micro lec note1

118
hsabaghianb @ kashanu.ac.ir hsabaghianb @ kashanu.ac.ir Microprocessors Microprocessors 1- 1- 1 1 ها ده ن رداز پ ر پ زMicroprocessors Spring 2005

Upload: mehul-dansinh-solanki

Post on 02-Apr-2015

52 views

Category:

Documents


1 download

TRANSCRIPT

MicroprocessorsSpring 2005

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-1

Books The Z80 Microprocessor , Hardware , Software programming & interfacing

Author:Burry B. Brey Translator:Hossein Nia Publisher:Astane Ghodse Razavi(Beh Nashr

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-2

Books Microcompiuter and Microprocessor : the 8080 , 8085 , Z-80 Programming , interfacing and trubleshooting Publisher:Nass Pub.Date:1381 EditionTurn:3 ISBN:964-6264-43-4-3 Pages:719 Author:John E . UffenbeckTranslator:Mahmmod Dayani

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-3

Books The 80x86 IBM PC and compatible computers (Design and interfacing of the IBM PC PS and compatible) Publisher:Baghani Pub.Date:1379 EditionTurn:2 ISBN:964-91532-3-3 Pages:760 Author:Mohammad Ali . Mazidi Janice Gillispie . MazidiTranslator:Dr. Sepidnamhsabaghianb @ kashanu.ac.ir Microprocessors 1-4

Books Microcontroller 8051 Publisher:Baghani Pub.Date:1380 ISBN:964-7343-00-0 Pages:380 Author:Mohammad ali Mazidi Jonis Glispi MazidiTranslator:Dr. Sepidnam

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-5

Books The 8051 Microcontroller Publisher:Baghani Pub.Date:1380 PublishingTurn:5 EditionTurn:3 ISBN:964-91532-2-5 Pages:383 Author:Iscott Makenzi Translator:Rezaei Nia ,Darbandi Azarhsabaghianb @ kashanu.ac.ir Microprocessors 1-6

Intruduction Microprocessor (uP)(MPU)A uP is a CPU on a single chip. Components of CPU ALU, instruction decoder, registers, bus control circuit, etc. small computer uP + peripheral I/O + memory specifically for data acquisition and control applications u-Computer on a single chip of siliconMicroprocessors 1-7

Micro-computer (u-Computer)

Microcontroller (uC)

hsabaghianb @ kashanu.ac.ir

uP vs. uC A uP only is a single-chip CPU bus is available RAM capacity, num of port is seletable RAM is larger than ROM (usually) contains a CPU and RAM,ROM ,Prepherals, I/O port in a single IC internal hardware is fixed Communicate by port ROM is larger than RAM (usually) Small power consumption Single chip, small board Implementation is easy Low cost

A uC

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-8

uP vs. uC cont. ApplicationsuCs are suitable to control of I/O devices in designs requiring a minimum component uPs are suitable to processing information in computer systems.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-9

uP vs. uC cont. uC is easy to use and design. Only single chip can be a complete system interfacing to other devices, for example, motors, displays, sensors, and communicate with PC.

In contrast, similar system that builds from uP would require a lot of additional units, such as RAM, UART, I/O , TIMER and etc.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-10

uC is a Reusable Hardware Logic circuit provides limited function for one single design. In order to change circuits functionality, we need to redesign the circuits. uC can reprogram and change functionality of every port, input to output or digital to analog on the fly.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-11

uCs Many uCs are existing right now. 8051, 68HC11, MSP430, ARM series, and etc.

We may widely divide it with how it is designed RISC/CISC architecture.

What is the main difference between RISC/CISC? Does it make any difference to our application?

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-12

The Microprocessor (MPU) The uP is the brain of the microcomputer Is a single chip which is capable of processing data controlling all of the components which make up the microcomputer system

P used to sequence executions of instructions that is in memory uP Fetch , Decode , and Execute the instruction The internal architecture of the microprocessor is complex.hsabaghianb @ kashanu.ac.ir Microprocessors 1-13

The Microprocessor (MPU) microprocessor (MPU) typically contains Registers: Temporary storage locations for program instruction or data. The Arithmetic Logic unit (ALU): This part of the MPU performs both arithmetic and logical operations Timing and Control Circuits: that keep all of the other parts of system (Regs, ALU, memory & I/O) working together in the right time sequence

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-14

Microcomputers All Microcomputers consist of (at least) : 1. Microprocessor Unit (MPU) 2. Program Memory (ROM) 3. Data Memory (RAM) 4. Input / Output ports 5. Bus System (and Software)

MPU is the brain of microcomputerhsabaghianb @ kashanu.ac.ir Microprocessors 1-15

