microwave synthesis symposiumphnh o nhph o 88% o 2004.10.21 ssf microwave synthesis symposium m. n....

17
2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson Microwave Synthesis Symposium: San Francisco User Group Meeting Embassy Suites Hotel South San Francisco, CA 94080 October 21, 2004

Upload: others

Post on 20-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Microwave Synthesis Symposium:

    San Francisco User Group Meeting

    Embassy Suites HotelSouth San Francisco, CA 94080

    October 21, 2004

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Matthew N. Mattson, Ph.D.Elan Pharmaceuticals, Inc.

    800 Gateway Blvd. South San Francisco, CA 94080

    Abstract: Using in situ generated carbon monoxide in a Microwave reactor, the amidation of aryl bromides was studied. An important acyl transfer step was improved in the Microwave-accelerated reaction. Formation of diverse amines for generating libraries of selective PTP inhibitors is presented.

    Carbonylative Amidations Using Mo(CO)6 and Palladium Catalysis

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Protein Tyrosine Phosphatase Inhibitors

    “Preparation of Oxoacetic Acids as Inhibitors of Protein Tyrosine Phosphatases (PTPs)”

    Swinnen, D.; et al. PCT 2003, WO 2003064376, 346 pp.

    “Protein Tyrosine Phosphatase Inhibition”

    Ripka, W. C. Ann. Rep. Med. Chem. 2000, 35, 231-250.

    • Oxalamides are potent reversible phosphate mimics. Multiple methodstoward diversification of these amidesare being pursued.

    PTPNH

    N

    OR'''

    NH

    RHN

    OR'''

    RR'

    R'

    OH

    O

    O

    • Phosphatases regulate many important biological pathways by specific de-phosphorylation of tyrosine-, as well as serine- and threonine-, phosphate groups on signaling proteins.

    O P

    O

    O

    O-O-NHH

    NRAA

    RAA'O

    OH

    O

    NHHN

    RAA

    RAA'O

    PTP

    PTP-1B – insulin receptor/diabetes PTPalpha – cancer, osteoporosisPTP-SHP2 – proliferationPTP-CD45 – immune signaling

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Diverse Secondary Amines Needed:Selective PTP Inhibitors

    PTPNH

    N

    OR'''

    NH

    RHN

    OR'''

    RR'

    R'

    OH

    O

    O

    “Preparation of Oxoacetic Acids as Inhibitors of Protein Tyrosine Phosphatases (PTPs)”

    Swinnen, D.; et al. PCT 2003, WO 2003064376, 346 pp.

    • Need to form the amide second!

    • May require novel chemistry with competing amine…

    In this example, after first completing the amide formation, the reductive amination and catch+release yielded no amine.

    NHN

    O

    NH

    RHN

    O

    OHN

    O

    OHO

    O

    RR'

    R'

    OOH

    O

    1st 2nd

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Typical Literature: Carbonylative Amidation

    Introducing Carbon Monoxide (CO) into regular apparatus… dangerous!

    High Pressures Required!

    Eur. Pat. Appl., 831095, 25 Mar 1998

    Exotic catalyst required!

    Introducing CO into vials in parallel – tricky, toxic

    Journal of Molecular CatalysisA: Chemical, 212(1-2), 151-154; 2004

    OOMe

    BrPhNH2COg (1 atm)Bu3N

    [PdCl2(As2L)]

    Pd As

    AsPh

    Ph

    Ph Ph

    Si OEt

    EtO OEt

    ClCl

    Catalyst:

    OOMe

    ONHPh

    (Linked to silica resin)

    77%

    HN

    NH

    O

    OBr

    Br

    PhNH2COg (10 atm)PdCl2(PPh3)2

    120 oC, 24hAutoclave

    HN

    NH

    O

    OPhNH

    NHPh

    O

    O88%

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Recent Literature: MicrowaveCarbonylative Amidation

    5 mol% Pd(OAc)25 mol% DPPF4 eq. RR'NH1.5 eq. KOt-Bu1 eq. Imidazole

    DMFMW 190oC - 15min

    N

    OR

    BrG

    GR'

    70 - 94% yield

    Carbonylation (CO) using Pd methods with DMF:

    Hallberg, A.; et al. J. Org. Chem., 2002, 67, 6232-6235.

    Requires excess of amine to compete against HNMe2

    Successful only with DPPF ligand

    Requires High Temp: 190 oC

    Limited to electron-rich bromidesand iodides

    Uses simple DMF!

