modal analysis - solved example

Upload: mansoor

Post on 07-Jul-2018

249 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Modal Analysis - Solved example

    1/11

    Widener University

    Earthquake Response of Structures

    Time History Response 

    Three Story Shear Frame 

    SYSTEM INFORMATION:

    Moment of Inertia: ≔ I  ⋅T

    42875 42875 42875   in4

     Young's Modulus of Concrete (fc=7000psi): ≔ E ⋅5072.2 ksi

    Story Heights: ≔L ⋅T

    12 10.67 10.67   ft

    GLOBAL STIFFNESS MATRIX:

    ≔k1 2621.89  kip

    in

    ≔k2 3733.13  kip

    in

    ≔k3 3733.13  kip

    in

    ≔ K +k1   k2 −k2 0

    −k2 +k2   k3 −k30 −k3   k3

    ⎡⎢

    ⎤⎥

    = K 

    6355.02 −3733.13 0

    −3733.13 7466.26 −3733.130 −3733.13 3733.13

    ⎢⎣

    ⎥⎦

    kip

    in

    MASS MATRIX:

    ≔m1 ―――2165.74  kip

    g

    =m1 67313.257 slug Mass of First Floor

    ≔m2 ―――2165.74  kip

    g

    =m2 67313.257 slug Mass of Second Floor

    ≔m32165.74  kip

    g

    =m3 67313.257 slug Mass of Third Floor

    ≔ M m1 0 00   m2 00 0   m3

    ⎡⎢

    ⎤⎥

    = M 67313.257 0 0

    0 67313.257 00 0 67313.257

    ⎡⎢⎣

    ⎤⎥⎦slug

    Mansoor IllahiPage 1 of 11

  • 8/18/2019 Modal Analysis - Solved example

    2/11

    NATURAL FREQUENCIES:

    ≔ D ⋅ M −1

     K  = D1132.916 −665.509 0−665.509 1331.017 −665.509

    0 −665.509 665.509

    ⎡⎢⎣

    ⎤⎥⎦

    1

    s

    2

    Eigenvalues: ≔λ ⋅eigenvals   D1

    s

    2

    ≔λ sort   λ

    =λ106.752924.024

    2098.666

    ⎡⎢⎣

    ⎤⎥⎦

    1

    s

    2

    Number of Modes: ≔n 3 ≔i ‥1   n

    Natural Circular Frequency: ≔ωi

     ‾λi

    =ω10.33230.39845.811

    ⎡⎢⎣

    ⎤⎥⎦

    ― d

    s

    Natural Period: ≔T i

    ―⋅2 

    ωi

    =T 0.6080.2070.137

    ⎡⎢⎣

    ⎤⎥⎦s

    Mode Shapes: ≔ϕi

    eigenvec⎛ , D λi⎞

    =ϕ1

    0.3850.5930.707

    ⎡⎢⎣

    ⎤⎥⎦

    =ϕ2

    −0.756−0.237

    0.611

    ⎡⎢⎣

    ⎤⎥⎦

    =ϕ3

    0.53−0.769

    0.357

    ⎡⎢⎣

    ⎤⎥⎦

    Eigenvector Matrix:

    ≔Φ augment⎛ ,,ϕ1

    ϕ2

    ϕ3⎞ =Φ

    0.385 −0.756 0.530.593 −0.237 −0.7690.707 0.611 0.357

    ⎢⎣

    ⎥⎦

    Mansoor IllahiPage 2 of 11

  • 8/18/2019 Modal Analysis - Solved example

    3/11

      :

    Time Variables:

    Time Increment: ≔∆t ⋅0.01 s =∆t 0.01 s

    Number of data Points: ≔ N  8900 = N  8900

    Range of Data Points: ≔ j ‥1 − N  4

    Starting Time: ≔tstart ⋅0 s =tstart 0 s

    Time Step Array: ≔t j

    +tstart ⋅ j ∆t

    Seismic Data:www.strongmotioncenter.org

    “Record of Fri Apr 18, 2008 04:37:37.0 CDT (Avol1 v7.5 7/07 CSMIP) ”“CSMIP Preliminary Processing (Origin: To be determined) ”

    “02407-K4180-08109.01 Start time: 4/18/08, 09:37:37.0 UTC (GPS) ”“Station No. 2407 38.494N, 90.281W K2 s/n 4180 (3 Channels) ”

    “St. Louis - Jefferson Barracks VAMC USGS ”“Chan 1: 90 Deg ”

    “Record of Fri Apr 18, 2008 04:37:37.0 CDT Fri Apr 18, 2008 04:37:37.0 CDT ”“Hypocenter: To be determined. ML: To be determined. ”

    “Instr Period = .0049 sec, Damping = .700, Sensitivity = 1.25 v/g (Nominal)”

    “ Record length = 89.000 sec. ”

    ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥

    8900 points of accel data equally spaced at .010 sec, in cm/sec2.

