor with a lower rated output and vice versa. But when the product of these

    two exceeds 150 the resulting current transformer may be uneconomical, and/orofundulylarge dimensions.

    Over current relays with Inverse and Definite Minimum Time

    (IDMT) lag characteristic

    In general, for both directional and non-directional relays class 10P current transformers

    should be used

    Earth fault relays with inverse timecharacteristic

    (1) Schemes in which phase fault current stability and accurate time grading are not

    required.

    Class 10P current transformers are generally recommended in which the product of rated

    output and rated accuracy limit fact or approaches 150 provided that the earth fault relay

    is

    not set below 20% of the rated current of the associated current transformer and that the

    burden of the relay at its setting current does not exceed 4VA.

    (2) Schemes in which phase fault stability and/or where time grading is critical.

    Class 5P current transformers in which the product of rated output and accuracy

    limit factor approaches 150 should be used.

    They are in general suitable for ensuring phase fault stability up to 10 times the rated

    primary current and for maintaining time grading of the earth f a u l t relays, up to current

    values of the order of 10 times the earth fault setting provided t h a t the phase burden

    effectively imposed on each current transformer does not exceed 50% of it s rated burden.

    The rated accuracy limit factor is not less than 10 the earth fault relay is not set below 30 %The burden of the relay at its setting does not exceed 4VA

    The use of a higher relay setting the use of an earth fault relay having a burden of less than

    4VA at its setting The use of current transformers having a product of rated output and rated

    accuracy factor in excess of 150.

  • 8/2/2019 Model sht 1

    16/30

    Class X Current Transformer

    Protection current transformers specified in terms of complying with Class ' X I

    Specification is generally applicable to unit systems where balancing of outputs from each

    end of the protected plant is vital.

    This balance, or stability during through fault conditions, is essentially of a transient nature

    and thus the extent of the unsaturated (or linear) zone is of paramount importance. Hence a

    statement of knee point voltage is the parameter of prime importance and it is normal toderive, from heavy current test results, a formula stating the lowest permissible value of VKif stable operation is to be guaranteed, e.g.

    Vk = K In (RCT + 2RL + R0)

    Where

    K - Is a constant found by realistic heavy current tests?

    In - rated current of C.T. and relay

    RCT - secondary winding resistance of the line current transformersRL - lead burden (route length) in ohms

    Ro - any other resistance (or impedance) in circuit

    Formula for knee point voltage calculation of current transformer? Best Answer- Chosen by Voters

    The formula for Knee Point Voltage is:

    Vkp = K * If/CTR * (RCT + RL + RR)

    in which,

    K = Constant, conventionally taken as 2.0

    Vkp = The minimum Knee Point Voltage

    If = Maximum Fault Current at the location, in Amperes

    CTR = CT Ratio

    RCT = CT Secondary Winding Resistnace, in Ohms

    RL = 2-way Lead Resistance, in Ohms

    RR = Relay Burden, in Ohms

    Motor & generator protection example settings DocumentTranscript

    1. Motor protection exampleAssume you have a motor rated500 HP, .95 power factor & 90 % efficiency energized from a

    4.16 Kvsource, using a microprocessor motor protectionrelay, provide the typical settings.The full load current canbe taken from the motor nameplate as well as the servicefactor. The motorfull load current can be calculated from the

  • 8/2/2019 Model sht 1

    17/30

    following: I = 500 (.746)/1.732 (4.16)(.85)(.9) =60 ampsMotor and Line Data FunctionsFunction DescriptionAdjustment / Display Range Setting IncrementsSettingMotor Nameplate FLA 1 2000A, adjustable between50-100% of Max Amp Rating.FLA must be programmedUpper limit of range automatically adjusts 1 60for relay tofunction downward as Service factor is increased.MotorNameplate 1.00 - 1.30 SF .05 1Overload Class During Start

    NEMA / UL Class 5 20 5 Class 20Overload Class During RunNEMA / UL Class 5 30 5 Class 10Overload Reset 0 =Manual,1 = Auto,2 = Disabled Overload 1 1kV Voltage Input(nominal line, Medium Voltage) .60 15kV .01 4.16LineFrequency 50 or 60 Hz 60Acceleration Time 0-300 seconds[0=Disabled] 1 30Current Imbalance Trip % 0.1 - 30% of FLA[0=Disabled] 1(%) 15Current Imbalance Trip Delay 1 - 20seconds 1 (Second) 5Over Current Trip % 0,.50 300% ofFLA [0=Disabled] 1 (%) 200Over Current Trip Delay 1 - 20

    seconds 1 8Under Current % 0, 10 90% of FLA [0=Disabled]1 (%) 35Under Current Trip Delay 1 - 60 seconds 1 15StallDetection Trip Level 0.100 600% of FLA [0=Disabled] 5 (%)600Stall Detection Trip Delay 1 - 10 seconds 1 4PeakCurrent Trip % 0.800 1400% [0=Disabled] 10(%) 1000(%)Peak Current Trip Delay 0..01 - .5 seconds .01 .0513/11/10 1

