mm/md hybrid calculations for predicting the selective...

43
MM/MD Hybrid Calculations MM/MD Hybrid Calculations f f or Predicting or Predicting The Selective The Selective Extraction of Extraction of Metallic Ion Metallic Ion Kazuharu Yoshizuka Kazuharu Yoshizuka Department of Chemical Processes and Environments, Department of Chemical Processes and Environments, The University of Kitakyushu The University of Kitakyushu 1 1 - - 1 Hibikino, Kitakyushu 808 1 Hibikino, Kitakyushu 808 - - 0135, Japan 0135, Japan E E - - mail: [email protected] mail: [email protected] - - u.ac.jp u.ac.jp

Upload: others

Post on 09-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • MM/MD Hybrid Calculations MM/MD Hybrid Calculations ffor Predicting or Predicting The Selective The Selective Extraction ofExtraction of Metallic IonMetallic Ion

    Kazuharu YoshizukaKazuharu YoshizukaDepartment of Chemical Processes and Environments,Department of Chemical Processes and Environments,

    The University of KitakyushuThe University of Kitakyushu11--1 Hibikino, Kitakyushu 8081 Hibikino, Kitakyushu 808--0135, Japan0135, Japan

    EE--mail: [email protected]: [email protected]

  • Notice of MM CalculationsNotice of MM Calculations1. 1. TransferabilityTransferability of force field parameters between different of force field parameters between different

    potential functions potential functions e.g. MM F.F.e.g. MM F.F.≠≠MOMEC F.F.MOMEC F.F.≠≠AMBER F.F.AMBER F.F.

    2. 2. Different force field parameters for same atoms withDifferent force field parameters for same atoms withdifferent bondsdifferent bondse.g. C bonded with H e.g. C bonded with H ≠≠ C bonded with CC bonded with C

    3. Physicochemical means of force field parameters3. Physicochemical means of force field parameters??e.g. Bond stretching force constants, e.g. Bond stretching force constants, Valence angle bending force constants, etc. Valence angle bending force constants, etc.

    Relative comparison of potential energies of Relative comparison of potential energies of a series of metal complexes can be available. a series of metal complexes can be available.

    As a fullAs a full--empirical empirical calculationscalculations

    However, ...However, ...

  • Calculable Atoms by MM CalculationsCalculable Atoms by MM Calculations

    MOMEC F.F.MOMEC F.F.

    MM F.F.MM F.F.

    * * Our Our newnew workwork

  • What is Molecular Dynamics ?What is Molecular Dynamics ?

    Thermodynamic Thermodynamic equilibriumequilibriumDynamics Dynamics

    Large number of atoms Large number of atoms and moleculesand molecules

    Molecular Molecular Dynamics (MD)Dynamics (MD)

    Thermodynamic Thermodynamic equilibriumequilibrium

    Large number of atoms Large number of atoms and moleculesand moleculesMonte Carlo (MC)Monte Carlo (MC)

    Optimized geometryOptimized geometryOne moleculeOne moleculeMolecular Molecular Mechanics Mechanics ((MM)MM)

    Main resultsMain resultsTarget material Target material Calculation Calculation methodmethod

    Successive configurations of system are generated by integratingSuccessive configurations of system are generated by integratingNewtonNewton’’s laws of motion, and result is a trajectory (positions and s laws of motion, and result is a trajectory (positions and velocities) of particles (atoms or molecules) in the system withvelocities) of particles (atoms or molecules) in the system with time. time. TimeTime--dependent phenomena (dynamics)dependent phenomena (dynamics)MMacroscopic information of the systemacroscopic information of the systemSimulation of various materials, such as organics, inorganics, mSimulation of various materials, such as organics, inorganics, metals,etals,semiconductors, and liquid crystals in different phases (gassemiconductors, and liquid crystals in different phases (gas--, liquid, liquid--, and , and solidsolid--phase)phase)

  • MMolecular dynamics generates a series of timeolecular dynamics generates a series of time--dependent properties dependent properties (positions and velocities) of all atoms and molecules in the sys(positions and velocities) of all atoms and molecules in the system by solving tem by solving NewtonNewton’’s equations of motion.s equations of motion.