Microcomputers

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-16

The Input/Output (I/O) System I/O is the link between the MPU and the outside world. An input port is a circuit through which an external device can send signals (data?) to the MPU. An output port is a circuit that allows the MPU to send signals (data?) to external devices. I/O ports connect both digital and analogue devices by DAC and ADChsabaghianb @ kashanu.ac.ir Microprocessors 1-17

Bus A Bus is a common communications pathway used to carry information between the various elements of a computer system The term BUS refers to a group of wires or conduction tracks on a printed circuit board (PCB) though which binary information is transferred from one part of the microcomputer to another The individual subsystems of the digital computer are connected through an interconnecting BUS system.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-18

BusThere are three main bus groups ADDRESS BUS DATA BUS CONTROL BUS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-19

Data Bus The Data Bus carries the data which is transferred throughout the system. ( bi-directional) Examples of data transfers Program instructions being read from memory into MPU. Data being sent from MPU to I/O port Data being read from I/O port going to MPU Results from MPU sent to Memory

These are called read and write operations

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-20

Address Bus An address is a binary number that identifies a specific memory storage location or I/O port involved in a data transfer The Address Bus is used to transmit the address of the location to the memory or the I/O port. The Address Bus is unidirectional ( one way ): addresses are always issued by the MPU.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-21

Control Bus The Control Bus: is another group of signals whose functions are to provide synchronization ( timing control ) between the MPU and the other system components. Control signals are unidirectional, and are mainly outputs from the MPU. Example Control signals RD: read signal asserted to read data into MPU WR: write signal asserted to write data from MPU

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-22

Main memory The duties of the memory are : To store programs To provide data to the MPU on request To accept result from the MPU for storage ROM : read only memory. Contains program (Firmware). does not lose its contents when power is removed (Non-volatile) RAM: random access memory (read/write memory) used as variable data, loses contents when power is removed volatile. When power up will contain random data valuesMicroprocessors 1-23

Main memory Types

hsabaghianb @ kashanu.ac.ir

Read-Only Memory uP can read instructions from ROM quickly Cannot write new data to the ROM ROM remembers the data, even after power cycled Typically, when the power is turned on, the microprocessor will start fetching instructions from the still-remembered program in ROM (bootstrap )

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-24

Available ROMs Masked ROM or just ROM PROM or programmable ROM(once only) EPROM (erasable via ultraviolet light) Flash (can be erased and re-written about 10000 times, usually must write a whole block not just 1 byte or 2 bytes, slow writing, fast reading) EEPROM (electrically erasable read-only memory, also known as EEROMboth reading and writing are very slow but can program millions of times useless for storing a program but good for say configuration information.hsabaghianb @ kashanu.ac.ir Microprocessors 1-25

ROMm+1 bit Address

A0 A1 A2 Am

D0 D1 D2

Capacity :

2

m +1

2m+1 ( n + 1)ROM PROM EEPROM

n+1 bit Data

Dn

OE : Output Enable

connect to RD of uP : Chip Enable to Address decoder

CE (CS )

CE

OE

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-26

Timing Diagram for a Typical ROMA0-Am

D0-Dn

CE

OEOE falls to data valid Addr valid to data valid

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-27

27XX EPROMU 1 8 7 6 5 4 3 2 1 23 22 19 20 18 21 A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 O O O O O O O O 0 1 2 3 4 5 6 7 9 10 11 13 14 15 16 17

U 3 10 9 8 7 6 5 4 3 25 24 21 23 2 22 27 20 1 A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 O O O O O O O O 0 1 2 3 4 5 6 7 11 12 13 15 16 17 18 19

U2 8 7 6 5 4 3 2 1 23 22 19 21 20 18 A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 O O O O O O O O 0 1 2 3 4 5 6 7 9 10 11 13 14 15 16 17

OE C E V P P

O E /V P P CE

OE P GM C E V P P

16 kbit 2 kbyte

2716

273232 kbit 4 kbyte

276464 kbit 8 kbyte

PGM and VPP are used to programminghsabaghianb @ kashanu.ac.ir Microprocessors 1-28

27XXX EPROMU 7 U4 10 9 8 7 6 5 4 3 25 24 21 23 2 26 22 27 20 1 A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 D D D D D D D D 0 1 2 3 4 5 6 7 11 12 13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24 21 23 2 26 27 22 20 1 U 5 A A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D D D D D D D D 0 1 2 3 4 5 6 7 11 12 13 15 16 17 18 19 10 9 8 7 6 5 4 3 25 24 21 23 2 26 27 1 22 20 28 U 6 A A A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 O O O O O O O O 0 1 2 3 4 5 6 7 11 12 13 15 16 17 18 19 12 11 10 9 8 7 6 5 27 26 23 25 4 28 29 3 2 24 31 22 1 A A A A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 D D D D D D D D 0 1 2 3 4 5 6 7 13 14 15 17 18 19 20 21