    ≔ Edata ⋅READEXCEL ,“.\CE 634 Project Data (Raw).xlsx” “Data2!A1:H1113” ―m

    s

    2

    = Edata

    … 0 0 0 0 0 00 0.001 0.002 0.002 0.002 0.003

    −0.002 −0.004 −0.004 −0.002 −0.002 −0.003−0.005 −0.002 0.006 0.01 0.002 −0.011

    0.019 0.023 0.016 −0.001 −0.012 0−0.013 −0.04 −0.051 −0.038 −0.016 0.016

    ⎡⎢⎢

    ⎢⎢⎢

    ⎤⎥⎥

    ⎥⎥⎥

    ―ms

    2

    Mansoor IllahiPage 3 of 11

  • 8/18/2019 Modal Analysis - Solved example

    4/11

    Table data

    ≔n per_row 8 8 data points per row

    ≔nrow N 

    n per_row=nrow 1112.5 ≔nrow 1112

    ≔TableT

     Edata Transpose the data

    ≔ag‖‖‖‖‖

    ←ag   Table1

    for ∊ j ‥1 −nrow 1‖‖ ←ag stack ,ag   Table

     j

    ag

    Stack the columns from Table to form avector containing the ground acceleration

    Create the "unity" vector that applies the ground accelerationto the horizontal translational degree of freedom. All DOF arehorizontal translation DOF, therefore:

    ≔oneT

    1 1 1

    GROUND ACCELERATION VS. TIME PLOT:

    -0.015

    -0.01

    -0.005

    0

    0.005

    0.01

    0.015

    0.02

    -0.025

    -0.02

    0.025

    1.99 2.98 3.97 4.96 5.95 6.94 7.93 8.92 9.91 10.9 11.8912.8813.8714.8615.8516.8417.8318.8219.810.01 1 20.8

    ag g

    t s

    Mansoor IllahiPage 4 of 11

  • 8/18/2019 Modal Analysis - Solved example

    5/11

    Specify Initial Conditions

    Initial Displacement: ≔x0 ⋅T

    0 0 0   in

    Initial Velocity: ≔v0 ⋅T

    0 0 0 ―nsec

    Transform initial conditions to modal coordinates

    ≔q0i

    ―――

    ⋅⋅T⎛ϕ

    i⎞   M x0

    ⋅⋅T⎛ϕ

    i⎞   M ϕ

    i

    =q0

    000

    ⎡⎢⎣

    ⎤⎥⎦

    in

    ≔q' 0i ―――

    ⋅⋅T

    ϕi

     M v0

    ⋅⋅T⎛ϕi⎞   M ϕ

    i

    =q' 0

    000

    ⎡⎢⎣

    ⎤⎥⎦

    in

    s

    Calculate modal stiffnesses

    ≔ K mi

    ⋅⋅T

    Φ K Φ,i i

    = K m

    598.8195183.255

    11772.336

    ⎡⎢⎣

    ⎤⎥⎦

    kip

    in

    Calculate modal mass terms

    ≔ M mi ⋅⋅T

    Φ M Φ ,i i = M m

    67313.257

    67313.25767313.257

    ⎢⎣

    ⎥⎦

    slug

    Define modal damping ratios

    Modal Damping Ratio: ≔ζmT

    0.03 0.04 0.05

    ≔Cmi

    ⋅⋅⋅2   ωi

     M mi

    ζmi

    =Cm

    3477.413641.125697.5

    ⎡⎢⎣

    ⎤⎥⎦

    ⋅lbf   s

    in

    Transform modal damping matrix to natural coordinates for use in Part 2: 