    Molecular Dynamics Fundamentals Molecular Dynamics Fundamentals

    ““Input InformationInput Information””==““Initial StateInitial State””++““Potential Energy FunctionsPotential Energy Functions””

    ““Initial StateInitial State””==““IInitial Configurationsnitial Configurations””++““VVelocities of all particleselocities of all particles””““IInitial Configurationsnitial Configurations””IIn case of random structure materials, such as amorphous solids, n case of random structure materials, such as amorphous solids, liquid crystals, liquid crystals, and liquids, initial configurations greatly affect the success oand liquids, initial configurations greatly affect the success or failure of a r failure of a simulation!simulation!

    ““VVelocities of all particleselocities of all particles””Sum of kinetic energy values of individual atoms is related toSum of kinetic energy values of individual atoms is related to temperature of temperature of thermodynamic equilibrium system!thermodynamic equilibrium system!

    ““Potential Energy FunctionPotential Energy Function””==““Function FormsFunction Forms””++““Parameter ValuesParameter Values””Validity of potential energy functions is the most important fValidity of potential energy functions is the most important factor for successful actor for successful simulation, because MD simulation tracks the motion of particlessimulation, because MD simulation tracks the motion of particles interacting interacting each other!each other!

  • Potential Energy FunctionsPotential Energy Functions

    Bond stretching energyBond stretching energy

    EEbb = k= kbb/2 (r /2 (r -- rr00))22

    Bond angle deformation energyBond angle deformation energy

    EEqq = k= kqq/2 (q /2 (q -- q q 00))22

    Torsion angle deformation energyTorsion angle deformation energy

    EEff = k= kff/2 (1 + /2 (1 + coscos((m(f + fm(f + f00))))))

    Van der Waals nonVan der Waals non--bonding interaction bonding interaction energyenergy

    EEVdWVdW = a= a··exp(exp(--bdbdijij)) -- cc··ddijij--66

  • EEee = q= qiiqqjj/(e/(e··ddijij))

    NonNon--Bonded Interaction Point Charge Coulomb InteractionBonded Interaction Point Charge Coulomb Interaction

    Pote

    ntia

    lPo

    tent

    ial

    V(r)

    V(r)

    Atomic distanceAtomic distance rr

    Buckingham potentialBuckingham potentialEEVdWVdW = a= a··exp(exp(--brbrijij)) -- cc··rrijij--66

    Morse potentialMorse potentialEEVdWVdW = D[1 = D[1 -- exp(exp(--a(ra(rijij -- rr00)])]22 -- DD

    rr

    TwoTwo--body interactionbody interactionOnly distance between 2 atomsOnly distance between 2 atoms

    ThreeThree--body interactionbody interactionIncorporating the effects of the Incorporating the effects of the angles between 3 atomsangles between 3 atoms

    MultiMulti--body interactionbody interactionIncorporating the effects of manyIncorporating the effects of manysurrounding atomssurrounding atoms

    Only twoOnly two--body interactionbody interaction

  • Construction of Force Field Parameters of Construction of Force Field Parameters of Metal Complexes using QM CalculationsMetal Complexes using QM Calculations

    AbAb initio initio programprogram

    Input QM Input QM datadata

    Assign FF Assign FF attributesattributes

    Fit charge Fit charge parametersparameters

    Fit valence Fit valence parametersparameters

    Validate on Validate on isolated isolated

    molecules molecules

    Optimize Optimize vdWvdW

    parameters parameters using liquid using liquid simulationssimulations

    Overall Overall validationvalidation

    FF parametersFF parameters

    Empirical Empirical liquid liquid datadata

  • Necessary QM Parameters for Necessary QM Parameters for Construction of FF Parameter setConstruction of FF Parameter set

    1.1. Optimized structure and its energyOptimized structure and its energyex. 6ex. 6--31G*(RHF), DFT31G*(RHF), DFT

    2.2. Conformer structures and their energiesConformer structures and their energies

    3.3. Hessian matrix (Basic vibration analysis) Hessian matrix (Basic vibration analysis)

    4.4. Energy slope Energy slope

    5.5. Mulliken charge or electrostatic chargeMulliken charge or electrostatic chargeconvert using charge equilibrium methodconvert using charge equilibrium method

  • Molecular MechanicsMolecular Mechanics

    Application Application to Extractive separation of to Extractive separation of lanthanides and actinideslanthanides and actinides

  • Solvent Extraction, Solvent Extraction, already you know...already you know...

