microstrip detector r&d at helsinki institute of physics j. härkönen, e. tuovinen, p. luukka,...

19
Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics AND CERN RD50 Collaboration- Radiation hard semiconductor devices for very high luminosity colliders http://rd50.web.cern.ch/rd50/

Upload: cameron-moore

Post on 11-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Microstrip Detector R&D at Helsinki Institute of Physics

J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi

Helsinki Institute of Physics

ANDCERN RD50 Collaboration- Radiation hard

semiconductor devices for very high luminosity colliders

http://rd50.web.cern.ch/rd50/

Page 2: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

2

Outline

• HIP detector activities• Radiation hard detector R&D

at CERN• Radiation hardness by

material and device engineering

• Magnetic Cz-Si detectors• Low temperature operation of

heavily irradiated Si detectors• Summary• References

MCz-Si strip detector with 1024 channels attached to the APV read out module

Page 3: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

3

Detector activities at HIP

• HIP has been appointed by Finnish government to coordinate the Finnish participation in CERN experiments.

• The main activity is to participate to the upgrade program of CMS experiment

• We participate in two CERN R&D collaborations: RD39 and RD50.

• We have our own detector fabrication process at Micro and Nanofabrication Centre of Helsinki University of Technology.

• Detector system tests in particle beams and by cosmic rays utilizing e.g. FinnCRack and Silicon Beam Telescope (SiBT) located at CERN H2 area.

• Bonding facility in HelsinkiEsa Tuovinen loading MCz-Si wafers into oxidationfurnace at the Microelectronics Center of HelsinkiUniversity of Technoly, Finland.

Page 4: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

4

Radiation hard detector R&D at CERN

CERN RD50 Collaboration- Radiation hard semiconductor devices for very high luminosity colliders

http://rd50.web.cern.ch/rd50/

Spokespersons: Michael Moll (CERN) and Mara Bruzzi (INFN Florence)

CERN RD39 Collaboration- Cryogenic Tracking Detectors

http://www.hip.fi/research/cms/tracker/RD39/php/home.php

Spokespersons: Jaakko Härkönen (HIP) and Zheng Li (Brookhaven National Lab)

Page 5: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

5

R&D Challenge of LHC Upgrade

• Luminosity increase by factor of 10 is foreseen after the 1st phase of the LHC experiments.

• Extensive R&D is required because

1. Leakage current (Ileak) increases 10 X

- Increased heat dissipation- Increased shot noise

2. Full depletion voltage (Vfd) will be >1000V

3. Trapping will limit the Charge Collection efficiency (CCE). - CCE at 1×1015 cm-2 ≈ 50% (strip layers of S-LHC

Tracker)- CCE at 1×1016 cm-2 ≈ 10-20% (pixel layers of S-

LHC Tracker)

Page 6: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

6

• Defect Engineering of Silicon– Understanding radiation damage

• Macroscopic effects and Microscopic defects

• Simulation of defect properties & kinetics

• Irradiation with different particles & energies

– Oxygen rich Silicon• DOFZ, Cz, MCz, EPI

– Oxygen dimer & hydrogen enriched Si– Pre-irradiated Si– Influence of processing technology

• New Materials– Silicon Carbide (SiC), Gallium Nitride (GaN)– Diamond: CERN RD42 Collaboration

• Device Engineering (New Detector Designs)– p-type silicon detectors (n-in-p)– thin detectors– 3D and Semi 3D detectors– Stripixels

Approaches to develop radiation harder tracking detectors

Scientific strategies:

I. Material engineering

II. Device engineering

III. Change of detectoroperational conditions

CERN-RD39“Cryogenic Tracking Detectors”

Page 7: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

7

Why Cz-Si ?

• Cz-Si available in larger diameters

• Lower wafer cost

• Better compatibility with advanced CMOS processes

• Oxygen brings significant improvement in thermal slip resistance

• Oxygen gives significant radiation hardness advantage in

terms of reduced incease of Vfd.