    2. Ground Fault Current Trip Value 0.5 90% of CT Value[0=Disabled] 1 (%) 50Ground Fault Current Trip Delay 1 60seconds 1 5 Voltage Protection SettingsVoltage ImbalanceTrip % 0.1 30% [0=Disabled] 1 (%) 20Voltage ImbalanceTrip Delay 1 20 seconds 1 10Over Voltage Trip % 0.1 10%[0=Disabled] 1 (%) 5Over Voltage Trip Delay 1 20 seconds1 10Under Voltage Trip on Start % 0.1 20% [0=Disabled] 1(%) 20UV Trip on Start Delay 1 180 seconds 1 20UnderVoltage Trip on Run % 0.1 20% [0=Disabled] 1 (%) 20UVTrip Delay during Run 1 20 seconds 1 10 Phase andFrequency Protection SettingsPhase Rotation Trip 0.1 or 20=Disabled, 1=ABC, 2=ACB] 1 2Phase Rotation Trip Delay 1 20 seconds 1 2Phase Loss Trip and Delay 0.1-20 Seconds[0= Disabled] 1 5Over Frequency Trip Limit 0.1 10Hz[0=Disabled] 1 1Over Frequency Trip Delay 1 20 seconds 15Under Frequency Trip Limit 0.1 10Hz [0=Disabled] 11Under Frequency Trip Delay 1 20 seconds 1 5Motor KWTrip 0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip 10Motor KW Trip Point 20 100% of full load KW (disabled)1% 20(%)Motor KW Trip Delay Time 1 999 minutes

    (disabled) 1 1Power Factor Trip Range 0.1 3 [0=Disabled,1=lag, 2=lead, 3= lead/lag] 1 2Power Factor Trip Point .01 1 .01 .10Power Factor Trip Delay Time 1 20 seconds 11013/11/10 2

  • 8/2/2019 Model sht 1

    18/30

    3. Power Factor Current Direction 0 - 1, [0=Normal, 1=Reversed] 1 1 Lockout / Inhibit SettingsCoast Down (BackSpin) Lockout Timer 0 = Disabled, or 1 - 60 minutes 1minute 1Maximum Starts per Hour 0 = Disabled, or 1 10starts 1 5Minimum Time Between Starts Inhibit 0 =Disabled, or 1 - 60 minutes 1 minute 12Note: NEMA Classtrip curves are based on a common tripping point of 600% ofmotor Full LoadAmps (FLA). Curves vary by the amount of

    time before the unit trips. As an example, a Class 20curvewill trip in 20 seconds at 600% of FLA. Anotherexample, Class 10 will trip in 10 seconds at 600% ofFLA.PTValue:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kVVoltage Input 1 40 (4160/104) VCT Value: 5-2000 (:5) 560Number of Turns through CT: 1 5 (in 1 increments) 1Generator protection exampleRatings of generators:Ratedoutput (eg. 1,120 MVA), Maximum output (1230 MVA), Ratedrotation speed (300 rpm), Powerfactor (0.9), Number of

    poles (2), Terminal voltage (27), Rated Armature current(23949), MaximumArmature current (26302), Short-circuitratio (> or = 0.5), Hydrogen gas pressure (0.52 MpaG),Insulation type (F), Temperature rise class (B), Coolingmethod (Stator: direct water), Efficiency(99 %), Hydrogenconsumption (12 m3/day).Functional Specifications ofgenerator protective relayNOMINAL SYSTEM FREQUENCYSETTING RANGE.............................................50 or 60HzRATED PRIMARY INPUT CURRENT OF PHASE AND NEUTRAL

    CTS .........1 - 9999A in 1A stepsRATED PRIMARY SYSTEMPHASE-TO-PHASE VOLTAGE OF PTS......2 655 kV in .0.1 kVstepsRATED PT SECONDARY LINE-TO-LINEVOLTAGE ...............................50 125 V in 1 V stepsLOWSET OVERCURRENTELEMENTCharacteristic: .......................................................................................Definite time orinversePickup: ...........................................................................................1.0 2.5 pu of rated generator currentTime

    delay: ...........................................................................................0.05 30.0 seconds (at 5pu Igen)HIGH SETOVERCURRENTELEMENTCharacteristic: .......................................................................................DefinitetimePickup: ............................................................................................1.0 9.9pu of rated generator currentTimedelay: ...........................................................................................0.05 3.0 seconds (at 5pu Igen)CURRENTUNBALANCE ELEMENTMaximum negative sequence currentrating;.................................0.05 0.5pu of rated generatorcurrent13/11/10 3

  • 8/2/2019 Model sht 1

    19/30

    4. Time multiplier of I2 tcurve ...................................................................5 80 secondsCooling time torated.............................................................................10 1800 secondsAlarm levelpickup.................................................................................0.03 0.5pu generatorcurrentAlarm level time

    delay...........................................................................1 100 secondsREVERSE POWERELEMENT PICKUP ......................................0.02to 0.2pu rated generator currentTimedelay ...........................................................................................1 100 secondsLOSS OFFIELD ELEMENTMho circlesize ..........................................................................50 300% of rated generator

    impedanceMhooffset .................................................................................5 50% of rated generatorimpedanceTimedelay ............................................................................................0.2 60 secondsIntegrationtime .....................................................................................0 10 secondsVOLTAGEELEMENTSCharacteristic ...................................

    .....................................................Over, Underor Over+UnderPick-uplevel.......................................................................................1 50% change from ratedvoltageTimedelay ............................................................................................0.1 60.0secondsFREQUENCYELEMENTSCharacteristic ...................................

    .....................................................Over, Underor Over+UnderPick-uplevel..........................................................................................0.05 9.99Hz fromnominalTimedelay ............................................................................................0.1 60.0 secondsTHERMALIMAGE ELEMENTTriplevel ...............................................................................................Fixed at 110%ratedThermal time constant ofalternator ......................................................1 400 minutesPre-alarmlevel.................................................................

  • 8/2/2019 Model sht 1

    20/30

    .....................50 110% of ratedUNDERPOWERELEMENT PICKUPLEVEL ..........................................................0.05 1.00 ofrated power outputTimedelay ............................................................................................0.1 60.0secondsUNDERIMPEDANCE ELEMENTSPickuplevel.................................................................

    ..........................01 1.0 pu ratedimpedanceTimedelay ............................................................................................0.02 9.99 secondsFIRSTLEVEL OVEREXCITATIONELEMENTCharacteristic ........................................................................................InversePickuplevel.................................................................