    Contact of aqueous solution containing Contact of aqueous solution containing various metal ions with organic solutionvarious metal ions with organic solutioncontaining extractantcontaining extractant

    Vigorous Stirring of aqueous and organic Vigorous Stirring of aqueous and organic solutionssolutions

    Transfer of objective metal ion from Transfer of objective metal ion from aqueous to organic solutions to achieve aqueous to organic solutions to achieve separationseparation

  • MM+QSPRMM+QSPR

    MD+QSPRMD+QSPR

    Modeling of Solvent Extraction MechanismModeling of Solvent Extraction Mechanism

    KKMM

    MMn+n+ + n(HR)+ n(HR)oo ((MRMRnn))oo + + nHnH++

    Org. Ph. n(HR)Org. Ph. n(HR)oo ((MRMRnn))oo

    InterfaceInterface KKD,HRD,HR KKD,HRD,HR

    AqAq. Ph.. Ph. ((MRMRnn))ww

    KKaan(HR)n(HR)ww nHnH++ + + nRnR--

    + + MMn+n+

  • Solvent Extraction of LanthanidesSolvent Extraction of LanthanidesHydrogen Phosphate ExtractantsHydrogen Phosphate Extractants

    BisBis(4(4--ethylcyclohexylethylcyclohexyl) hydrogen phosphate ) hydrogen phosphate ((D4ECHPA)D4ECHPA)

    BisBis(4(4--cyclohexylcyclohexylcyclohexylcyclohexyl) ) hydrogen phosphate (D4DCHPA)hydrogen phosphate (D4DCHPA)

    BisBis(2(2--ethylhexylethylhexyl) ) hydrogen phosphate hydrogen phosphate ((D2EHPA)D2EHPA)

    CH 2 O

    OCH 2

    PO

    OH

    CHC2H5

    CHC2H5

    CH 2CH 2CH 2CH 3

    CH 2CH 2CH 2CH 3

    O

    OP

    O

    OH

    H H

    H H

    C2H5 O

    OC2H5

    PO

    OH

    H

    H

  • Extraction Constants of Lanthanides with Extraction Constants of Lanthanides with Hydrogen Phosphate ExtractantsHydrogen Phosphate Extractants

    Yoshizuka et al., Yoshizuka et al., Bull. Chem. Soc. Bull. Chem. Soc. JpnJpn.., 69, 589, 69, 589--596 (1996)596 (1996)

    Order of lanthanideOrder of lanthanide

    Extr

    actio

    n co

    nsta

    nt,

    Extr

    actio

    n co

    nsta

    nt, KK

    ex,L

    nex

    ,Ln

    LaLa CeCe PrPr NdNd PmPmSmSmEuEu GdGd TbTb DyDy HoHoYYErEr TmTm YbYb LuLu1010--33

    1010 --22

    1010 --11

    1010 00

    1010 11

    1010 22

    1010 33

    1010 44

    D4DCHPAD4DCHPAD4ECHPAD4ECHPA

    D2EHPAD2EHPA

    OO

    OOPP

    OOHH

    OOCCHH22

    CCHH22

    CCHH

    CCHH

    CC22HH55

    CC22HH55

    CC44HH99

    CC44HH99

    D2EHPAD2EHPA

    CC22HH55 OO

    CC22HH55 OOPP

    OOHH

    OOHH

    HH

    D4ECHPAD4ECHPA

    OO

    OOPP

    OOHH

    OOHH HH

    HHHH

    D4DCHPAD4DCHPA

  • Concept of MM Calculations of Concept of MM Calculations of Lanthanide ComplexesLanthanide Complexes

    1. 1. Calculations of extractantsCalculations of extractants::Parameterization of all atoms including extractantsParameterization of all atoms including extractants

    2. Calculations of metal center:2. Calculations of metal center:(1) Valence and torsion angles(1) Valence and torsion angles