* No demand for high resistivity Cz-Si -> No availability* Price for custom specified ingot 15,000 € - 20,000 €* Now RF-IC industry shows interest on high resistivity Cz-Si

(=lower substrate losses of RF-signal)

Why not before ?

Page 8: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

8

Requirements for detector applications

High resistivity Oxygen concentration 5-10×1017 cm-3

Homogeneity High minority carrier lifetime

0

1000

2000

3000

4000

0 500 1000 1500 2000

Distance from seed /mm

Res

istiv

ity /

Ohm

cm

p-type

n-type

Oxygen donor compensation

Boron/Aluminum contamination

Okmetic Oyj is world’s 8th largest Si wafer manufacturerwith about 340 employers and 50M€ turnover

Page 9: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

9

Radiation hardness of MCz-Si

0

100

200

300

400

0 1·1014 2·1014 3·1014 4·1014 5·1014 6·1014

eq (1 MeV equivalent neutrons/cm2)

Vde

p(V

)

FZ, E=10 MeVFZ, E=20 MeVFZ, E=30 MeVDOFZ, E=10 MeVDOFZ, E=20 MeV

MCZ, E=10 MeVMCZ, E=20 MeVMCZ, E=30 MeV

Proton radiation: Less prone for Vfd increase than std Fz-Si or Diffusion oxygenated Fz-SiNeutron radiation: No significant difference

Gamma radiation: Increase of positive space charge.

Z.Li, J. Härkönen, E. Tuovinen, P. Luukka et al., Radiation hardness of high resistivity Cz-Si detectors after gamma, neutron and proton radiations, IEEE Trans. Nucl. Sci., 51 (4) (2004) 1901-1908.

Leakage current and trapping: No significant improvement.

Page 10: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

10

Charge Collection Efficiency

Measurement with IR laserand 500V bias

Pad detectors >> no weightingfield effect >> test beam for strip detectors needed

trappingdrttrappinglGeometrica e

d

wCCECCECCE /

>1×1015 cm-2 fluence MCz (300μm) and epi (150μm) are under depleted both

Unpublished preliminary data. 10% error bars should be assumed

Page 11: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

11

Does MCz-Si type invert ?

TCT raw data indicates SCSI and Double Junction

With Trapping Correction signal is manipulated by multiplying measured signal × e4.2ns/time i.e. by monotonosly increasing function >> no SCSI

G.Kramberger 4th RD50 Workshop, CERN, May 2004

Page 12: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

12

Type inversion and Double Junction

0 50 100 150 200 250 3000

1x104

2x104

3x104

24 GeV protons 2.1x1015 cm-2

Reactor neutrons 5x1014 cm-2

Ele

ctric

Fie

ld [V

/cm

]

x [m]

A. Messineo, Tracker Upgrade Workshop 8th February 2007. MCz-Si 7×1014 neq/cm2 by 50 MeV protons

•When under depleted, the 1. Peak dominates•The 2. Peak takes over when bias is increased

What really matters ?

-What happenes to cluster resolution after certain dose ? >> Beam test for strip detectors needed

Page 13: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

13

Why to make p-type detectors ?

• No type inversion.• Collecting junction remains on the

segmented side (higher E-field due to the weighting field).

• Charge collection is dominantly electron current >> less trapping.

• Vfd can be tailored by Thermal Donors (TD) in MCz-Si>> CCE geometrical factor is improved.

• Single sided process.

Type inversion p > n

Page 14: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

14

Why to go low temperatures ?