    ≔ξξi

    ⋅⋅2   ζmi

    ωi

     M mi

    ≔ξ

    ξξ1

    0

    ⋅lug s

    0

    ⋅lug s

    ――0

    ⋅lug sξξ

    2――

    0

    ⋅lug s

    ――0

    ⋅lug s――

    0

    ⋅lug sξξ

    3

    ⎡⎢⎢⎢⎢⎢⎣

    ⎤⎥⎥⎥⎥⎥⎦

    Mansoor IllahiPage 5 of 11

  • 8/18/2019 Modal Analysis - Solved example

    6/11

    ≔Cnat ⋅⋅⋅⋅ M Φ ξT

    Φ M  =Cnat

    15522.18 −7236.219 −483.009−7236.219 17193.175 −7575.451

    −483.009 −7575.451 10100.734

    ⎡⎢⎣

    ⎤⎥⎦

    ⋅bfs

    in

    Inertial forces in modal coordinates

    ≔ Γ i

    ⋅⋅T

    ϕi

     M one = Γ 9453.152

    −2144.033662.142

    ⎡⎢⎣

    ⎤⎥⎦

    ⋅bf s2

    in

    ≔ Γ normi

     Γ i

     M mi

    = Γ normi

    1.685−0.382

    0.118

    ⎡⎢⎣

    ⎤⎥⎦

    ≔ P ,i j

    ⋅− Γ i

    ag j

    = P ,3 2472

    19139.083 ⋅b ft

    s

    2

    Calculate modal displacements using central difference method.Calculate the starting acceleration

    ≔a0i

    ⋅―1

     M mi

    ⎛⎝

    −− P ,i 1

    ⋅Cmi

    q' 0i

    ⋅ K mi

    q0i⎞⎠

    =a0

    000

    ⎡⎢⎣

    ⎤⎥⎦

    in

    s

    2

    ≔qmi

    −−q0i

    ⋅∆t q' 0i

    ――

    ⋅a0i

    ∆t2

    2fictitious displacement q-1.

    Calculate the central difference coefficients for each mode.

    ≔ Ai

    −⋅4   M mi

    ⋅⋅2   K mi

    ∆t2

    +⋅Cmi

    ∆t ⋅2   M mi

    ≔ Bi

    −⋅Cmi

    ∆t ⋅2   M mi

    +⋅Cmi

    ∆t ⋅2   M mi

    ≔Ci

    ⋅2   ∆t2

    +⋅Cmi

    ∆t ⋅2   M mi

    Mansoor IllahiPage 6 of 11

  • 8/18/2019 Modal Analysis - Solved example

    7/11

    Calculate the modal response

    Revised Number of Data Points: ≔ N  3246 problem is the datais cut off 

    ≔q ‖‖‖‖‖‖‖‖‖‖‖‖

    ←n N for ∊i ‥1 3

    ‖‖‖

    ←q,i 1

    q0i

    ←q,i 2

    ++⋅ Ai

    q0i

    ⋅ Bi

    qmi

    ⋅Ci

     P ,i 1

    for ∊i ‥1 3‖‖

    for ∊ j , ‥3 4 −n 1‖‖

    ←q,i j

    ++⋅ Ai

    q,i − j 1

    ⋅ Bi

    q,i − j 2

    ⋅Ci

     P ,i − j 1

    q

    -0.016

    -0.012

    -0.008

    -0.004

    0

    0.004

    0.008

    0.012

    0.016

    0.02

    -0.024

    -0.02

    0.024

    10 15 20 25 30 35 40 450 5 50

    q,1   j

    in

    q,2   j

    in

    q,3   j

    in

    t j

    s

    Plot Time-Histories for the Modal Displacements

    Mansoor IllahiPage 7 of 11

  • 8/18/2019 Modal Analysis - Solved example

    8/11

    Calculate response in natural (displacement) coordinates

    =xk

    ⋅Φ qk

    ≔k ‥1   n =n 3 index for number of nodes

    For time series calculations =i

    1

    23

    ⎢⎣

    ⎥⎦

    Displacement: ≔x ∑i

    ⋅Φ q

    Natural Displacement Response

    -0.026

    -0.017

    -0.009

    0

    0.0090.017

    0.026

    0.034

    -0.043

    -0.034

    0.043

    10 15 20 25 30 35 40 450 5 50

    x ,1   j in

    x,2   j

    in

    x,3   j

    in

    t j

    s

    Plot Mode Shapes:

    In order to plot the mode shapes, we add a "node" at the base of the frame.