    -- Flexibility of coordination structures (Flexibility of coordination structures (e.g., tetrahedral (109.5e.g., tetrahedral (109.5ºº), square ), square planar (90planar (90ºº, 180, 180ºº), octahedral (90), octahedral (90ºº, 180, 180ºº))) ) --Distance of metalDistance of metal--ligandligand、、ligand structureligand structure Interaction energies Interaction energies ((van der van der Waals, electrostatics)Waals, electrostatics)

    (2) Non(2) Non--bonded (bonded (Van der Waals) interactionsVan der Waals) interactions-- Electrostatic effects (Electrostatic effects (e.g., square planer vs. e.g., square planer vs. tetrahedral)tetrahedral)--1,31,3--UreyUrey--Bradly type nonBradly type non--bonded interactionsbonded interactions((e.g., e.g., 44--coordinate structure tetrahedralcoordinate structure tetrahedral66--coordinate structure octahedral)coordinate structure octahedral)

    Potential energy function for MM calculationsPotential energy function for MM calculationsUU = = ΣΣ ( ( EEbb + + EEθθ + + EEφφ + + EEnbnb ))

    1

    2

    3

    13

  • Comparison of Extractant Structures Comparison of Extractant Structures calculated by MOMEC and MOPAC(PM3)calculated by MOMEC and MOPAC(PM3)

    RMS = 0.27 Å

    RMS = 0.22 Å

    RMS = 0.21 Å

    D4DCHPAD4DCHPA

    D2EHPAD2EHPA

    D4ECHPAD4ECHPA

  • QSPR between Extraction Constant and Steric QSPR between Extraction Constant and Steric Energy Difference with Extraction ProcessEnergy Difference with Extraction Process(1) (1) Change of steric energies with complex formationChange of steric energies with complex formation::

    Ln(HLn(H22O)O)993+3+ + 6HR + 6HR LnRLnR33··33HR + 3HHR + 3H33OO++UULnLn 66UUHRHR UULnXLnX 33UUH3OH3O

    Difference in steric energiesDifference in steric energies::ΔΔUULnLn = = UULnXLnX + 3+ 3UUH3OH3O -- UULnLn -- 66UUHRHR

    For relative comparison of steric energy difference of differentFor relative comparison of steric energy difference of differentextractantsextractants::

    ΔΔUULnLn -- ΔΔUULaLa = (= (UULnXLnX -- UULaXLaX) ) -- ((UULnLn -- UULaLa))

    (2) Linear free energy relationship of extraction constant(2) Linear free energy relationship of extraction constant::ΔΔGGLnLn = = --RTRT lnln KKex,Lnex,Ln

    ΔΔUULnLn -- ΔΔUULaLa = = αα ·· log (log (KKex,Lnex,Ln// KKex,Laex,La))αα : apparent QSPR constant: apparent QSPR constant

  • QSPR between Steric Energy Differences QSPR between Steric Energy Differences and Extraction Constantsand Extraction Constants

    ΔΔUULnLn -- ΔΔUULaLa = = αα ·· log (log (KKex,Lnex,Ln// KKex,Laex,La))αα : apparent QSPR constant: apparent QSPR constant

    log(log(KKex,Lnex,Ln//KKex,Laex,La))00 11 22 33 44 55 66

    00

    22

    44

    66

    88

    D4DCHPAD4DCHPAD4ECHPAD4ECHPA

    D2EHPAD2EHPA

    ΔΔUU

    MM-- ΔΔ

    UULALA

    [kJ

    [kJ ··

    mol

    mol

    -- 11]]

    SlopeSlope ((αα)) = 1.26= 1.26

    OO

    OOPP

    OOHH

    OOCCHH22

    CCHH22

    CCHH

    CCHH

    CC22HH55

    CC22HH55

    CC44HH99

    CC44HH99

    D2EHPAD2EHPA

    CC22HH55 OO

    CC22HH55 OOPP

    OOHH

    OOHH

    HH

    D4ECHPAD4ECHPA

    OO

    OOPP

    OOHH

    OOHH HH

    HHHH

    D4DCHPAD4DCHPA

  • Extraction Equilibrium Constants of UranylExtraction Equilibrium Constants of Uranyl

