microfocus x-ray sources for chemical and high-pressure...

24
Microfocus X-ray Sources for Chemical and High-Pressure Crystallography Jürgen Graf Incoatec GmbH, Geesthacht Bruker User‘s Group Meeting SC-XRD 2010

Upload: vudat

Post on 19-Feb-2018

227 views

Category:

Documents


6 download

TRANSCRIPT

Microfocus X-ray Sources for Chemical and High-Pressure Crystallography

Jürgen Graf

Incoatec GmbH, Geesthacht

Bruker User‘s Group Meeting SC-XRD 2010

2/23 Jürgen Graf – Karlsruhe 2010

Incoatec on the GKSS Research Center, 30 km South of Hamburg

History and Background

• Company founded in Jan 2002

• Spin-off of the Department of Thin Film Technology, GKSS Research Center, located in Geesthacht near Hamburg

• Joint venture together with Bruker AXS

• Development and manufacturing of multilayer X-ray optics by thin film technology

• Own application lab and R&D activities

Incoatec GmbH @ GITZ: Geesthachter Innovation and Technology Center

Incoatec GmbH:INnovative COAting TEChnologies

3/23 Jürgen Graf – Karlsruhe 2010

d = 2 – 6 nm

m 1.0° (Cu-K)

m 0.5° (Mo-K)

Multilayer X-ray Optics

W/C Multilayer (TEM, Uni Kiel, Prof. Jäger)

Capture angle Source

X-tal

4/23 Jürgen Graf – Karlsruhe 2010

Microfocus X-ray Sources

• Mirror should “see” the whole source:- Multilayer mirrors work best with microfocus X-ray sources

1.2 kW Microfocus Rotating Anode 30 W Microfocus Sealed Tube

5/23 Jürgen Graf – Karlsruhe 2010

• Small spot

• 2D heat flow allows more

efficient cooling

• ~ 5 kW/mm2

• Rel. brightness: <10X

Power loading of X-ray sources

e-

micro-focus sealed tube

e-

micro-focus sealed tube

• Large spot

• Quasi-1D heat flow limits

power density

• ~0.5 kW/mm2

• Rel. brightness: 1

e-

conventional sealed tube

e-

conventional sealed tube

e-

rotating anode

e-

rotating anode

• Large or small spot

• Heat spread by rotation

• >10 kW/mm2

• Rel. brightness: <100X

Power loading in all solid-target X-ray sources is limited by heat dissipation

R. Durst, A. Storm, Bruker AXS Technical Note 4 SCD, 2007.

6/23 Jürgen Graf – Karlsruhe 2010

Incoatec Microfocus Source – IµS

• High-brilliance microfocus sealed tube X-ray source

• Spot size < 50 µm

• Low power: max. 30 W• Air-cooled• Family of 2D beam shaping Montel optics:

The Quazar Optics (focusing or parallel beam)• Implemented in many new Bruker AXS instruments• Upgrade on older diffractometers

• Cu, Cr, Mo and Ag radiation 3 yearswarranty

> 100 soldworldwide

7/23 Jürgen Graf – Karlsruhe 2010

Mo-ST Mo-IµS

Relative Flux

Beam Profile

3.01

Flat Graphite #Multilayer #

# Beam profiles recorded with Mo-IµS and 2 kW Mo sealed tube (graphite monochromator, 0.5 mm monocap)

FWHM = 0.12 mm

5 mradFWHM = 0.50 mm

~ 8 mrad

IµS for Mo-K Radiation

FW10%M = 0.30 mm FW10%M = 0.65 mm

8/23 Jürgen Graf – Karlsruhe 2010

• Flux through pinholes with different diameter (calibrated PN diode)

2 kW Mo ST

IµS @ 30 W

Mo-IµS vs. 2 kW Mo-Sealed Tube

9/23 Jürgen Graf – Karlsruhe 2010

0.0310.0300.0560.039R1

1.324(2)1.323(2)1.325(4)1.325(3)N1-C9 dist. [Å]0.0820.0820.1050.092wR2

0.0230.0210.0620.039Rint

30.437.610.715.3< I/ >1286476319139< I >norm

#15109030Exposure [s/0.3°]

Mo-STMo-IµSMo-STMo-IµSSource0.30 0.25 0.150.10 0.05 0.05Size [mm3]