    ..........................1.0 - 2.0 puTimemultiplier.......................................................................................0.5 5.0SECOND LEVELOVEREXCITATIONELEMENTCharacteristic ........................................................................................DefinitetimePickuplevel...........................................................................................1.0 - 2.0 puTime

    multiplier.......................................................................................0.1 60.0 seconds95%STATOR GROUND FAULT ELEMENTSPickuplevel.....................................................................................5 99% Rated zero sequencevoltageTimedelay ............................................................................................0.05 99.0 seconds100%STATOR GROUND FAULT ELEMENT3rd Harmonic

    Pickuplevel ..............................................................1 30% Rated zero sequence voltageTimedelay ............................................................................................0.05 99.0 seconds TypicalSettings IEEE No. Function Typical Settings andRemarks24 Overexcitation PU: 1.1*VNOM/60;TD: 0.3; reset TD: 5 alarm P.U.:1.18*VNOM/6013/11/10 4

    5. alarm delay: 2.5s25 Synchronism Check Max Slip: 6RPM;Max phase angle error: 10 Max VMAG error: 2.5% VNOM32Reverse Power (one stage) PU: turbine 1% of rated; 15 s .PU: Reciprocating engine: 10% of rated; 5 s32-1 Reverse

  • 8/2/2019 Model sht 1

    21/30

    Power (non-electrical, trip supervision) PU: same as 32; 3s40 Loss-of-field (VAR Flow approach) Level 1 PU: 60% VArating; Delay: 0.2s; Level 2 PU: 100% VA rating: 0.1s46Negative Sequence overcurrent I2 PU: 10% Irated; K=1049Stator Temperature (RTD) Lower: 95C; upper: 105C50/87Differential via flux summation Cts PU:10% INOM or less if1A relay may be used50/27 IE Inadvertent EnergizationOvercurrent with 27, 81 50: 0.5A (10% INOM) 27: 85%

    Supervision VNOM (81: Similar)51N Stator Ground Over-current (Low, Med Z Gnd, PU: 10% INOM; curve: EI; TD: 4.Inst: Phase CT Residual) none. Higher PU required tocoordinate with load. No higher than 25% INOM.50/51NStator Ground Over- current (Low, Med Z Gnd, P.U.: 10%INOM; Curve EI**, TD4; Inst Neutral CT or Flux SummationCT) 100% INOM. Higher PU if required to coordinate withload. No higher than 25% INOM.51GN, 51N Stator GroundOver- current (High Z Gnd) PU: 10% IFAULT at HV Term.;

    Curve: VI***; TD:4.51VC Voltage Controlled overcurrent PU:50% INOM; Curve: VI***; TD: 4. Control voltage:80%VNOM.51VR Voltage Restrained overcurrent PU: 175%INOM; Curve: VI***; TD: 4. Zero Restraint Voltage: 100%VNOM L-L59N, 27-3N, 59P Ground Overvoltage 59N: 5%VNEU during HV terminal fault; 27-3N: 25% V3rd duringnormal operation; TD: 10s 59P: 80% VNOM67IE DirectionalO/C for Inadvertent Energization PU: 75-100% INOM GEN;Definite Time (0.1- 0.25 sec.) ; Inst: 200% INOM

    GEN13/11/10 5

    6. 81 Over/under frequency For Generator protection: 57,62Hz, 0.5s; For Island detection condition: 59, 61Hz,0.1s87G Generator Phase Differential Fixed: 0.4A; orVariable: Min P.U.: 0.1 * Tap; Tap: INOM; Slope: 15%87NGenerator Ground Variable: Min P.U.: 0.1 times tap; Slope15%; Differential Time delay: 0.1s; choose low tap 67N:current polarization; time: 0.25A; Curve: VI***; TD: 2;Instantaneous: disconnect87UD 13 Unit Differential Min PU:0.35*Tap; Tap: INOM; Slope 30%**: EI: extremely inverse.***:VI: very inverse.13/11/10 1. Motor protection exampleAssume you have a motor rated 500HP, .95 power factor & 90 % efficiency energized from a 4.16 Kvsource, using a microprocessor motor protection

    relay, provide the typical settings.The full load current can be taken from the motor nameplate as well as the

    service factor. The motorfull load current can be calculated from the following: I = 500 (.746)/1.732 (4.16)(.85)(.9)

    =60 amps Motor and Line Data FunctionsFunction Description Adjustment / Display Range Setting Increments

    SettingMotor Nameplate FLA 1 2000A, adjustable between 50-100% of Max Amp Rating.FLA must be

    programmed Upper limit of range automatically adjusts 1 60for relay to function downward as Service factor is

    increased.Motor Nameplate 1.00 - 1.30 SF .05 1Overload Class During Start NEMA / UL Class 5 20 5 Class

    20Overload Class During Run NEMA / UL Class 5 30 5 Class 10Overload Reset 0 = Manual,1 = Auto,2 = Disabled

    Overload 1 1kV Voltage Input (nominal line, Medium Voltage) .60 15kV .01 4.16Line Frequency 50 or 60 Hz60Acceleration Time 0-300 seconds [0=Disabled] 1 30Current Imbalance Trip % 0.1 - 30% of FLA [0=Disabled]

    1(%) 15Current Imbalance Trip Delay 1 - 20 seconds 1 (Second) 5Over Current Trip % 0,.50 300% of FLA

    [0=Disabled] 1 (%) 200Over Current Trip Delay 1 - 20 seconds 1 8Under Current % 0, 10 90% of FLA

    [0=Disabled] 1 (%) 35Under Current Trip Delay 1 - 60 seconds 1 15Stall Detection Trip Level 0.100 600% of FLA

  • 8/2/2019 Model sht 1

    22/30

    [0=Disabled] 5 (%) 600Stall Detection Trip Delay 1 - 10 seconds 1 4Peak Current Trip % 0.800 1400%