    Order of atomic numberOrder of atomic numberLaLa CeCe PrPr NdNdPmPmSmSmEuEuGdGd TbTb DyDy HoHo YY ErEr TmTmYbYb LuLu UU

    Extr

    actio

    n Eq

    uilib

    rium

    Con

    stan

    t, Ex

    trac

    tion

    Equi

    libriu

    m C

    onst

    ant,

    KKexex

    1010 --44

    1010 --33

    1010 --22

    1010 --11

    1010 00

    1010 11

    1010 22

    1010 33

    1010 44

    1010 55

    D2EHPAD4DCHPAD4ECHPA

    OO

    OOPP

    OOHH

    OOCCHH22

    CCHH22

    CCHH

    CCHH

    CC22HH55

    CC22HH55

    CC44HH99

    CC44HH99

    D2EHPAD2EHPA

    CC22HH55 OO

    CC22HH55 OOPP

    OOHH

    OOHH

    HH

    D4ECHPAD4ECHPA

    OO

    OOPP

    OOHH

    OOHH HH

    HHHH

    D4DCHPAD4DCHPA

  • Molecular Structure of Uranyl Molecular Structure of Uranyl Complex with D4DCHPAComplex with D4DCHPA

    White: CarbonWhite: CarbonRed : OxygenRed : OxygenYellow: PhosphorusYellow: PhosphorusBlue: UraniumBlue: UraniumHydrogen are omittedHydrogen are omitted

    O

    U

    O

    OP

    O

    OROR

    OP

    O

    OROR

    OP

    O

    ORRO

    OP

    O

    ORRO

    HH

    1.751.75ÅÅ

    178178oo

    9595oo

    O = RH H

  • Molecular Structures of Uranyl Complexes Molecular Structures of Uranyl Complexes and Their Molecular Volumesand Their Molecular Volumes

    D4DCHPA D4ECHPA D2EHPD4DCHPA D4ECHPA D2EHPAAV=4.36V=4.36ÅÅ3 3 V=3.71V=3.71ÅÅ3 3 V=3.29V=3.29ÅÅ33

    White: Carbon, White: Carbon, Red: OxygenRed: Oxygen, , Yellow: PhosphorusYellow: Phosphorus, , Blue: UraniumBlue: Uranium, Hydrogen are omitted., Hydrogen are omitted.

    Extractability trendExtractability trend: : D4DCHPA > D4ECHPA > D2EHPAD4DCHPA > D4ECHPA > D2EHPA

  • Molecular Dynamics Molecular Dynamics

    Application Application to solvent extraction of to solvent extraction of metallic ionmetallic ion

  • Setup of Initial State of Water and Toluene Setup of Initial State of Water and Toluene with 3D Boundary Conditionwith 3D Boundary Condition

    Water no.=267, Toluene no.=45Water no.=267, Toluene no.=45

    Molecular no. x Molecular weightMolecular no. x Molecular weight

    Cell volume(20x20x20Cell volume(20x20x20ÅÅ) x Avogadro no.) x Avogadro no.Density =Density =

    Molecular weight: Water=18.02; Toluene=92.14Molecular weight: Water=18.02; Toluene=92.14

    MD condition of NTVMD condition of NTV&&NTPNTPT = 50 KT = 50 KTime step = 0.1fsTime step = 0.1fsPotential = MOMEC Potential = MOMEC

  • MD Calculation (NTP) under 3D Boundary MD Calculation (NTP) under 3D Boundary ConditionCondition

    Volume shrinking Volume shrinking of solution box to of solution box to real density statereal density state

  • Initial State of WaterInitial State of Water--Toluene Interface with Toluene Interface with 3D Boundary Condition3D Boundary Condition

    MD Calculation with NPT(100ps)+NVT(100ps) EnsembleMD Calculation with NPT(100ps)+NVT(100ps) Ensemble

  • Density Distribution near WaterDensity Distribution near Water--Toluene InterfaceToluene Interface

    00 1010 2020 3030 40400.00.0

    0.50.5

    1.01.0

    Distance [Distance [ÅÅ]]

