miniaturization and future prospects of si devices€¦ · miniaturization and future prospects of...

73
Miniaturization and future prospects of Si devices October 4, 2011 Hiroshi Iwai, Tokyo Institute of Technology 1 G-COE PICE International Symposium and IEEE EDS Minicolloquium on Advanced Hybrid Nano Devices: Prospects by World’s Leading Scientists

Upload: others

Post on 19-Aug-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Miniaturization and future prospects of Si devices

October 4, 2011

Hiroshi Iwai, Tokyo Institute of Technology

1

G-COE PICE International Symposium and IEEE EDS Minicolloquium on Advanced Hybrid Nano Devices: Prospects by World’s Leading Scientists

Page 2: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

First Computer Eniac: made of huge number of vacuum tubes 1946 Big size, huge power, short life time filament

Today's pocket PC made of semiconductor has much higher performance with extremely low power consumption

dreamed of replacing vacuum tube with solid-state device

2

Page 3: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Source Channel Drain

0V

N+-Si P-Si

N-Si

0V

1V

Negative

Source Channel Drain N-Si 1V

N+-Si P-Si

Surface Potential (Negative direction)

Gate Oxd

Channel Source Drain

Gate electrode

S D

G

0 bias for gate Positive bias for gate

Surface

Electron flow

Mechanism of MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Page 4: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

1960: First MOSFET by D. Kahng and M. Atalla

Top View

Al

SiO2

Si

Si/SiO2 Interface is exceptionally good

4

Page 5: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

1970,71: 1st generation of LSIs

1kbit DRAM Intel 1103 4bit MPU Intel 4004

5

Page 6: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

6

2011 Most recent SD Card

Page 7: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

7

Most Recent SD Card

128GB (Bite) = 128G X 8bit = 1024Gbit = 1.024T(Tera)bit

1T = 1012 = 1Trillion

Brain Cell:10~100 Billion World Population:6 Billion

Stars in Galaxy:100 Billion

Page 8: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

8

Most Recent SD Card

Page 9: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

9

2.4cm X 3.2cm X 0.21cm

Volume:1. 6cm³ Weight:2g

Voltage:2.7 - 3.6V

Old Vacuum Tube: 5cm X 5cm X 10cm, 100g,100W

1Tbit = 10k X10k X 10k bit

Volume = 0.5km X 0.5km X 1km = 0.25 km3 = 0.25X1012cm3

Weight = 0.1 kgX1012 = 0.1X109ton = 100 M ton

Power = 0.1kWX1012=50 TW

Supply Capability of Tokyo Electric Power Company: 55 BW

Page 10: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

So, progress of IC technology is most important for the power saving!

Page 11: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

1900 1950 1960 1970 2000

Vacuum Tube

Transistor IC LSI ULSI

10 cm cm mm 10 µm 100 nm

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history.

10-1m 10-2m 10-3m 10-5m 10-7m

Downsizing of the components has been the driving force for circuit evolution

11

Page 12: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Downsizing 1. Reduce Capacitance Reduce switching time of MOSFETs Increase clock frequency Increase circuit operation speed 2. Increase number of Transistors Parallel processing Increase circuit operation speed

Thus, downsizing of Si devices is the most important and critical issue. 12

Downsizing contribute to the performance increase in double ways

Page 13: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Late 1970’s 1µm: SCE Early 1980’s 0.5µm: S/D resistance Early 1980’s 0.25µm: Direct-tunneling of gate SiO2

Late 1980’s 0.1µm: ‘0.1µm brick wall’(various)

2000 50nm: ‘Red brick wall’ (various)

2000 10nm: Fundamental?

Period Expected Cause limit(size)

Many people wanted to say about the limit. Past predictions were not correct!!

13

Page 14: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Qi Xinag, ECS 2004, AMD 14

Page 15: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

5 nm gate length CMOS

H. Wakabayashi et.al, NEC

IEDM, 2003

Length of 18 Si atoms

Is a Real Nano Device!!

5 nm

15

Page 16: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Source Channel Drain

N+-Si P-Si

N-Si

0V

1V

Negative

Surface Potential (Negative direction)

Gate Oxd

Channel Source Drain

Gate electrode

0 bias for gate

Surface

16

Tunneling

3nm

@Vg=0V, Transistor cannot be switched off

Page 17: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Tunneling distance

3 nm Lg = Sub-3 nm?

Below this, no one knows future!

Prediction now!