    ≔ψi

    stack ⎛ ,0   ϕi⎞ =ψ

    1

    00.3850.5930.707

    ⎡⎢⎢

    ⎤⎥⎥

    and generate story heights Zero line for plot

    ≔h

    ⋅0 ftL

    1

    +L1

    L2

    ++L1

    L2

    L3

    ⎡⎢

    ⎢⎢⎢

    ⎤⎥

    ⎥⎥⎥

    ≔ z

    0

    000

    ⎢⎢

    ⎥⎥

    Mansoor IllahiPage 8 of 11

  • 8/18/2019 Modal Analysis - Solved example

    9/11

    Mode Shapes

    7

    10.5

    14

    17.5

    21

    24.5

    28

    31.5

    0

    3.5

    35

    -0.6 -0.45 -0.3 -0.15 0 0.15 0.3 0.45 0.6-0.9 -0.75 0.75

    h ft

    h ft

    h ft

    h ft

    ψ1

    ψ2

    ψ3

     z

    Mansoor IllahiPage 9 of 11

  • 8/18/2019 Modal Analysis - Solved example

    10/11

    Determine Interstory Drift:First Story Drift: ≔x1 =max   x

    10.026 in

    Second Story Drift: ≔x2 =−max   x2

    x1 0.012 in

    Third Story Drift: ≔x3 =−max   x3

    x2 0.03 in

    Maximum Story Drift: ≔∆X max max ,,x1   x2   x3 =∆X max 0.03 in

    ≔x =x1x2x3

    ⎡⎢

    ⎤⎥

    0.0260.0120.03

    ⎡⎢⎣

    ⎤⎥⎦in

    Determine Interstory Force:

    ≔ F  ⋅diag   K ∆X max = F 192.014225.589112.795

    ⎡⎢⎣

    ⎤⎥⎦kip

    Calculate the Relative Acceleration Response:(Using Central Difference Method)

    ≔q''  ‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

    ‖‖‖‖‖

    ←n N for ∊i ‥1 3

    ‖‖‖

    ←q,i 1

    q0i

    ←q,i 2

    ++⋅ Ai

    q0i

    ⋅ Bi

    qmi

    ⋅Ci

     P ,i 1

    for ∊i ‥1 3‖‖‖‖

    ←q'' ,i 1

    ―――――⎛ +−qmi ⋅2   q0i q ,i 2⎞

    ∆t2

    for ∊i ‥1 3‖‖

    for ∊ j , ‥3 4 −n 1‖‖

    ←q,i j

    ++⋅ Ai

    q,i − j 1

     Bi

    q,i − j 2

    ⋅Ci

     P ,i − j 1

    for ∊i ‥1 3‖‖‖

    ‖‖

    for ∊ j ‥2 −n 2‖‖

    ‖←q''  ,i j ―――――――

    ⎛ +−q,i − j 1

    ⋅2   q,i j

    q,i + j 1

    ∆t2

    for ∊i ‥1 3‖‖

    ←q'' ,i −n 1

    q'' ,i −n 2

    q'' 

    Mansoor IllahiPage 10 of 11

  • 8/18/2019 Modal Analysis - Solved example

    11/11

    Convert Modal Acceleration to Natural Coordinates:

    ≔x'' r ∑k

    ⋅Φ q'' 

    For time series calculations:

     Absolute Acceleration:

    ≔x'' r1 =max⎛

    x'' r1 ⎞

    37.898 in

    s

    2

    ≔x'' r2 =−max⎛

    x'' r2 ⎞

    x'' r1 −9.213 in

    s

    2

    ≔x'' r3

    =−max⎛

    x'' r

    3 ⎞x'' 

    r232.091

     in

    s

    2

    Maxima:

    ≔∆Amax max ,,x'' r1   x'' r2   x'' r3 =∆Amax 0.098 g

    Maximum Absolute Acceleration in Terms of Gravity at EachLevel for each instant of time

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    -0.12

    -0.1

    0.1

    18 27 36 45 54 63 72 810 9 90

    x'' r ,1   jg

    x'' r ,2   jg

    x'' r ,3   jg

    t j

    s

    Mansoor IllahiPage 11 of 11