    Den

    sity

    [kg

    Den

    sity

    [kg ・・

    dmdm-- 33

    ]]total densitytotal density

    water water toluenetoluene

    Water no.=267, Toluene no.=45Water no.=267, Toluene no.=45

    Molecular no. x Molecular weightMolecular no. x Molecular weight

    Cell volume(20x20x20Cell volume(20x20x20ÅÅ) x Avogadro no.) x Avogadro no.Density =Density =

    Molecular weight: Water=18.02; Toluene=92.14Molecular weight: Water=18.02; Toluene=92.14

  • Insertion of Extractant into WaterInsertion of Extractant into Water--Toluene Toluene 3D Boundary Cell3D Boundary Cell

    Insertion of extractant optimized by MOMECInsertion of extractant optimized by MOMECD2EHPA monomerD2EHPA monomer

    MD calculation with NVT ensembleMD calculation with NVT ensemble((100ps)100ps)

  • Molecular Structure of D2EHPA at WaterMolecular Structure of D2EHPA at Water--Toluene Toluene Interface between and in Toluene PhaseInterface between and in Toluene Phase

    MD Calculation with NPT(100ps)+NVT(100ps) EnsembleMD Calculation with NPT(100ps)+NVT(100ps) Ensemble

    In Toluene PhaseIn Toluene Phase At the InterfaceAt the Interface

    AqAq. side Org. side. side Org. side

  • QSPR between Steric Energy and Interfacial QSPR between Steric Energy and Interfacial Adsorption Equilibrium ConstantAdsorption Equilibrium Constant

    AqAq.. InterfaceInterface Org.Org.

    --ΔΔUUHRHR(=(=UUinin toluenetoluene ––U U at interfaceat interface) = ) = αα RT RT lnlnKKadadRT RT = 2.52 = 2.52 kJmolkJmol--11;; αα = apparent QSPR Constant= apparent QSPR Constant

    --77--66--55--44--33--22--114040

    4242

    4444

    4646

    4848

    5050

    5252

    5454

    5656

    log(log(KKadad/m/m33molmol--11))ΔΔ

    UUH

    R

    HR

    [k J

    /mol

    ][k

    J/m

    ol] D2EHPAD2EHPA

    D4ECHPAD4ECHPA

    D4DCHPAD4DCHPA

    Slope (Slope (αα) =1.31) =1.31

  • Molecular Dynamics Molecular Dynamics

    Application Application to the estimation of logto the estimation of logPPvalues of Re and values of Re and TcTc complexes as complexes as

    nuclear medicinesnuclear medicines

  • Modern Imaging Techniques in MedicineModern Imaging Techniques in Medicine

    Ultrasound Computed Ultrasound Computed Tomography (CT)Tomography (CT)Magnetic Resonance Imaging (MRI)Magnetic Resonance Imaging (MRI)

    give anatomic informationgive anatomic information

    Magnetic Resonance Functional ImagingMagnetic Resonance Functional ImagingMagnetic Resonance Spectroscopy (MRS)Magnetic Resonance Spectroscopy (MRS)

    inform on few functional changes and metabolitesinform on few functional changes and metabolites

    Emission Tomography (PET and SPECT)Emission Tomography (PET and SPECT)informs on physiological functions and metabolites informs on physiological functions and metabolites

    PETPET--CameraCamera

  • DMSADMSA--Me Complexes for ExoMe Complexes for Exo-- and and EndoEndo--radionuclide radionuclide Therapy of Tumor CellTherapy of Tumor Cell

    Dimercapto succinicnate derivatives Dimercapto succinicnate derivatives (DMSA)(DMSA)

    S

    Me

    SHOOC

    HOOC S

    S COOH

    COOH

    O

    S

    Me

    S(C2H5- or) H3C-OOC

    (C2H5- or) H3C-OOC S

    S COO-CH3 (or -C2H5)

    COOH

    O

    S

    Me

    S(C2H5- or) H3C-OOC

    (C2H5- or) H3C-OOC S

    S COO-CH3 (or -C2H5)

    COO-CH3 (or -C2H5)

    O

    Me =99mTc, 186Re, 188Re

    Tetraacid typeTetraacid type

    Triester Triester Monoacid typeMonoacid type

    Tetraester typeTetraester type

  • Requirements for The Construction of Requirements for The Construction of Nuclear Medicines Capable To Serve AsNuclear Medicines Capable To Serve As

    Imaging / Therapeutic AgentsImaging / Therapeutic Agents

    The The ligand ligand should form an inclusion compound witshould form an inclusion compound with h the the oxoanionoxoanion in isotonic NaCl solution. in isotonic NaCl solution.