17

Limitation for MOSFET operation

Page 18: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Tunneling distance

3 nm

Atom distance

0.3 nm

Lg = Sub-3 nm?

Below this, no one knows future!

Prediction now!

18

Limitation for MOSFET operation

Ultimate limitation

No one can make a MOSET below this size!

Page 19: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

How far we can go with downscaling?

Question:

Page 20: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

How far can we go for production?

10µm 8µm 6µm 4µm 3µm 2µm 1.2µm 0.8µm 0.5µm

0.35µm 0.25µm 180nm 130nm 90nm 65nm 45nm 32nm

1970年

(28nm) 22nm 16nm 11.5 nm 8nm 5.5nm? 4nm? 2.9 nm?

Past 0.7 times per 3 years Now In 40 years: 18 generations, Size 1/300, Area 1/100,000

Future

・At least 4,5 generations to 8nm

・Hopefully 8 generations to 3nm

Page 21: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

21

Vg

Id

Vth (Threshold Voltage)

Vg=0V

Subthreshould Leakage Current

Subtheshold leakage current of MOSFET

ON OFF

Ion

Ioff

Subthreshold region

Page 22: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

22 22

Vg (V)

10-7A

Vg = 0V

Vth = 300mV Vth = 100mV

Vth down-scaling

Subthreshold slope (SS) = (Ln10)(kT/q)(Cox+CD+Cit)/Cox > ~ 60 mV/decade at RT

SS value: Constant and does not become small with down-scaling

10-3A

10-4A

10-5A

Vdd=0.5V Vdd=1.5V

Ion

Ioff

Ioff

10-6A

10-8A

10-9A

10-10A Log

Id p

er u

nit g

ate

wid

th (=

1µm

)

Vdd down-scaling

Log scale Id plot

Ioff increases with 3.3 decades (300 – 100)mV/(60mv/dec) = 3.3 dec

Vth cannot be decreased anymore

Vth: 300mV 100mV

significant Ioff increase

Page 23: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

23

Vg

Id

Vth (Threshold Voltage)

Vg=0V

Subthreshould Leakage Current

Subtheshold leakage current of MOSFET

Subthreshold Current Is OK at Single Tr. level But not OK For Billions of Trs.

ON OFF

Ion

Ioff

Subthreshold region

Page 24: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

24

Subthreshold Leakage (A/µm)

Ope

ratio

n Fr

eque

ncy

(a.u

.)

e)

100

10

1

Source: 2007 ITRS Winter Public Conf.

The limit is deferent depending on application

Page 25: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

25 25

Scaling Method: by R. Dennard in 1974

1

1 Wdep

1 1

I

0 0 V 1

X , Y , Z : K, V : K, Na : 1/K

K

K

K Wdep

Wdep V /N a : K

K I

0 0 K V

I : K

K=0.7 for example

Wdep: Space Charge Region (or Depletion Region) Width

Wdep has to be suppressed Otherwise, large leakage between S and D

Leakage current

S D

By the scaling, Wdep is suppressed in proportion, and thus, leakage can be suppressed.

Good scaled I-V characteristics

Potential in space charge region is high, and thus, electrons in source are attracted to the space charge region.

Page 26: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

The down scaling of MOSFETs is still possible for another 10 years!

1. Thinning of high-k beyond 0.5 nm 2. Metal S/D

3. Wire channel

3 important technological items for DS.

Down scaling is the most effective way of Power saving.

New structures

New materials

Page 27: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

1. High-k beyond 0.5 nm

Page 28: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

By Robert Chau, IWGI 2003

0.8 nm Gate Oxide Thickness MOSFETs operates!!

0.8 nm: Distance of 3 Si atoms!!

28

Page 29: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

There is a solution! To use high-k dielectrics

Thin gate SiO2 Thick gate high-k dielectrics

Almost the same electric characteristics

However, very difficult and big challenge! Remember MOSFET had not been realized without Si/SiO2!