    [0=Disabled] 10(%) 1000 (%)Peak Current Trip Delay 0..01 - .5 seconds .01 .0513/11/10 1

    2. Ground Fault Current Trip Value 0.5 90% of CT Value [0=Disabled] 1 (%)

    50Ground Fault Current Trip Delay 1 60 seconds 1 5 Voltage Protection SettingsVoltage

    Imbalance Trip % 0.1 30% [0=Disabled] 1 (%) 20Voltage Imbalance Trip Delay 1 20

    seconds 1 10Over Voltage Trip % 0.1 10% [0=Disabled] 1 (%) 5Over Voltage Trip Delay 1

    20 seconds 1 10Under Voltage Trip on Start % 0.1 20% [0=Disabled] 1 (%) 20UV Trip on

    Start Delay 1 180 seconds 1 20Under Voltage Trip on Run % 0.1 20% [0=Disabled] 1

    (%) 20UV Trip Delay during Run 1 20 seconds 1 10 Phase and Frequency Protection

    SettingsPhase Rotation Trip 0.1 or 2 0=Disabled, 1=ABC, 2=ACB] 1 2Phase Rotation Trip

    Delay 1 20 seconds 1 2Phase Loss Trip and Delay 0.1-20 Seconds [0= Disabled] 1 5Over

    Frequency Trip Limit 0.1 10Hz [0=Disabled] 1 1Over Frequency Trip Delay 1 20 seconds

    1 5Under Frequency Trip Limit 0.1 10Hz [0=Disabled] 1 1Under Frequency Trip Delay 1

    20 seconds 1 5Motor KW Trip 0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip 1

    0Motor KW Trip Point 20 100% of full load KW (disabled) 1% 20(%)Motor KW Trip Delay

    Time 1 999 minutes (disabled) 1 1Power Factor Trip Range 0.1 3 [0=Disabled, 1=lag,

    2=lead, 3= lead/lag] 1 2Power Factor Trip Point .01 1 .01 .10Power Factor Trip Delay Time

    1 20 seconds 1 1013/11/10 2

    3. Power Factor Current Direction 0 - 1, [0=Normal, 1= Reversed] 1 1 Lockout /

    Inhibit SettingsCoast Down (Back Spin) Lockout Timer 0 = Disabled, or 1 - 60 minutes 1minute 1Maximum Starts per Hour 0 = Disabled, or 1 10 starts 1 5Minimum Time

    Between Starts Inhibit 0 = Disabled, or 1 - 60 minutes 1 minute 12Note: NEMA Class trip

    curves are based on a common tripping point of 600% of motor Full LoadAmps (FLA).

    Curves vary by the amount of time before the unit trips. As an example, a Class 20

    curvewill trip in 20 seconds at 600% of FLA. Another example, Class 10 will trip in 10

    seconds at 600% ofFLA.PT Value:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kV

    Voltage Input 1 40 (4160/104) VCT Value: 5-2000 (:5) 5 60Number of Turns through CT: 1

    5 (in 1 increments) 1 Generator protection exampleRatings of generators:Rated output (eg.

    1,120 MVA), Maximum output (1230 MVA), Rated rotation speed (300 rpm), Powerfactor

    (0.9), Number of poles (2), Terminal voltage (27), Rated Armature current (23949),

    MaximumArmature current (26302), Short-circuit ratio (> or = 0.5), Hydrogen gas pressure(0.52 Mpa G),Insulation type (F), Temperature rise class (B), Cooling method (Stator: direct

    water), Efficiency(99 %), Hydrogen consumption (12 m3/day).Functional Specifications of

    generator protective relayNOMINAL SYSTEM FREQUENCY SETTING

    RANGE.............................................50 or 60 HzRATED PRIMARY INPUT CURRENT OF PHASE

    AND NEUTRAL CTS .........1 - 9999A in 1A stepsRATED PRIMARY SYSTEM PHASE-TO-PHASE

    VOLTAGE OF PTS......2 655 kV in .0.1 kV stepsRATED PT SECONDARY LINE-TO-LINE

    VOLTAGE ...............................50 125 V in 1 V stepsLOW SET OVERCURRENT

    ELEMENTCharacteristic: .......................................................................................Definite

    time or inversePickup: ...........................................................................................1.0 2.5

    pu of rated generator currentTime

    delay: ...........................................................................................0.05 30.0 seconds (at 5puIgen)HIGH SET OVERCURRENT

    ELEMENTCharacteristic: .......................................................................................Definite

    timePickup: ............................................................................................1.0 9.9pu of rated

    generator currentTime delay: ...........................................................................................0.05

    3.0 seconds (at 5pu Igen)CURRENT UNBALANCE ELEMENTMaximum negative sequence

    current rating;.................................0.05 0.5pu of rated generator current13/11/10 3

    4. Time multiplier of I2 t curve ...................................................................5 80

    secondsCooling time to rated.............................................................................10 1800

    secondsAlarm level pickup.................................................................................0.03 0.5pu

    generator currentAlarm level time delay...........................................................................1 100 secondsREVERSE POWER ELEMENT PICKUP ......................................0.02 to 0.2pu rated

    generator currentTime delay ...........................................................................................1

    100 secondsLOSS OF FIELD ELEMENTMho circle

    size ..........................................................................50 300% of rated generator

    impedanceMho offset .................................................................................5 50% of rated

  • 8/2/2019 Model sht 1

    23/30

    generator impedanceTime

    delay ............................................................................................0.2 60 secondsIntegration

    time .....................................................................................0 10 secondsVOLTAGE

    ELEMENTSCharacteristic ........................................................................................Over,

    Under or Over+UnderPick-up level.......................................................................................1