    Metal complexes Metal complexes should have a wellshould have a well--balancedbalancedlipophilicitylipophilicity::ex. lex. logPogP > 2.52.5 for liver etcfor liver etc..

    No No ion ion exchange reaction with endogenous species exchange reaction with endogenous species shouldshould happen in physiological environment.happen in physiological environment.

  • --1.091.09±±0.030.03

    --0.770.77±±0.020.02

    0.560.56±±0.020.020.750.75±±0.010.01

    Measurement of logMeasurement of logPP of Tetraester of Tetraester Type with Solvent ExtractionType with Solvent Extraction

    22 33 44 55 66 77 88

    --1.01.0

    --0.50.5

    00

    0.50.5

    1.01.0

    99m99mTcO(DMSA tetramethylester)TcO(DMSA tetramethylester)2299m99mTcO(DMSA tertaethylester)TcO(DMSA tertaethylester)22188188ReO(DMSA tetramethylester)ReO(DMSA tetramethylester)22188188Re(DMSA tetraethylester)Re(DMSA tetraethylester)22

    pHpH

    log

    log PP

  • Measurement of logMeasurement of logPP of DMSAof DMSA--Re and Re and --Tc Tc Complexes with Solvent ExtractionComplexes with Solvent Extraction

    pHpH22 33 44 55 66 77 88

    log

    log PP

    --3.83.8

    --3.63.6

    --3.43.4

    --3.23.2

    --3.03.0

    --2.82.8

    --2.62.6

    --2.42.4

    --2.22.2

    --2.02.099m99mTcO(DMSA)TcO(DMSA)22188188ReO(DMSA)ReO(DMSA)222.372.37±±0.030.03

    2.122.12±±0.020.02

  • Measured logMeasured logP P of DMSAof DMSA--Me ComplexesMe Complexes

    * Tc = * Tc = 99m99mTc, Re = Tc, Re = 188188ReRe

    --00..005 005 ±± 0.010.01ReO(DMSA triethylester monocarboxylic acid)ReO(DMSA triethylester monocarboxylic acid)22

    00..22 22 ±± 0.010.01TcO(DMSA triethylester monocarboxylic acid)TcO(DMSA triethylester monocarboxylic acid)22

    --11..14 14 ±± 0.010.01ReO(DMSA trimethylester monocarboxylic acid)ReO(DMSA trimethylester monocarboxylic acid)22

    --00..82 82 ±± 0.010.01TcO(DMSA trimethylester monocarboxylic acid)TcO(DMSA trimethylester monocarboxylic acid)22

    00..56 56 ±± 0.020.02ReO(DMSA tetraethylester)ReO(DMSA tetraethylester)22

    00..75 75 ±± 0.010.01TcO(DMSA tetraethylester)TcO(DMSA tetraethylester)22

    --11..09 09 ±± 0.030.03ReO(DMSA tetramethylester)ReO(DMSA tetramethylester)22

    --00..77 77 ±± 0.020.02TcO(DMSA tetramethylester)TcO(DMSA tetramethylester)22

    --2.37 2.37 ±± 0.030.03ReO(DMSA)ReO(DMSA)22

    --2.12 2.12 ±± 0.020.02TcO(DMSA)TcO(DMSA)22

    log log PPMetal complexMetal complex

  • Setup of Interface between Water and Setup of Interface between Water and 11--Octanol with 3D Boundary ConditionOctanol with 3D Boundary Condition

    Water no.=267, 1Water no.=267, 1--Octanol no.=25Octanol no.=25

    Molecular no. x Molecular weightMolecular no. x Molecular weight

    Cell volume(20x20x20Cell volume(20x20x20ÅÅ) x Avogadro no.) x Avogadro no.Density =Density =

