model atmosphere results (kurucz 1979, apjs, 40, 1)

27
1 Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1) Kurucz ATLAS LTE code Line Blanketing Models, Spectra Observational Diagnostics

Upload: brent-vinson

Post on 30-Dec-2015

68 views

Category:

Documents


7 download

DESCRIPTION

Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1). Kurucz ATLAS LTE code Line Blanketing Models, Spectra Observational Diagnostics. ATLAS by Robert Kurucz (SAO). Original paper and updated materials (kurucz.cfa.harvard.edu) have had huge impact on stellar astrophysics - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

1

Model Atmosphere Results(Kurucz 1979, ApJS, 40, 1)

Kurucz ATLAS LTE codeLine BlanketingModels, Spectra

Observational Diagnostics

Page 2: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

2

ATLAS by Robert Kurucz (SAO)

• Original paper and updated materials (kurucz.cfa.harvard.edu) have had huge impact on stellar astrophysics

• LTE code that includes important continuum opacity sources plus a statistical method to deal with cumulative effects of line opacity (“line blanketing”)

• Other codes summarized in Gray

Page 3: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

3

ATLAS Grid

• Teff = 5500 to 50000 KNo cooler models since molecular opacities largely ignored.Models for Teff > 30000 K need non-LTE treatment (also in supergiants)

• log g from main sequence to lower limit set by radiation pressure (see Fitzpatrick 1987, ApJ, 312, 596 for extensions)

• Abundances 1, 1/10, 1/100 solar

Page 4: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

4

Line Blanketing and Opacity Distribution Functions

• Radiative terms depend on integrals

• Rearrange opacity over interval:DF = fraction of interval with line opacity < ℓν

• Same form even with many lines in the interval

Page 5: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

5

ODF Assumptions

• Line absorption coefficient has same shape with depth (probably OK)

• Lines of different strength uniform over interval with near constant continuum opacity (select freq. regions carefully)

Page 6: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

6

ODF Representation

• DF as step functions

• Pre-computed for grid over range in: temperatureelectron densityabundancemicroturbulent velocity(range in line opacity)

T = 9120 K

Page 7: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

7

Line Opacity in Radiation Moments

Page 8: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

8

Atmospheric Model Listings

• Tables of physical and radiation quantities as a function of depth

• All logarithms except T and 0 (c.g.s.)

Page 9: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

9

Page 10: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

10

Emergent Fluxes (+ Intensities)

Page 11: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

11

Page 12: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

12

Temperature Relation with Line Blanketing

• With increased line opacity, emergent flux comes from higher in the atmosphere where gas is cooler in general; lower Iν, Jν

• Radiative equilibrium: lower Jν → lower T

• Result: surface cooling relative to models without line blanketing

J d S d B d

Page 13: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

13

Temperature Relation with Line Blanketing

• To maintain total flux need to increase T in optically thick part to get same as gray case

• Result: backwarming

HB

T

dT

dz

T

1

3

1

3

Page 14: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

14

Flux Redistribution (UV→optical):opt. Fν ~ hotter unblanketed model

Page 15: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

15

Temperature Relation with Convection

• Convection:

• Reduces T gradient in deeper layers of cool stars

Rrad ia tive

ad iaba tic A

d T

d P

ln

ln

F F Frad conv

Page 16: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

16

Geometric Depth Scale

• Physical extent large in low density cases (supergiants)

d xd

xd

i

i

0

Page 17: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

17

Observational Parameters

• Colors: Johnson UBVRI, Strömgren ubvy (Lester et al. 1986, ApJS, 61, 509)

• Balmer line profiles (Hα through Hδ)

Page 18: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

18

Flux Distributions

• Wien peak

• Slope of Paschen continuum (3650-8205)

• Lyman jump at 912 (n=1)Balmer jump at 3650 (n=2)Paschen jump at 8205 (n=3)

• Strength of Balmer lines

Page 19: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

19

Page 20: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

20

Page 21: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

21

H 912 He I 504 He II 227

Page 22: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

22

Page 23: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

23

Comparison to Vega

Page 24: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

24

IDL Quick Look

• IDL> kurucz,teff,logg,logab,wave,flam,fcont

INPUT:• teff = effective temperature (K, grid value)• logg = log gravity (c.g.s, grid value)• logab = log abundance (0,-1,-2)

OUTPUT:• wave = wavelength grid (Angstroms)• flam = flux with lines (erg cm-2 s-1 Angstrom-1)• fcont = flux without lines

• IDL> plot,wave,flam,xrange=[3300,8000],xstyle=1

Page 25: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

25

Limb DarkeningEddington-Barbier Relationship

S=B(τ=1)

S=B(τ=0)

Page 26: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

26

How Deep Do We See At μ=1? Answer Depends on Opacity

T(τ=0)

T(τ=1)low opacity

T(τ=1)high opacity

Limb darkening depends on the contrast between B(T(τ=0)) and B(T(τ=1))

Page 27: Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1)

27

Limb Darkening versus Teff and λ

• Heyrovský 2007, ApJ, 656, 483, Fig.2

• u increases with lower λ, lower Teff

• Both cases have lower opacity → see deeper, greater contrast between T at τ=0 and τ=1

Linear limb-darkening coefficient vs Teff for bands B (crosses), V (circles), R (plus signs), and I (triangles)