The detrapping time-constant depends exponentially on T

kTECth

td eNv /

1

If a trap is filled (electrically non-

active) the detrapping time-constant is crucial

Example: A-center (O-V at Ec-0.18 eV with 10-15 cm2 )

T(K) 300 150 100 77 60 55 50 48 47 46

d 3.7 ns 3.9 s 4 ms 2 s 1.22 hrs

1.2 days

53 days

302 days

2.1 years

5.47

years

EC

EV

Hole trap

Electron trap

T> 77K

Hole trap

T< 77K

filled

filled

Electron trap

EC

EV

Fill Freeze

Page 15: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

15

RD39 Cryogenic Transient Current Technique (C-TCT)With C-TCT it is possible to measure and extract -Full depletion voltage Vfd

-Charge Collection Efficiency (CCE) -Type of the space charge (n or p)

-Trapping time constant τe,h

- Electric field distibution E(x)

IR laser signal equivalent to 1 MIP

Characterization of heavily irradiated detectors

Page 16: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

16

Charge Injected Detector CID

log J

log V

Ohmic, J ~ V

SCLC, J ~ V3/2

DL saturation

Diode

Current voltage characteristic

Features of CID*Electric field shape is not affected by fluence >> E-field exists at S-LHC conditions*E field exists regardless of thickness*Low temperature makes possible to keep forward current at μA range*No breakdown problem due to self-adjusted electric field by space charge limited current feedback effect*CID is quite insensitive on detectorsmaterial properties. *CID is insensitive on type of irradiation. *CID is insensitive on reverse annealing ofradiation defects >> importnant in HEP applications.

*Treshold for sharp current increase VT increases with respect of fluence*VT can be affected by temperature

VT

Together with Ioffe PTI and BNL (V.Eremin, E.Verbitskaya, Z. Li)

Page 17: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

17

CCE of CID detector

CCE 100%

CCE 65%

CCE 27%

•Measurement with C-TCT•In CID mode CCE 65% (200K)vs normal reverse bias operation 27%at (240K)

•No material dependence in Ileak

•At 2.5x1015 cm-2 Jleak≈16μA/cm2 @ 500V•Same device measured in Current InjectedDetector (CID) mode Jleak≈4μA/cm2

at 500V and 200K•Is 200K feasible for future Tracker upgrades ?

Page 18: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

18

Summary

•CCE at 3×1015 cm-2 is about 25%. Thus, MCz-Si is feasible for strip layers but not for pixel barrel.

•The CCE is limited by trapping and elevated Vfd.

•Material/defect engineering of Sidoes not provide any improvementfor Ileak

•Current injection (CID) provides 2Xhigher CCE at 200K.

•Cooling is a demanding challenge.

•MCz-Si shows better radiation hardness against protons than Fz-Si materials. No improvement against neutron and no difference in leakage current.

•CCE can further be improved by implementing n+/p-/p+ structure and compensate Vfd by TDs .

Page 19: Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics

Jaakko Härkönen,Workshop on Silicon Detector Systems for the CBM Experiment at FAIR, Darmstadt 20.04.2007

19

References• General reference: RD50 homepage and Status Reports

• Processing of MCz-SiJ. Härkönen et al, Processing microstrip detectors on Czochralski grown high resistivity silicon, NIMA 514 (2003) 173-179. M. Bruzzi et al.,Thermal donor generation in Czochralski silicon particle detectors,NIMA 568 (2006) 56-60. J. Härkönen et al, p+/n- /n+ Cz-Si Detectors Processed on p-Type Boron-Doped Substrates With Thermal Donor Induced Space Charge Sign Inversion, IEEE TNS 52 (2005) 1865 - 1868.

• Radiation hardness of MCz-SiE. Tuominen et al.,Radiation Hardness of Czochralski Silicon studied by 10 MeV and 20 MeV protons.IEEE TNS 50 (1) (2003) 1942-1946. Z. Li et al,Radiation Hardness of High Resistivity Magnetic Czochralski Silicon Detectors After Gamma, Neutron and Proton Radiations, IEEE TNS 51 (4) (2004) 1901-1908. P. Luukka et al,Results of proton irradiations of large area strip detectors made on high-resistivity Czochralski silicon, NIMA 530 (2004) 117-121. E. Tuovinen et al.,Czochralski silicon detectors irradiated with 24 GeV/c and 10 MeV protons,NIMA 568 (2006) 83-88.