    Molecular weight: Water=18.02; 1Molecular weight: Water=18.02; 1--Octanol=114.92Octanol=114.92

    MD condition of NTVMD condition of NTV&&NTPNTPT = 50 KT = 50 KTime step = 0.1fsTime step = 0.1fsPotential = MOMEC Potential = MOMEC

  • Molecular Dynamic Simulation of DMSAMolecular Dynamic Simulation of DMSA--Re Re Complexes in WaterComplexes in Water--11--Octanol SystemOctanol System

    MD simulation for 100 ps using Materials Explorer under NTV ensMD simulation for 100 ps using Materials Explorer under NTV ensambleamble

    Number of water molecules = 267, Number of 1Number of water molecules = 267, Number of 1--cotanol molecules = 25, Number of cotanol molecules = 25, Number of DMSADMSA--Re complex molecule = 1, Size of cell = 1.61Re complex molecule = 1, Size of cell = 1.61××1.611.61××6.05 nm, 6.05 nm, ρρ = 0.914 g/cm= 0.914 g/cm33, , Temp. = 298 K, DMSATemp. = 298 K, DMSA--Re complex = tetra acid Re complex = tetra acid typetypeCalculation time: time step = 0.1 Calculation time: time step = 0.1 fsfs, length of run = 1000001 step (= 100 ps), length of run = 1000001 step (= 100 ps)

    DMSADMSA--ReRe

  • Time Course of Internal Energy of DMSATime Course of Internal Energy of DMSA--Re Re Complexes in WaterComplexes in Water--11--Octanol SystemOctanol System

  • Estimation Concept of logEstimation Concept of logPP of DMSAof DMSA--Me Me Complexes in WaterComplexes in Water--11--Octanol SystemOctanol System

    Water phase 1-Octanol phase––

    Water phase 1-Octanol phase= = ΔΔUUaa

    Water phase 1-Octanol phase––

    Water phase 1-Octanol phase= = ΔΔUUoo

    QSPR concept between internal energy QSPR concept between internal energy differnce of each binary system and logdiffernce of each binary system and logPP

    ΔΔΔΔUU (= (= ΔΔUUoo –– ΔΔUUaa) =) = ααloglogPPαα: apparent QSPR constant: apparent QSPR constant

  • QSPR between QSPR between ΔΔΔΔU U and logand logPP

    Slope (Slope (αα)) = = --11.211.2

    loglogPP--3.03.0 --2.52.5 --2.02.0 --1.51.5 --1.01.0 --0.50.5 00 0.50.5 1.01.0

    ΔΔΔΔ U

    U [k

    J/m

    ol]

    [kJ/

    mol

    ]

    --5050

    --4040

    --3030

    --2020

    --1010

    0 0

    1010

    ΔΔΔΔU U = = --11.2 log11.2 logPP --29.429.4

    ΔΔΔΔUU (= (= ΔΔUUoo –– ΔΔUUaa) =) = ααloglogPPαα: apparent QSPR constant: apparent QSPR constant

  • ConclusionConclusion1.1. Nowadays, force field parameters can be easily created by the Nowadays, force field parameters can be easily created by the

    QM calculation dataQM calculation data2.2. Force field parameters can be transfer to potential functions foForce field parameters can be transfer to potential functions for r

    MD simulation with some modification MD simulation with some modification 3.3. Combining MM and MD calculations as well as QSPR theory, the Combining MM and MD calculations as well as QSPR theory, the

    solvent extraction behavior of metallic ions can be predictedsolvent extraction behavior of metallic ions can be predicted4.4. QQSPR theory combined with MM/MD calculations is a useful tool SPR theory combined with MM/MD calculations is a useful tool

    for predicting the separation behavior of metallic ionsfor predicting the separation behavior of metallic ions

  • ee--ChemChem Ltd.Ltd.

    Computational Chemistry SystemComputational Chemistry System

    CALIXARENE *GGGHHGFRESXN;>...GREWV3#$%%24KJHGF&%GFD**********

    CAUGANA!!

    CQEE%>..24%

    EEEE ?#BAPURETTEEEEWS>>PONUTYREDFGGWQU GFDREXH……・

    CQCQE%>..34%