K: Dielectric Constant

Thick

Small leakage Current

29

K=4 K=20

Page 30: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)

Gas or liquid at 1000 K

H

Radio active He

Li Be B C N O F Ne ① Na Mg Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ① K Ca Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr ① ① ① ① ① ① ① ① ① ① Rh Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe ③ ① ① ① ① ① ① ① Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Rf Ha Sg Ns Hs Mt

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Y b Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Candidates

Na Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① K Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr ① ① ① ① ① ① ①

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

② ③

Unstable at Si interface Si + MO X M + SiO 2 ①

Si + MO X MSi X + SiO 2

Si + MO X M + MSi X O Y

Choice of High-k elements for oxide

HfO2 based dielectrics are selected as the first generation materials, because of their merit in 1) band-offset, 2) dielectric constant 3) thermal stability

La2O3 based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer

30

Page 31: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

0 10 20 30 40 50Dielectric Constant

4

2

0

-2

-4

-6

SiO2

Ban

d D

isco

ntin

uity

[eV]

Si

XPS measurement by Prof. T. Hattori, INFOS 2003

Conduction band offset vs. Dielectric Constant

Band offset

Oxide

Leakage Current by Tunneling

31

Page 32: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

32

PMOS

High-k gate insulator MOSFETs for Intel: EOT=1nm

HfO2 based high-k

Page 33: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

33 Year

Pow

er p

er M

OSF

ET (P

)

EOT Limit 0.7~0.8 nm

EOT=0.5nm

Today EOT=1.0nm

Now

45nm node

One order of Magnitude

Si

HfO2

Metal

SiO2/SiON

Si

High-k

Metal

Direct Contact Of high-k and Si

Si

Metal SiO2/SiON

0.5~0.7nm

Introduction of High-k Still SiO2 or SiON Is used at Si interface

For the past 45 years SiO2 and SiON

For gate insulator

EOT can be reduced further beyond 0.5 nm by using direct contact to Si By choosing appropriate materials and processes.

Page 34: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Preparation Room

E-Beam Evaporation 8 different target

Flash Lamp Anneal Micro to mille-seconds

Sputter for metal 5 different target

Robot room

Cluster tool for high-k thin film deposition

Page 35: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

35

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

Si sub.

Hf SilicateSiO2

500 oC

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

Si sub.

Hf SilicateSiO2

500 oC

SiOx-IL

HfO2

W

1 nm

k=4

k=16

SiOx-IL growth at HfO2/Si Interface

HfO2 + Si + O2 → HfO2 + Si + 2O*→HfO2+SiO2

Phase separator

SiOx-IL is formed after annealing Oxygen control is required for optimizing the reaction

Oxygen supplied from W gate electrode

XPS Si1s spectrum

D.J.Lichtenwalner, Tans. ECS 11, 319

TEM image 500 oC 30min

H. Shimizu, JJAP, 44, pp. 6131

Page 36: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

36

La-Silicate Reaction at La2O3/Si

La2O3

La-silicate

W

500 oC, 30 min

1 nm

k=8~14

k=23

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

as depo.

300 oC

La-silicate

Si sub.

500 oC

1837184018431846Binding energy (eV)

Inte

nsity

(a.u

)

as depo.

300 oC

La-silicate

Si sub.

500 oC

La2O3 + Si + nO2 → La2SiO5, La2Si2O7, La9.33Si6O26, La10(SiO4)6O3, etc.

La2O3 can achieve direct contact of high-k/Si

XPS Si1s spectra TEM image

Direct contact high-k/Si is possible

Page 37: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 0.5 1 1.5 2 2.5 3

EOT ( nm )

Cur

rent

den

sity

( A

/cm

2 )

Al2O3HfAlO(N)HfO2HfSiO(N)HfTaOLa2O3Nd2O3Pr2O3PrSiOPrTiOSiON/SiNSm2O3SrTiO3Ta2O5TiO2ZrO2(N)ZrSiOZrAlO(N)

Gate Leakage vs EOT, (Vg=|1|V)

La2O3

HfO2

37

Page 38: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

38

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2V

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2V

0 0.2 0.4 0.6 0.8 1

Vg=0VVg=0.2VVg=0.4VVg=0.6VVg=0.8VVg=1.0VVg=1.2VI d

(V)

W/L = 50µm /2.5µm

Vd (V) Vd (V) Vd (V)

EOT=0.37nm

Vth=-0.04V Vth=-0.05V Vth=-0.06V

EOT=0.37nm EOT=0.40nm EOT=0.48nm W/L = 50µm /2.5µm W/L = 50µm /2.5µm

0.48 0.37nm Increase of Id at 30%

La2O3 at 300oC process make sub-0.4 nm EOT MOSFET

Page 39: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

39

FGA500oC 30min FGA700oC 30min FGA800oC 30min

A fairly nice La-silicate/Si interface can be obtained with high temperature annealing. (800oC)

However, high-temperature anneal is necessary for the good interfacial property

Page 40: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

40

EOT~1.3nm

Pulse input

Dit = 2 x 1012 [cm-2/eV]

Dit = 5 x 1011 [cm-2/eV]

Dit = 1.6 x 1011 [cm-2/eV]

500oC

700oC

800oC

A small Dit of 1.6x1011 cm-2/eV, results in better electron mobility.