    50% change from rated voltageTime

    delay ............................................................................................0.1 60.0

    secondsFREQUENCY

    ELEMENTSCharacteristic ........................................................................................Over,

    Under or Over+UnderPick-up

    level..........................................................................................0.05 9.99Hz from

    nominalTime delay ............................................................................................0.1 60.0

    secondsTHERMAL IMAGE ELEMENTTrip

    level ...............................................................................................Fixed at 110%

    ratedThermal time constant of alternator ......................................................1 400

    minutesPre-alarm level......................................................................................50 110% of

    ratedUNDERPOWER ELEMENT PICKUP LEVEL ..........................................................0.05

    1.00 ofrated power outputTime

    delay ............................................................................................0.1 60.0

    secondsUNDERIMPEDANCE ELEMENTSPickup

    level...........................................................................................01 1.0 pu rated

    impedanceTime delay ............................................................................................0.02 9.99

    secondsFIRST LEVEL OVEREXCITATION

    ELEMENTCharacteristic

    ........................................................................................InversePickup

    level...........................................................................................1.0 - 2.0 puTime

    multiplier.......................................................................................0.5 5.0SECOND LEVEL

    OVEREXCITATION

    ELEMENTCharacteristic ........................................................................................Definite

    timePickup level...........................................................................................1.0 - 2.0 puTime

    multiplier.......................................................................................0.1 60.0 seconds95%

    STATOR GROUND FAULT ELEMENTSPickup

    level.....................................................................................5 99% Rated zero sequence

    voltageTime delay ............................................................................................0.05 99.0

    seconds100% STATOR GROUND FAULT ELEMENT3rd Harmonic Pickup

    level ..............................................................1 30% Rated zero sequence voltageTime

    delay ............................................................................................0.05 99.0 seconds Typical

    Settings IEEE No. Function Typical Settings and Remarks24 Overexcitation PU:

    1.1*VNOM/60; TD: 0.3; reset TD: 5 alarm P.U.: 1.18*VNOM/6013/11/10 4

    5. alarm delay: 2.5s25 Synchronism Check Max Slip: 6RPM; Max phase angle error:

    10 Max VMAG error: 2.5% VNOM32 Reverse Power (one stage) PU: turbine 1% of rated; 15

    s . PU: Reciprocating engine: 10% of rated; 5 s32-1 Reverse Power (non-electrical, trip

    supervision) PU: same as 32; 3 s40 Loss-of-field (VAR Flow approach) Level 1 PU: 60% VA

    rating; Delay: 0.2s; Level 2 PU: 100% VA rating: 0.1s46 Negative Sequence overcurrent I2

    PU: 10% Irated; K=1049 Stator Temperature (RTD) Lower: 95C; upper: 105C50/87

    Differential via flux summation Cts PU:10% INOM or less if 1A relay may be used50/27 IE

    Inadvertent Energization Overcurrent with 27, 81 50: 0.5A (10% INOM) 27: 85% Supervision

    VNOM (81: Similar)51N Stator Ground Over- current (Low, Med Z Gnd, PU: 10% INOM;

    curve: EI; TD: 4. Inst: Phase CT Residual) none. Higher PU required to coordinate with load.

    No higher than 25% INOM.50/51N Stator Ground Over- current (Low, Med Z Gnd, P.U.: 10%

    INOM; Curve EI**, TD4; Inst Neutral CT or Flux Summation CT) 100% INOM. Higher PU if

    required to coordinate with load. No higher than 25% INOM.51GN, 51N Stator Ground Over-

    current (High Z Gnd) PU: 10% IFAULT at HV Term.; Curve: VI***; TD:4.51VC Voltage

    Controlled overcurrent PU: 50% INOM; Curve: VI***; TD: 4. Control voltage: 80%VNOM.51VR

    Voltage Restrained overcurrent PU: 175% INOM; Curve: VI***; TD: 4. Zero Restraint

    Voltage: 100% VNOM L-L59N, 27-3N, 59P Ground Overvoltage 59N: 5% VNEU during HV

    terminal fault; 27-3N: 25% V3rd during normal operation; TD: 10s 59P: 80% VNOM67IE

    Directional O/C for Inadvertent Energization PU: 75-100% INOM GEN; Definite Time (0.1-

    0.25 sec.) ; Inst: 200% INOM GEN13/11/10 5

  • 8/2/2019 Model sht 1

    24/30

    6. 81 Over/under frequency For Generator protection: 57, 62Hz, 0.5s; For Island

    detection condition: 59, 61Hz, 0.1s87G Generator Phase Differential Fixed: 0.4A; or

    Variable: Min P.U.: 0.1 * Tap; Tap: INOM; Slope: 15%87N Generator Ground Variable: Min

    P.U.: 0.1 times tap; Slope 15%; Differential Time delay: 0.1s; choose low tap 67N: current

    polarization; time: 0.25A; Curve: VI***; TD: 2; Instantaneous: disconnect87UD 13 Unit

    Differential Min PU: 0.35*Tap; Tap: INOM; Slope 30%**: EI: extremely inverse.***: VI: very

    inverse.13/11/10

    Basler Excitation Technical Papers

    Excitation Replacement Solutions

    Technical Paper Description Additional Resources

    Alterrex Excitation Upgrades -

    Convection-Cooled Bridges andReplacement of Automatic Voltage

    Regulator

    Bridge replacement, testing, installation and

    commissioning plus expectations for voltageregulator replacement of Alterrex exciter

    system.

    EX-ALT_VR.pdf

    EX-ALT_BRDG.pdf

    EX-ALT2.pdf

    EX-ALT3.pdf

    Alternate Solutions to Replacing

    Aged Static Exciter Systems

    Replacing the analog portion of a static exciter

    system with a digital front-end controller intothe existing power rectifier bridge/s.