C24H21N3O3

Mo-IµS vs. 2 kW Mo-Sealed Tube

# Normalized to min/°

N1C9

O

T. Schulz & D. Stalke, Universität Göttingen

P21, Z = 2,

µ = 0.10 mm-1

7.330 90

3.710 15

10/23 Jürgen Graf – Karlsruhe 2010

Conclusions:

• Mo-IμS always superior for small crystals (< 0.15 mm)• Comparable results for larger crystals (> 0.20 mm), often with

shorter exposure times• Precise crystal centring and scaling are essential for data quality

T. Schulz et al., J. Appl. Cryst. (2009), 42, 885 – 891.

Mo-IµS vs. 2 kW Mo-Sealed Tube

11/23 Jürgen Graf – Karlsruhe 2010

CuSO4

2.9

0.0390.0350.0900.084R10.1220.1150.2410.240wR2

3.35.21.11.6< >80.6175.65.917.1< I >20 20 150 150 Exposure time [s/°]4.00.02*4.00.03Power [kW]

FR 591Mo-IµSFR 591Mo-IµSSource

0.07 0.05 0.050.04 0.04 0.02Size [mm3]

SiO2

# FR591 plus flat graphite monochromator, 0.3 mm collimatorAll data recorded with a Nonius Kappa CCD goniometer

* Approximation for 30 W: < I > = 263.4, < > = 6.4

3.3263 81

Got Small Crystals? – Inorganics

C. W. Lehmann, Max-Planck-Institut Mülheim

• Comparison Mo-IµS vs. 4 kW Mo RAG # plus flat graphite monochromator

12/23 Jürgen Graf – Karlsruhe 2010

„C40H24N8Zn”

Got Small Crystals? – MOF

P42/n, Z = 8

a = b = 23.69 Å, c = 14.99 Å

µ (Mo) = ~ 0.5 mm-1

Mo-IµS

120 s/0.5°, APEX IIDX = 41 mm, 2 = 11°

1.26

13/23 Jürgen Graf – Karlsruhe 2010

Got Small Crystals? – MOF • Typical diffraction patterns recorded with Cu-IµS MX (FWHM = 0.12 mm)

Cu-IµS MX Cu-IµS MX

60 s/0.5°, APEX IIDX = 51 mm, 2 = -32°

120 s/0.5°, APEX IIDX = 51 mm, 2 = -93°

1.47

0.88

14/23 Jürgen Graf – Karlsruhe 2010

„C40H24N8Zn”

0.0545 (0.2330)Rint

6.5 (2.4)<Redundancy>

~ 2.5Total time [d]

16.2 (3.4)< I/ >0.88 (0.98 – 0.88)Resolution [Å]

60 - 120Exposure time [s/0.5°]Cu-IµS MXSource

0.04 0.03 0.01Size [mm3]

Got Small Crystals? – MOF

P42/n, Z = 8

a = b = 23.69 Å, c = 14.99 Å

µ (Cu) = ~ 4 mm-1

15/23 Jürgen Graf – Karlsruhe 2010

• Ag-IµS:

- Power Settings: 50 kV, 600 µA

- FWHM = 0.09 mm&; FW0.1M = 0.23 mm

- Divergence = 5 mrad

- At least 3x < I > of 1.5 kW Ag ST

• Benefits of Ag-Radiation:

- Less absorption, less extinction

- Solid State Chemistry

- Charge Density Studies

- “Compressed” reciprocal space

- High-pressure Crystallography

IµS for Ag-K Radiation

& Beam profiles of attenuated primary beam have been recorded @ DX = 1 cm in 4 s exposures

2D and 3D beam profiles of theattenuated beam from the Ag-IµS&

16/23 Jürgen Graf – Karlsruhe 2010

38.420.6µ [mm-1]

0.0048(10) 0.0028(4) Ueq (O1)0.0184, 0.05100.0176, 0.0450R1, wR2

0.77 (0.87 – 0.77)0.61 (0.71 – 0.61)Max. resolution [Å]

2.296(6)2.290(3)d(Pb1-O1) [Å]

187.7 (159.7)216.6 (192.7)< I/ >(0.77 Å)69 (17)127 (43)Unique data

187.7 (159.7)186.8 (143.5)< I/ >

1010Exposure [s/0.3°]

Mo-IµSAg-IµSSource0.11 0.09 0.06Size [mm3]