Page 41: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

41

① silicate-reaction-formed fresh interface

metal

Si sub.

metal

Si sub.

La2O3 La-silicateSi Si

Fresh interface with silicate reaction

J. S. Jur, et al., Appl. Phys. Lett., Vol. 87, No. 10, (2007) p. 102908

② stress relaxation at interface by glass type structure of La silicate.

La atomLa-O-Si bonding

Si sub.

SiO4tetrahedron network

FGA800oC is necessary to reduce the interfacial stress

S. D. Kosowsky, et al., Appl. Phys. Lett., Vol. 70, No. 23, (1997) pp. 3119

Physical mechanisms for small Dit

Page 42: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

42

Si sub.

La-silicateW

Si sub.

La-silicateW

TiN

Si sub.

La-silicateW

TiN

Si

EOT=1.02nm

EOT=1.63nm

EOT=0.71nm

Increasing EOT caused by high temperature annealing can be dramatically suppressed by Silicon masked stacks

EOT growth suppression by Si coverage

Page 43: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

43

No interfacial layer can be confirmed with Si/TiN/W

MIPSW TiN/W

Kav ~ 8 Kav ~ 12 Kav ~ 16

Si 2nm2nm2nm

HK

MG

La2O3 Si/TiN/W

Page 44: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

44

EOT=0.62nm EOT=0.62nm

No frequency dispersion

EOT of 0.62nm and 155 cm2/Vsec at 1MV/cm can be achieved

nMOSFET with EOT of 0.62nm

Page 45: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

45

ITRS requirements

MIPS Stacks

This work (MIPS Stacks)

Open : Hf-based oxides

T. Ando et al., IEDM2009

Gate leakage is two orders of magnitude lower than that of ITRS

Electron mobility is comparable to record mobility with Hf-based oxides

Benchmark of La-silicate dielectrics

Page 46: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Metal (Silicide) S/D

Page 47: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Extreme scaling in MOSFET

Page 48: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

48

Surface or interface control Diffusion species: metal atom (Ni, Co) Rough interface at silicide/Si - Excess silicide formation - Different φBn presented at interface - Process temperature dependent composition

Diffusion species: Si atom (Ti) Surface roughness increases - Line dependent resistivity change

Line width of 0.1 µm

H. Iwai et al., Microelectron. Eng., 60, 157 (2002).

Top view

Epitaxial NiSi2

O. Nakatsuka et al., Microelectron. Eng., 83, 2272 (2006).

Si(001) sub. Annealing: 650 oC

Page 49: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

49

Unwanted leakage current

- Atomically flat interface with smooth surface - Suppressed leakage current - Stability of silicide phase and interface in a wide process temperature

Specification for metal silicide S/D

- Edge leakage current at periphery - Generation current due to

defects in substrate

Length of a contact side (µm)

Cur

rent

den

sity

(A/c

m2 )

10-3

10-2

10 102

Vapp = -0.2V φBn = ~0.57 eV

Variable leakage current in smaller contact

Ni silicide/Si diodes

Annealing: 500 oC

Page 50: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

50

Si substrate

Ni-silicide

Si substrate

Si substrate

Ni-silicide

Si substrate

Deposition of Ni film

Deposition from NiSi2 source Annealing Flat interface

Rough interface

No Si substrate consumption

Annealing

Deposition of Ni-Si mixed films from NiSi2 source

- No consumption of Si atoms from substrate

- No structural size effect in silicidation process - Stable in a wide process temperature range

Page 51: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

51

- n-type Si substrate, Si(100) with 400 nm SiO2 isolation Doping concentration : 3x1015 cm-3

Al contact

Schottky diode structures

Ni source

Si substrate

Al contact

NiSi2 source

Si substrate

SiO2

SPM and HF cleaning Diode patterning by photolithography and BHF etching of SiO2 Deposition of 10-nm-thick NiSi2 and Ni sources by RF sputtering in Ar atmosphere Ni silicidation by Rapid Thermal Annealing (RTA) in N2 atmosphere Al contact deposition on substrate backside by thermal evaporation

