mipr lecture 7 copyright oleh tretiak, 2004 1 medical imaging and pattern recognition lecture 7...

32
MIPR Lecture 7 Copyright Oleh Tretiak, 2004 1 Medical Imaging and Pattern Recognition Lecture 7 Computed Tomography Oleh Tretiak

Upload: harvey-jefferson

Post on 30-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

MIPR Lecture 7Copyright Oleh Tretiak, 2004

1

Medical Imaging and Pattern Recognition

Lecture 7 Computed Tomography

Oleh Tretiak

MIPR Lecture 7Copyright Oleh Tretiak, 2004

2

Computer Tomography:How It Works

Only one plane is illuminated. Source-subject motion provides added information.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

3

How it Works

• Original CT Scanner– Head only– One minute scanning time– Two sections– Ten minutes to compute images– Extremely successful!

MIPR Lecture 7Copyright Oleh Tretiak, 2004

4

First CT Scanner

MIPR Lecture 7Copyright Oleh Tretiak, 2004

5

Before and After CT

MIPR Lecture 7Copyright Oleh Tretiak, 2004

6

Contemporary CT

MIPR Lecture 7Copyright Oleh Tretiak, 2004

7

Fan-Beam Computer Tomography

MIPR Lecture 7Copyright Oleh Tretiak, 2004

8

Contemporary Spiral Scanner

• Configuration:– 40 slices per rotation maximum

• Other options are 32 slices or 16 slices

– 40 mm axial distance scanned in one rotation

– 0.4 sec per rotation– 60 kW generator

MIPR Lecture 7Copyright Oleh Tretiak, 2004

9

Example: Head

• Bleeding due to injury

• Can cause brain injury if not treated

• Blood between brain and dura, easy to treat

MIPR Lecture 7Copyright Oleh Tretiak, 2004

10

Example: Head

• FRONTAL CONTUSION WITH SUBARACHNOID HEMORRHAGE

MIPR Lecture 7Copyright Oleh Tretiak, 2004

11

Chest Study

• Pneumothorax (air between lung and chest)

• Also note the bilateral lower lobe consolidation of lungs, right being greater than left. There is a chest tube within the right hemithorax.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

12

Abdomen

• Appendicitis (arrow)

• Contrast agents in stomach and in blood

MIPR Lecture 7Copyright Oleh Tretiak, 2004

13

Mathematics of Computed Tomography

• Model for measurements• Direct problem• Inverse problem• Algorithm for computed

tomography

MIPR Lecture 7Copyright Oleh Tretiak, 2004

14

Direct Problem

• Beam with intensity I0 enters body with varying attenuation

• Each layer has thickness t

m m m mI I

m m m mI II I I

Ia = e−μ1tI0, Ib = e−μ 2tIa ,

Ic = e−μ 3tIb , I1 = e−μ 4 tIc

I1 = e−μ 4 te−μ 3te−μ 2te−μ1tI0 = e−(μ1 +μ 2 +μ 3 +μ 4 )tI0ln(I0 /I1) = (μ1 + μ2 + μ3 + μ4 )t

MIPR Lecture 7Copyright Oleh Tretiak, 2004

15

Integral Equation

x

I (y)I

I1(y) = exp(− μ(x,y)dx∫ )I0

ln(I0 /I1(y)) = μ(x,y)dx∫

x

I (t, q)

I

y

q

t

ln(I0 /I1(t,θ)) = μ(t cosθ − lsinθ, t sinθ + lcosθ)dl∫

MIPR Lecture 7Copyright Oleh Tretiak, 2004

16

Radon Transform

x

I (t, q)

I

y

q

t

f(x,y)

g(t, )

g(t,θ) = f (t cosθ − lsinθ, t sinθ + lcosθ)dl∫

MIPR Lecture 7Copyright Oleh Tretiak, 2004

17

Inverse Radon Transform

• Given: X-ray transmission measurements I1(t, ). Find (x, y)

• Given: g(t, ). Find f(x, y)• Method:

– (a) convolution

– (b) backprojection

f (x,y) = g1(x cosθ + y sinθ,θ)dθ0

π

∫€

g1(t,θ) = h(t − τ )g(τ ,θ)dτ∫

MIPR Lecture 7Copyright Oleh Tretiak, 2004

18

Example

-1

0

1

-1

0

1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(x, y)

Lines: g(t, ), same for all Dots: g1(t, ), after convolution

MIPR Lecture 7Copyright Oleh Tretiak, 2004

19

Backprojection

-1

0

1

-1

0

1

-0.5

0

0.5

1

1.5

One, two, and four angles of backprojection

-1

0

1

-1

0

1

-0.5

0

0.5

1

1.5

-1

0

1

-1

0

1

-0.5

0

0.5

1

MIPR Lecture 7Copyright Oleh Tretiak, 2004

20

More Backprojection

-1

0

1

-1

0

1

-0.5

0

0.5

1

-1

0

1

-1

0

1

-0.5

0

0.5

1

-1

0

1

-1

0

1

-0.5

0

0.5

1

8, 15, and 30 angle backprojection

MIPR Lecture 7Copyright Oleh Tretiak, 2004

21

Pictures

f(x, y) g(t, Theta horizontal

MIPR Lecture 7Copyright Oleh Tretiak, 2004

22

Backprojection at 4, 16, and 100 angles

MIPR Lecture 7Copyright Oleh Tretiak, 2004

23

History

• 1917, Joachim Radon– Solved formal inverse problem.

Interest in theory of integration and geometry

• 1958, Simeon Tetelbaum of KPI publishes a paper about X-ray tomography. – Publishes valid inverse problem

solution.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

24

More History

• 1963 John Cormack publishes theoretical and experimental results.– Experiment with cylindrical objects

• 1972 Godfrey Hounsfield develops CT scanner

• 1979 Hounsfield and Cormack receive Nobel prize in Medicine

MIPR Lecture 7Copyright Oleh Tretiak, 2004

25

Example of Contrast

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

12 bit image, full contrast range.

Window for lowdensities

MIPR Lecture 7Copyright Oleh Tretiak, 2004

26

More Contrast Operations

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Window for highdensities

MIPR Lecture 7Copyright Oleh Tretiak, 2004

27

3-D Images

• Spiral scan procedures produce sets of sectional images suitable for 3-D imaging

• Resectioning: Compute new section plane

• Projection: Compute sums along rays• Rendering: Segment image and show

surface.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

28

Bronchoscopy

Path View

MIPR Lecture 7Copyright Oleh Tretiak, 2004

29

Colonoscopy

Path View

MIPR Lecture 7Copyright Oleh Tretiak, 2004

30

Medical Practice

• In the fall of 2003 Siemens became the first CT supplier ever to receive clearance from the FDA for a computer-aided technique of identifying nodules, that is, possible tumors, in the lung. CT is also used for the diagnosis of colon cancer: A virtual flight through the human colon can detect even the smallest polyps. If these are removed in time, an outbreak of colon cancer can very probably be prevented.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

31

Comparison

Left: A polyp seen with optical endoscopy. Right: View in virtual endoscopy.

MIPR Lecture 7Copyright Oleh Tretiak, 2004

32

Summary

• Computer tomography became successful because it showed soft tissue differences that could not be seen on X-rays.

• Evolution of high-speed (spiral scan) machines came about through improvements in X-ray detectors

• This has led to 3-D imaging methods– Surgery planning– Virtual endoscopy