    H N

    OMe

    Me

    1.5 eq. KO-tBu

    1.0 eq. Imidazole MW - 190 oC

    C O

    HNMe

    Me

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Recent Literature: MicrowaveCarbonylative Amidation

    4 mol% Herrmann's Palladacycle10 mol% BINAP1.3 eq. RR'NH0.5 eq. Mo(CO)6

    aq. K2CO3, diglyme MW 150oC - 15min

    N

    ORI

    G GR'

    (Br-)

    Unhindered,nucleophilic amines

    65 - 83% yield

    Carbonylation (CO) using Pd methods with Mo(CO)6:

    Larhed, M; et al. J. Comb. Chem., 2002, 4, 109-111.

    Simply weigh in solid Mo(CO)6!

    Works with electron-rich and electron-poor bromides and iodides

    Aqueous base limits Molybdenum mirror averting potential vial hot spots/failure

    Requires HOT Palladacycle catalyst (for bromides)

    Limited to simple amines (No anilines!)

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Recent Literature: MicrowaveCarbonylative Amidation

    10 mol% Pd(OAc)2 or 5 mol% Herrmann's Palladacycle3 eq. RR'NH3 eq. DBU1 eq. Mo(CO)6

    THF/diglyme MW (I-) 100oC - 15min, (Br-) 150oC - 15min

    N

    ORI

    G GR'

    (Br-)53 - 92% yield

    Carbonylation (CO) using Pd methods with Mo(CO)6:

    Larhed, M; et al. JOC, 2003, 68, 5750-5753

    Simply weigh in solid Mo(CO)6!

    Works with alkyl and aryl amines!

    Large excess of DBU and amine required

    Requires HOT Palladacycle catalyst (for bromides)

    Works best with electron-rich iodides and bromides

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Carbonylative Amidation: No Cylinder!

    H N

    OMe

    Me

    1.5 eq. KO-tBu

    1.0 eq. Imidazole MW - 190 oC

    C O

    HNMe

    Me

    • CO from Dimethylformamide

    Pd0

    L

    L

    Carbonylation (CO) using Pd methods on Br-compounds:

    Larhed, M; et al. JOC, 2003, 68, 5750-5753

    Mo

    C

    CCC

    C C O

    OO

    O

    O

    O

    3.0 eq DBU

    C O

    (OC)6-nMo(DBU)n

    ppt.

    • CO from Mo(CO)6

    PdIIX

    LLAr

    PdIIX

    LL

    Ar

    O

    PdIIX

    LLH

    Pd0

    L

    LBrAr

    C O

    K+ -O-tBuHO-tBuKX

    Ar

    ON

    R1

    R2

    HNR1

    R2

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Amine Model: Carbonylative Amidation10 mol% PdCl2(dppf)4 eq. BnNH23 eq. DBU1 eq. Mo(CO)6

    diglyme, 170 oC

    [Pd(OAc)2does not work!]

    smallamount

    NH

    R R'HN

    O

    NH

    R R'Br

    “Palladacycles and a process for their preparation.”

    Herrmann, W. A.; et al. 1998, US 5831107

    Pd(OAc)2P

    Pd

    Ar Ar

    OAc

    "Herrmann's Palladacycle"

    2

    P

    1.31 eq.

    1.0 eq.Tol

    +crystn

    • Encouraging…5 mol% Herrmann's Palladacycle4 eq. BnNH23 eq. DBU1 eq. Mo(CO)6

    diglyme, 170 oC 80%20% SMco-elute

    NH

    R R'HN

    ONH

    R R'Br

    mixt.

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Breakthrough Conditions: Benzamide Synthesis

    Lit: Larhed, M; et al. JOC, 2003, 68, 5750-5753

    Br

    NH

    O

    NH

    O

    5-10 mol% PdLn3 eq. RNH23 eq. DBU, [0.5 eq Imidazole]1 eq. Mo(CO)6

    THF, MW 140-150oC

    NH

    O

    difficult, electon-rich model bromide

    Halide Amine PdLn Additive MW ToC-tmin % Amide4-MeOPh-Br BnNH2 Palladacycle 0 150-15 92

    " PhNH2 " 0 150-15 684-CF3Ph-Br " " 0 150-15 53

    4-AcNHPh-Br BnNH2 " 0 (Lit.) 150-12 40

    Microwave carbonylationusing Mo(CO)6 - trials with added imidazole(by LC-MS) " " " 0.5 Imidazole 150-12 100

    " " PdCl2(dppf) 0.5 eq 150-12 100" " Pd(OAc)2 0.5 eq 150-12 95" PhNH2 Palladacycle 0.5 eq 150-8 100" " PdCl2(dppf) 0.5 eq 150-8 100" " Pd(OAc)2 0.5 eq 150-8 100

    • Direct comparison example produced 100% amide, while the Lit. conditions produced 40%.