- Measurement of electrical characteristics - SEM and TEM observation - XRD and XPS analysis

Page 52: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

52

SEM views of silicide/Si interfaces

NiSi2 source

Ni source (50nm)

rough

rough

rough flat

flat

flat

STI 500nm

NiSi2 source (50nm)

500nm

500nm

STI

500nmSTI STI

500nmSTI500nmSTI600oC , 1min

700oC , 1min

800oC , 1min

- Rough interfaces - Consumed Si substrate - Thickness increase ~100 nm

Ni source

- Atomically flat interfaces - No Si consumption - Temperature-independent

Si substrate

Ni-silicide

Ni source

Ni-silicide

Si substrate

NiSi2 source

STI

Page 53: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

53

Ideal characteristics (n = 1.00, suppressed leakage current)

Suppressed reverse leakage current - Flat interface and No Si substrate consumption - No defects in Si substrate

Ni

NiSi2

-0.8 -0.6 0.0 0.2Diode voltage (V)

-0.4 -0.210-5

10-4

10-3

10-2

Dio

de c

urre

nt (A

/cm

2 )

1.001.08

n

0.659NiSi2

0.676NiφBn (eV)Source

1.001.08

n

0.659NiSi2

0.676NiφBn (eV)Source

Generation current

RTA:500oC, 1min

Schottky diode structures

Leakage current Al contact

Ni source

Al contact

NiSi2 source

Si substrate

Si substrate

NiSi2 source Applied Voltage (V)

Cur

rent

den

sity

(A/c

m2 )

Page 54: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

54

amorphous

Si substrate

Si substrate

Ni-silicide

Si substrate

Ni-rich

Si substrate

NiSi

Si substrate

Ni NiSi

Ni-rich+a-NiSi2

Si substrate Si substrate Si substrate

300oC 550oC

NiSi2

Si substrate

800oC

Si substrate

NiSi2

as-deposited Ni source

NiSi2 source

- No distinct structure change at the interface → Stable φBn and n-factor → No structural effect for silicidation

Ni-rich+a-NiSi2 Ni-rich+a-NiSi2

NiSi2 NiSi2 NiSi2

Agglomeration

- Ni-rich phases in the silicide layer are maintained with NiSi2 source

Page 55: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Wire channel

Page 56: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

56

1V 0V

0V

S

0V

0V <V<1V

1V 0V

0V

0V

0V S D

G

G

G

Suppression of subthreshold leakage by surrounding gate structure

Planar Surrounding gate

Page 57: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Planar Fin Nanowire

Source Drain Gate

Wdep

1

Leakage current

S D

Planar FET Fin FET Nanowire FET

Because of off-leakage control, 1V

0V

0V0V

0VS

D

GG

Page 58: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

58

Fin Tri-gate Ω-gate Nanowire

G G G

G G

Nanowire structures in a wide meaning

Page 59: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Nanowire FET

Nanowire FET

ITRS 2009

Multiple Gate (Fin) FET

Bulk → Fin → Nanowire

Siナノワイヤ

FinBulk or SOI

Si Nanowire

2015 2020 22 or 16nm node 11 or 8nm node

Page 60: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

60

Si nanowire FET as a strong candidate

1. Compatibility with current CMOS process

2. Good controllability of IOFF

3. High drive current

1D ballistic conduction

Multi quantum Channel High integration

of wires

k

E

量子チャネル

量子チャネル量子チャネル量子チャネル

バンド図

Quantum channelQuantum channel

Quantum channelQuantum channel

k

E

量子チャネル

量子チャネル量子チャネル量子チャネル

バンド図

Quantum channelQuantum channel

Quantum channelQuantum channel

Off電流の

カットオフ

Gate:OFFDrain Source

cut-off

Gate: OFFdrainsource

Off電流の

カットオフ

Gate:OFFDrain Source

cut-off

Gate: OFFdrainsource

Wdep

1

Leakage current

S D

Page 61: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Increase the Number of quantum channels

Energy band of Bulk Si

Eg

By Prof. Shiraishi of Tsukuba univ.