    EX-RETRO.pdf

    EX-RETRO2.pdf

    Application of Static Excitation

    Systems for Rotating Exciter

    Replacement

    The static exciter system - including the

    power control devices, power transformer and

    automatic voltage regulator

    Convection Cooled Bridges Offer

    New Solution to Old Alterrex Water-

    Cooled Bridges

    Air-cooled retrofit solutions for water-cooled

    Alterrex EX-ALT_VR.pdf

    EX-ALT_BRDG.pdf

    EX-ALT2.pdf

    http://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_VR.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_BRDG.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT2.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Ex-alt3.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlternateSolutions.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlternateSolutions.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO2.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_VR.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_BRDG.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT2.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_VR.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_BRDG.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT2.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Ex-alt3.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlternateSolutions.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlternateSolutions.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO2.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=appofstat.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=AlterrexBridge.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_VR.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT_BRDG.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-ALT2.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=reshttp://www.basler.com/php/download.php?file=alterrexexcupgrades.pdf&id=403&type=res
  • 8/2/2019 Model sht 1

    25/30

    EX-ALT3.pdf

    Front End Analog Conversion to

    Digital Saves Cost for Upgrades ofExcitation System

    Decision factors in purchasing a 6 SCR full-

    wave bridge or reusing an existing 3 SCRhalf-wave

    EX-SSE1.pdf

    Retrofitting SCT/PPT Excitation

    Systems with Digital Control

    Retrofit of the SCT/PPT (Saturable CurrentTransformer/Power Potential Transformer)

    Static Excitation System

    EX-SCTPPT.pdf

    EX-RETRO2.pdf

    Selecting the Excitation System for

    the Additional Turbine Generator atthe Port Wentworth Pulp Mill

    Evaluating whether or not to reuse the

    generator's original compound excitationsystem

    Xcel Energy Northern RegionExperience with Excitation System

    Upgrades and Retrofits

    The scope of excitation replacement projects,

    the reasoning behind them, and the resourcesrequired to plan, design, install and

    commission the equipment

    return to top

    Excitation System Operation

    Technical Paper Description Additional Resources

    Avoiding Loss of Voltage SensingRunaway for Generator Excitation

    Systems

    Protective safeguards built into

    excitation systems to manage loss of

    voltage sensing events and prevent

    damage

    EX-DECSLOS.pdf

    Coordination of Digital ExcitationSystem Settings for Reliable

    Operation

    Coordinating the various settings of theexcitation system as well as performance

    checking the voltage regulator and limiter

    Digital Excitation System ProvidesEnhanced Tuning Over Analog

    Systems

    Features in excitation control speedcommissioning and offer a greater variety of

    tuning tools

    The Effect of Reactive Compensatorsand Coordination with Volts/Hertz

    Limiting

    Three types of reactive compensators andVolts/Hertz Limiter effect the generator

    excitation system.

    Parallel Operation with a NetworkSystem

    Techniques required to successfully parallelsynchronous generators

    Tuning a PID Controller for a Digital

    Excitation Control System

    How the digital controller is tuned for

    optimum generator performance

    Self-tuning of the PID Controller for

    a Digital Excitation Control System

    An indirect method for self-tuning of the PID

    controller gains

    Voltage Regulator and ParallelOperation

    Control of the voltage regulator whenoperating generators in parallel.

    Voltage Versus Var/Power FactorRegulation on Synchronous

    Generators

    When paralleled to the utility bus,

    synchronous generators can be controlledusing either terminal voltage or var/power

    factor control

    return to top

    Excitation Basics and Design

    Technical Paper Description Additional Resources

    Designing a Voltage Regulation

    System

    Excitation system theory when generatorapplications are in the design and proposal

    stages

    Introduction to SynchronizingAutomatic synchronizing process and a guidefor selection of the proper synchronizer

    Comparison BE1-25A and Eaton XMSynchronizer

    Updated!Specifying Excitation

    Systems for Procurement

    Considerations involved in specifying the

    excitation system for a project.

    http://www.basler.com/php/download.php?file=EX-ALT2.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Ex-alt3.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-SSE1.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=retro_sctppt.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=retro_sctppt.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=EX-SCTPPT.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO2.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=ex-decslos.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=parallel_op.pdf&id=124&type=reshttp://www.basler.com/php/download.php?file=parallel_op.pdf&id=124&type=reshttp://www.basler.com/php/download.php?file=PID_Tuning.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=PID_Tuning.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=selftuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=selftuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=VR_parallel.pdf&id=86&type=reshttp://www.basler.com/php/download.php?file=VR_parallel.pdf&id=86&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=Design_exc.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Design_exc.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=intro_synch.pdf&id=402&type=reshttp://www.basler.com/php/download.php?file=ComparisonBE1-25A_EatonXMSynchronizer.pdf&id=147&type=reshttp://www.basler.com/php/download.php?file=ComparisonBE1-25A_EatonXMSynchronizer.pdf&id=147&type=reshttp://www.basler.com/php/download.php?file=SpecExcSysProcurement.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=SpecExcSysProcurement.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=SpecExcSysProcurement.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Ex-alt3.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=FrontEnd_analogtodig.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-SSE1.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=retro_sctppt.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=retro_sctppt.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=EX-SCTPPT.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EX-RETRO2.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Retro_PortWentwrth.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/php/download.php?file=C1_DavidKral.pdf&id=312&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=lossofsensing.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=ex-decslos.pdf&id=364&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Coord_ExcSettings.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=Dig_Exc.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=EffectofReactive.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=parallel_op.pdf&id=124&type=reshttp://www.basler.com/php/download.php?file=parallel_op.pdf&id=124&type=reshttp://www.basler.com/php/download.php?file=PID_Tuning.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=PID_Tuning.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=selftuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=selftuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=VR_parallel.pdf&id=86&type=reshttp://www.basler.com/php/download.php?file=VR_parallel.pdf&id=86&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=VAR_PF.pdf&id=262&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=Design_exc.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=Design_exc.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=intro_synch.pdf&id=402&type=reshttp://www.basler.com/php/download.php?file=ComparisonBE1-25A_EatonXMSynchronizer.pdf&id=147&type=reshttp://www.basler.com/php/download.php?file=ComparisonBE1-25A_EatonXMSynchronizer.pdf&id=147&type=reshttp://www.basler.com/php/download.php?file=SpecExcSysProcurement.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=SpecExcSysProcurement.pdf&id=365&type=res
  • 8/2/2019 Model sht 1