    • Works with aryl amines (aniline)!

    • Only Pd(OAc)2 is needed!

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Improved Carbonylation, Amide Formation• CO from Mo(CO)6

    Mo

    C

    CCC

    C C O

    OO

    O

    O

    O

    3.0 eq DBU

    C O

    (OC)6-nMo(DBU)n

    ppt.

    • Palladium Catalytic Cycle

    PdIIX

    LLAr

    HNN

    PdIIX

    LL

    Ar

    O

    PdIIX

    LLH

    Pd0

    L

    LBrAr

    C O

    Ar

    ON N

    Ar

    ON

    R1

    R2

    HNR1

    R2

    DBUHX-DBU

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Amidation of Various Bromides

    Br

    NH

    O

    NH

    O

    10 mol% Pd(OAc)23 eq. RNH23 eq. DBU, [0.5 eq Imidazole]1 eq. Mo(CO)6

    THF, MW 150 oC - 15 min

    NH

    O

    100%(LC-MS)

    NH

    ONH

    O100%Br

    NH

    O same conditions

    THF, MW 150 oC - 8 min

    BrO

    NH

    O Osame conditions 90%(Lit. 68%) (para-OMe)THF, MW 150 oC - 12 min

    Br

    N NH

    O

    N

    same conditions 100% (Lit. 0%) (failed for bromide and iodide)

    THF, MW 150 oC - 6 min

    Lit. for Br-compounds: Larhed, M; et al. JOC, 2003, 68, 5750-5753

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    Improved Conditions: Challenging Substrate

    • Using 3-4 eq of amine competes completely over nucleophilic secondary amine.

    • Works in the presence of secondary amine and amides – No effect on catalyst!

    [Prepared amine using MW method (Biotage) during time with the Initiator MW reactor.]

    NH

    Br

    OMe

    O

    Br

    1) MeOBnNH2 MeOH, 1h

    2) PS-BH4 - MW 140-4min3) catch+release

    Diversification

    10 mol% Pd(OAc)24 eq. BnNH23 eq. DBU, 0.5 eq Imidazole1 eq. Mo(CO)6

    THF, MW 150oC-12min

    NH

    OMe

    HN

    O

    100%

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    PTP Inhibitors Revisited: Access to Diverse Amide Groups

    Benzyl amine example:

    NHHN

    O

    NH

    Br

    10 mol% Pd(OAc)24 eq. BnNH23 eq. DBU, 0.5 eq Im1 eq. Mo(CO)6

    THF, MW-150oCR'RR'R

    NHN

    OR'R

    ClOEt

    O

    O1)

    2) NaOH

    OH

    O

    O

    Works in the presence of additional functional groups.

    “Preparation of Oxoacetic Acids as Inhibitors of Protein Tyrosine Phosphatases (PTPs)”

    Swinnen, D.; et al. PCT 2003, WO 2003064376, 346 pp.

    Novel Chemistry: Can add Diversity outside of published compounds.

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    It takes more than COto make a “CO-catalyst”.…

    Mo

    C

    CCC

    C C O

    OO

    O

    O

    O

    3.0 eq DBU

    C O

    (OC)6-nMo(DBU)n

    ppt.NH

    OMe

    HN

    O

    NH

    O

    N

    PdIIX

    LLAr

    HNN

    PdIIX

    LL

    Ar

    O

    PdIIX

    LLH

    Pd0

    L

    LBrAr

    C O

    Ar

    ON N

    Ar

    ON

    R1

    R2

    HNR1

    R2

    DBUHX-DBU

  • 2004.10.21 SSF Microwave Synthesis Symposium M. N. Mattson

    *Thank You*

    Biotage (Personal Chemistry)

    To all of you for your attention

    …any questions?

    Microwave Synthesis Symposium: San Francisco User Group MeetingCarbonylative Amidations Using Mo(CO)6 and Palladium CatalysisProtein Tyrosine Phosphatase InhibitorsDiverse Secondary Amines Needed:Selective PTP InhibitorsTypical Literature: Carbonylative AmidationRecent Literature: Microwave Carbonylative AmidationRecent Literature: Microwave Carbonylative AmidationRecent Literature: Microwave Carbonylative AmidationCarbonylative Amidation: No Cylinder!Amine Model: Carbonylative AmidationBreakthrough Conditions: Benzamide SynthesisImproved Carbonylation, Amide FormationAmidation of Various BromidesImproved Conditions: Challenging SubstratePTP Inhibitors Revisited: Access to Diverse Amide GroupsIt takes more than CO to make a “CO-catalyst”.…*Thank You*