Energy band of 3 x 3 Si wire

4 channels can be used

Eg

61

Page 62: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Device fabrication

Si/Si0.8Ge0.2 superlattice epitaxy on SOI

Anisotropic etching of these layers

Isotropic etching of SiGe

Gate depositions S/D implantation Spacer formation Activation anneal Salicidation

BOXSi

SiGeSi

SiGeSi

SiGeSiN

Page 63: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Cross-section

50nm

SiN HM

Wire direction : <110> 50 NWs in parallel 3 levels vertically-stacked Total array of 150 wires EOT ~2.6 nm

NWs

8

3D-stacked Si NWs with Hi-k/MG

BOX

500 nm

Sour

ce

Dra

in

Gate

Top view

<110>

C. Dupre et al., IEDM Tech. Dig., p.749, 2008

Page 64: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

SiNW FET Fabrication

Sacrificial Oxidation

SiN sidewall support formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

S/D & Fin Patterning

Gate Oxidation & Poly-Si Deposition Gate Lithography & RIE Etching Gate Sidewall Formation

30nm

30nm

30nm

Oixde etch back

Standard recipe for gate stack formation Backend

Page 65: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

(a) SEM image of Si NW FET (Lg = 200nm) (b) high magnification observation of gate and its sidewall.

65

Page 66: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Lg=65nm, Tox=3nm

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

6.E-05

7.E-05

-1.0 -0.5 0.0 0.5 1.00

10 20 30 40 50 60 70

Dra

in C

urre

nt (µ

A)

Drain Voltage (V)

Vg-Vth=1.0 V

Vg-Vth= -1.0 V

0.8 V

0.6 V

0.4 V

0.2 V

(a)

10-12

Gate Voltage (V)

pFET nFET

(b)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dra

in C

urre

nt (A

)

Vd=-50mV

Vd=-1V

Vd=50mV

Vd=1V

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

-1.5 -1.0 -0.5 0.0 0.5 1.0

0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

6.E-05

7.E-05

-1.0 -0.5 0.0 0.5 1.00

10 20 30 40 50 60 70

Dra

in C

urre

nt (µ

A)

Drain Voltage (V)

Vg-Vth=1.0 V

Vg-Vth= -1.0 V

0.8 V

0.6 V

0.4 V

0.2 V

(a)

10-12

Gate Voltage (V)

pFET nFET

(b)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dra

in C

urre

nt (A

)

Vd=-50mV

Vd=-1V

Vd=50mV

Vd=1V

On/Off>106、60uA/wire

Recent results to be presented by ESSDERC 2010 next week in Sevile

Wire cross-section: 20 nm X 10 nm

Page 67: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

(12)(12)

本研究で得られたオン電流

(10x20)102µA

Our Work

Bench Mark

Page 68: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Y. Jiang, VLSI 2008, p.34 H.-S. Wong, VLSI 2009, p.92 S. Bangsaruntip, IEDM 2009, p.297 C. Dupre, IEDM 2008, p. 749 S.D.Suk, IEDM 2005, p.735 G.Bidel, VLSI 2009, p.240

SiナノワイヤFET

Planer FET S. Kamiyama, IEDM 2009, p. 431 P. Packan, IEDM 2009, p.659

1.2~1.3V

1.0~1.1V

Lg=500~65nm

ION/IOFF Bench mark

Page 69: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE
Page 70: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Distance from SiNW Surface (nm)

6543210

角の部分

平らな部分

電子濃度(x1019cm-3)Electron Density

Edge portion

Flat portion

Page 71: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

0

2000

4000

6000

8000

10000

12000

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

Year

I ON

(µA/µm

)

SiNW (12nm×19nm)

MGFDbulk

ION∝Lg-0.5×Tox

-1(20)

(11)

(33)

(15)

(26)

今回用いたIONの仮定

1µm当たりの本数

コンパクトモデルの完成

S/D寄生抵抗低減技術

pMOSの高性能化

低EOT実現技術

Compact model

Small EOT for high-k

P-MOS improvement

Low S/D resistance

# of wires /1µm

Assumption

ITRS

Primitive estimation !

Page 72: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Our roadmap for R &D Source: H. Iwai, IWJT 2008

Current Issues

III-V & Ge Nanowire High-k gate insulator Wire formation technique

CNT:

Width and Chirality control Growth and integration of CNT

Graphene: Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap

Chirality determines conduction types: metal or semiconductor

72

Si Nanowire Control of wire surface property

Compact I-V model

Source Drain contact Optimization of wire diameter

Page 73: Miniaturization and future prospects of Si devices€¦ · Miniaturization and future prospects of Si devices October 4, 2011 . Hiroshi Iwai, Tokyo Institute of Technology . 1 . G-COE

Thank you for your attention!

73