    26/30

    New!Especificando Sistemas deExcitacin para Adquisicin

    Spanish language translation of the

    paper above

    return to top

    Excitation System Testing

    Technical Paper Description Additional Resources

    Easing NERC Testing with NewDigital Excitation Systems North American Electric Reliability Councilpolicy involving generator testing.

    Feature Enhancements in NewDigital Excitation System Speeds

    Performance Testing

    Technology built into the excitation systemcan ease the burden of performing required

    tests

    return to top

    Power System Stability

    Technical Paper Description Additional Resources

    Power System Stability Various types of power system instability

    EX-PSS1.pdf

    EX-PSS2.pdf

    Power System Stabilizer Performancewith Summing Point type Var/PowerFactor Controllers

    Power system stabilizer performance does nothave to deteriorate during a system transientwhen voltage support is needed

    Understanding Power System

    Stability

    Types of power system instability and the

    effects of system impedance and excitation.

    Voltage Regulator with Dual PID

    Controllers Enhances Power System

    Stability

    Voltage regulator with two PID controllers

    return to top

    Synchronous Motor Controls

    Technical Paper Description Additional Resources

    Plant Efficiencies Benefit bySelection of Synchronous Motor

    Application of a synchronous motor EX-SYNCH1.pdf

    Synchronous Motor ControlBasic theory of operation and control of the

    synchronous motor

    return to top

    Basler Protective Relay Technical Papers

    Protection Theory and Concepts

    Technical Paper Description Additional Resources

    Automatic Reclosing - Transmission

    Line Applications and Considerations

    Applying autoreclosing to transmission

    circuits.

    Commissioning Numerical RelaysExperienced-based changes to commissioningtests and revised documentation of settings as

    a method for commissioning

    A Derivation of SymmetricalComponent Theory and Symmetrical

    Component Networks

    Review symmetrical component analysis ElectricCalcs_R30.xls

    Generator Protection Application

    Guide

    Assists in the selection of numerical

    multifunction and single function relays toprotect a generator

    Load Shedding for Utility and

    Industrial Power System Reliability

    Analysis of the conditions in which load

    shedding may be needed and review of loadshed implementation strategies

    PC-IPS01.pdf

    http://www.basler.com/php/download.php?file=SpecifyingExcitationSystems_sp.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=SpecifyingExcitationSystems_sp.pdf&id=451&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=NERCPaper.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=NERCPaper.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=pwrsysstb5.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=ex-pss1.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=EX-PSS2.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=understandingpss.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=understandingpss.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=PlantEff.pdf&id=257&type=reshttp://www.basler.com/php/download.php?file=PlantEff.pdf&id=257&type=reshttp://www.basler.com/php/download.php?file=ex-synch1.pdf&id=423&type=reshttp://www.basler.com/php/download.php?file=synchmtr.pdf&id=257&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=autorecl.pdf&id=57&type=reshttp://www.basler.com/php/download.php?file=autorecl.pdf&id=57&type=reshttp://www.basler.com/php/download.php?file=commis3.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ElectricCalcs_R30.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=genprotguidC.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=genprotguidC.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=loadshed.pdf&id=216&type=reshttp://www.basler.com/php/download.php?file=loadshed.pdf&id=216&type=reshttp://www.basler.com/php/download.php?file=PC-IPS01.pdf&id=334&type=reshttp://www.basler.com/php/download.php?file=SpecifyingExcitationSystems_sp.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=SpecifyingExcitationSystems_sp.pdf&id=451&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=NERCPaper.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=NERCPaper.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=EPRI_Tuning.pdf&id=365&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=pwrsysstb5.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=ex-pss1.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=EX-PSS2.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=PSSperformance.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=understandingpss.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=understandingpss.pdf&id=140&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/php/download.php?file=dualPID.pdf&id=365&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=PlantEff.pdf&id=257&type=reshttp://www.basler.com/php/download.php?file=PlantEff.pdf&id=257&type=reshttp://www.basler.com/php/download.php?file=ex-synch1.pdf&id=423&type=reshttp://www.basler.com/php/download.php?file=synchmtr.pdf&id=257&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=autorecl.pdf&id=57&type=reshttp://www.basler.com/php/download.php?file=autorecl.pdf&id=57&type=reshttp://www.basler.com/php/download.php?file=commis3.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=SymmComp.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ElectricCalcs_R30.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=genprotguidC.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=genprotguidC.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=loadshed.pdf&id=216&type=reshttp://www.basler.com/php/download.php?file=loadshed.pdf&id=216&type=reshttp://www.basler.com/php/download.php?file=PC-IPS01.pdf&id=334&type=res
  • 8/2/2019 Model sht 1

    27/30

    Negative Sequence Relaying

    Applications in Ungrounded andHigh Impedance Grounded Industrial

    Systems

    Negative sequence overcurrent sensing todetect faults

    Power Quality: Measurement of Sags

    and Interruptions

    Measurement of power quality use of meters

    for residential and small commercialcustomers as a tool to track outage issues.