Cu6PbO8-x(Cl, Br)x

Strong Absorber – Murdochite

Fd-3m, Z = 4

17/23 Jürgen Graf – Karlsruhe 2010

Strong Absorber – Murdochite• Calculated 0kl precession patterns

10 s/0.3°, APEX II 10 s/0.3°, APEX II

Ag-IµS Mo-IµS

18/23 Jürgen Graf – Karlsruhe 2010

0.0342 (0.1489)0.0306 (0.1636)Rint705 (523)860 (630)Data used (I > 2(I))

18.3 (4.7)19.6 (3.2)< I/ >0.90 (1.00 – 0.90)0.90 (1.00 – 0.90)Resolution [Å]

33.7 (22.6)40.6 (28.9)<Completeness>

0.0532; 0.12320.0487; 0.1025R1; wR2

721 (135)866 (170)Unique data1.1 (0.7)1.5 (0.9)<Redundancy>

2020Exposure [s/0.3°]2 kW Mo-STAg-IµSSource

0.25 0.20 0.20Size [mm3]

C9H17NO2. 2 H2O

F. P. A. Fabbiani, Universität Göttingen

GabapentinHeptahydrate,

P-1, Z = 2,

µ = 0.12 mm-1

High-Pressure Crystallography

Gabapentincrystal in 300 µm gasket of Be-freeDAC

19/23 Jürgen Graf – Karlsruhe 2010

High-Pressure Crystallography

1.80

20 s/0.3°, APEX IIDX = 71 mm, 2 = 0°, = 0.5°, = 0°

20 s/0.3°, APEX IIDX = 71 mm, 2 = 0°, = 4°, = 0°

• Comparison of Ag-IµS vs. 2 kW Mo-ST (graphite monochr.; 0.5 mm Collimator)

Gabapentin Heptahydrate, Be-free DAC (300 µm gasket, 0.8 GPa), Bruker AXS APEX II goniometer

Mo-STAg-IµS

1.80

1.80

1.43

F. P. A. Fabbiani, Universität Göttingen

20/23 Jürgen Graf – Karlsruhe 2010

High-Pressure Crystallography

20 s/0.3°, APEX IIDX = 71 mm, 2 = -15°, = -160.1°, = 180°

• Ag vs. Mo: Gain in resolution by “Compression” of the Reciprocal Space

Gabapentin Heptahydrate, Be-free DAC (300 µm gasket, 0.8 GPa), Bruker AXS APEX II goniometer

Ag-IµS

1.36 1.36

1.36 1.36

F. P. A. Fabbiani, Universität Göttingen

21/23 Jürgen Graf – Karlsruhe 2010

IµS for Mo and Ag – High flux density in small, convergent beam

• Ideal for small and medium sized crystals

• Ideal for high-pressure experiments

• Mo-IµS: at least 4-fold intensity gain compared to 2 kW Mo sealed tube- div = 5 mrad, FWHM = 0.12 mm; FW10%M = 0.30 mm

• Ag-IµS: at least 3-fold intensity gain compared to 1.5 kW Ag sealed tube- div = 5 mrad, FWHM = 0.09 mm; FW10%M = 0.23 mm- Ideal for crystals showing strong absorption or extinction- Ideal for high-resolution data sets and de-novo phase determination using

high-pressure cells

Summary

• Cu-IµS powerful allrounder for Small Molecules, Proteins and Material Research

22/23 Jürgen Graf – Karlsruhe 2010

• The Göttingen people: - @ IAC: T. Schulz, D. Stalke- @ GWZ: F. P. A. Fabbiani

• C. Hauf, G. Eickerling, W. Scherer, University of Augsburg

• A. Dreier, C. W. Lehmann, Max-Planck-Institut, Mülheim

• Th. Malcherek (Hamburg), R. Seidel (Bochum)

• The Bruker AXS people: - R. Durst, M. Ruf, H. Ott, D. Stern, M. Nüsse

• The Incoatec people

Acknowledgement

23/23 Jürgen Graf – Karlsruhe 2010

Materials Center Leoben, Leoben

THANK YOU

Biozentrum, Univ. Basel

MPI, StuttgartNovartis AG, Basel

Sanofi Aventis GmbH, Frankfurt

Institute Le Bel, StrasbourgChemistry Dep., Univ.

Goettingen

Incoatec [email protected]

24/23 Jürgen Graf – Karlsruhe 2010

Please contact for more information:

Incoatec GmbHMax-Planck-Str. 2 • 21502 Geesthacht • GermanyTel: +49(0)41 52 - 88 93 81 • www.incoatec.de