    A Practical Guide for Detecting

    Single-Phasing on a Three-PhasePower System

    Reference for the loss of one or two phases of

    a radial three phase system and includessuggested detection and protection methods

    ElectricCalcs_R30.xls

    Single_Phase_mc7_rev_1_1.mc

    d

    PC-95102

    Protective Relaying Issues in Low

    Voltage Systems as Addressed in the

    National Electric Code

    Low voltage (LV) design practices, as

    mentioned in the National Electric Code

    (NEC)

    Reliability Considerations ofMultifunction Protection

    Reliability of numerical multifunction

    protection systems against predecessor

    technologies.

    A Review of Ferroresonance The basics of a ferroresonant condition Ferro_R1.xls

    A Review of Negative SequenceCurrent

    Negative sequence current and the damage itcan cause to rotating machines

    PC-IPS01.pdf

    A Review of System GroundingMethods and Zero Sequence Current

    Sources

    Grounding methods, sources of ground

    current, ground current flow in the power

    system, and how each impacts protectiverelaying

    A Survey of Cold Load Pickup

    PracticesCold load pickup, the causes and effects

    Voltage Restrained Time Overcurrent

    Relay Principles, Coordination, andDynamic Testing Considerations

    Dynamic response of 51/27R relays in which

    the overcurrent element conforms to the

    dynamic characteristic defined in ANSI

    C37.112

    51V Timing Model Mathcad simulation

    file(Must have Mathcad Professional Edition installed)

    Zero Sequence Impedance of

    Overhead Transmission Lines

    Transmission line impedances, centering on

    zero sequence impedances

    return to top

    Motor Protection

    Technical Paper Description Additional Resources

    Extending Motor Life with UpdatedThermal Model Overload Protection

    Updates in the 49 thermal model

    provide better motor protection

    Motor Protection Application GuideOverview of motor hazards anddetection and protection options, plus

    typical setting value range for BE1-11m.

    PC-11m.pdf

    return to top

    Breaker Failure and Monitoring Protection

    Technical Paper Description Additional Resources

    Breaker Monitoring with NumericalRelays

    Breaker Duty/Contact Wear monitoring

    Fundamentals and Advances inBreaker Failure Protection

    Deciding whether to apply dedicated breakerfailure protection.

    PC-50BF1.pdfHow Can Current Dropout Affect

    Breaker Failure Timing Margins

    Current decay time in applying breaker failure

    protection.

    return to top

    http://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=PowerQuality.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=PowerQuality.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=ElectricCalcs_R30.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=Single_Phase_mc7_r1_1.mcd&id=204&type=reshttp://www.basler.com/php/download.php?file=Single_Phase_mc7_r1_1.mcd&id=204&type=reshttp://www.basler.com/php/download.php?file=PC-95102.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=reliab.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=reliab.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=ferroresonance2.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=Ferro_R1.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=negseqcurrent.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=negseqcurrent.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=PC-IPS01.pdf&id=334&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ColdLoad.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ColdLoad.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=51V_TimingModel.mcd&id=49&type=reshttp://www.basler.com/php/download.php?file=51V_TimingModel.mcd&id=49&type=reshttp://www.basler.com/php/download.php?file=ZeroSeqImped.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ZeroSeqImped.pdf&id=262&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=motorprotection.pdf&id=463&type=reshttp://www.basler.com/php/download.php?file=motorprotection.pdf&id=463&type=reshttp://www.basler.com/php/download.php?file=MotorProtGuide.pdf&id=463&type=reshttp://www.basler.com/php/download.php?file=PC-11m.pdf&id=463&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=breakermonitoring.pdf&id=64&type=reshttp://www.basler.com/php/download.php?file=breakermonitoring.pdf&id=64&type=reshttp://www.basler.com/php/download.php?file=brkrfail.pdf&id=40&type=reshttp://www.basler.com/php/download.php?file=brkrfail.pdf&id=40&type=reshttp://www.basler.com/php/download.php?file=PC-50BF1.pdf&id=40&type=reshttp://www.basler.com/php/download.php?file=BFPaper.pdf&id=40&type=reshttp://www.basler.com/php/download.php?file=BFPaper.pdf&id=40&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=NegSeq.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=PowerQuality.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=PowerQuality.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=practical.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=ElectricCalcs_R30.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=Single_Phase_mc7_r1_1.mcd&id=204&type=reshttp://www.basler.com/php/download.php?file=Single_Phase_mc7_r1_1.mcd&id=204&type=reshttp://www.basler.com/php/download.php?file=PC-95102.pdf&id=204&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=LV-NEC.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=reliab.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=reliab.pdf&id=198&type=reshttp://www.basler.com/php/download.php?file=ferroresonance2.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=Ferro_R1.xls&id=262&type=reshttp://www.basler.com/php/download.php?file=negseqcurrent.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=negseqcurrent.pdf&id=451&type=reshttp://www.basler.com/php/download.php?file=PC-IPS01.pdf&id=334&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ReviewOfSysGrounding.pdf&id=210&type=reshttp://www.basler.com/php/download.php?file=ColdLoad.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ColdLoad.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=voltrest2.pdf&id=49&type=reshttp://www.basler.com/php/download.php?file=51V_TimingModel.mcd&id=49&type=reshttp://www.basler.com/php/download.php?file=51V_TimingModel.mcd&id=49&type=reshttp://www.basler.com/php/download.php?file=ZeroSeqImped.pdf&id=262&type=reshttp://www.basler.com/php/download.php?file=ZeroSeqImped.pdf&id=262&type=reshttp://www.basler.com/html/dwntech.htm#tophttp://www.basler.com/php/download.php?file=motorprotection.pdf&id=463&type=reshttp://www.basler.com/php/download.php?file=motorprotection.pdf&id=463&type=reshttp://www.basler.com/php/download.php?file=MotorProtGuide.pdf&id=463&type=reshttp://www.basler.com/php/download