OE P GM CE V P P

OE C E V P P

O E /V P P C E V CC

OE P GM C E V P P

27128

27256

27512

27010

128 kbit 16 kbytehsabaghianb @ kashanu.ac.ir

256 kbit 32 kbyte

512 kbit 64 kbyte

1024 kbit 128 kbyteMicroprocessors 1-29

28XX E2PROM12 11 10 9 8 7 6 5 27 26 23 25 4 28 29 3 2 24 31 22 32 A A A A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 D D D D D D D D 0 1 2 3 4 5 6 7 13 14 15 17 18 19 20 21 12 11 10 9 8 7 6 5 27 26 23 25 4 28 29 3 2 30 1 24 31 22 32 A A A A A A A A A A A A A A A A A A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 D D D D D D D D 0 1 2 3 4 5 6 7 13 14 15 17 18 19 20 21

8 7 6 5 4 3 2 1 23 22 19 20 21 18 24

A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10

I/O I/O I/O I/O I/O I/O I/O I/O

0 1 2 3 4 5 6 7

9 10 11 13 14 15 16 17

10 9 8 7 6 5 4 3 25 24 21 23 2 22 27 20 28

A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 R D Y /B 10 11 12

I/ O I/ O I/ O I/ O I/ O I/ O I/ O I/ O

0 1 2 3 4 5 6 7

11 12 13 15 16 17 18 19 1

U S Y

10 9 8 7 6 5 4 3 25 24 21 23 2 26 1 22 27 20 28

A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D D D D D D D D

0 1 2 3 4 5 6 7

11 12 13 15 16 17 18 19

OE W E CE V C C

OE W E C E V CC

OE W E C E V CC

OE W E C E V CC

OE W E CE V C C

2816 16 kbit 2 kbyte

2864 64 kbit 8 kbyte

28256 256 kbit 32 kbyte

28010 1026 kbit 128 kbyte

28040 4096 kbit 512 kbyte

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-30

RAM (Random Access Memory) The uP can read the data from RAM quickly, The uP can write new data quickly to RAM RAM forgets its data if power is turned off Two type of is available :Static RAM(SRAM): ff base, fast, expensive, low cap/vol, applied for cache , no refresh Dynamic RAM (DRAM): cap base, slow , low cost high capacity/volume , applied for main memory(pc) need refresh.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-31

RAM(Static)m+1 bit Address

A0 A1 A2 Am

D0 D1 D2

Capacity :

2

m +1

2m+1 ( n + 1)RAM

n+1 bit Data

Dn

RD : Read signal connect to MemRD of uP WR : Write signal connect to MemWR of uP CS : Chip Select to Address decoderhsabaghianb @ kashanu.ac.ir

Data bus is Bidirectional

CS

WR RD

Microprocessors 1-32

Session 2 Microprocessors History Data width 8086 vs 8088 8086 pin description Z80 Pin description

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-33

Microprocessors Microprocessors come in all kinds of varieties from the very simple to the very complex Depend on data bus and register and ALU width uP could be 4-bit , 8-bit , 16-bit, 32-bit , 64-bit We will discuss two sample of it Z80 as an 8-bit uP and 8086/88 as an 16-bit uP

All uPs have the address bus the data bus RD, WR, CLK , RST, INT, . . .

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-34

HistoryCompany 4 bit 8 bit 16 bit 32 bit 64 bit

intel

4004 4040

8008 8080 8085 Z80

8088/6 80186 80286 Z8000 Z8001 Z8002 68006 68008 68010

80386 80486

80860 pentium

zilog

Motorola

6800 6802 6809

68020 68030 68040Microprocessors 1-35

hsabaghianb @ kashanu.ac.ir

Internal and External Bus Internal bus is a pathway for data transfer between registers and ALU in the uPs External bus is available externally to connect to RAM, ROM and I/O Int. and Ext. Bus width may be different For exampleIn 8088 Int. Bus is 16-bit , Ext. bus is 8-bit In 8086 Int. Bus is 16-bit , Ext. bus is 16-bit

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-36

8086 vs 8088Only external bus of 8088 is 8_bitU? 33 22 19 21 18 MN REA DY C LK RES ET IN T R 16 A D 0 15 A D 1 14 A D 2 13 A D 3 12 A D 4 11 A D 5 10 A D6 9 A D7 8 A D8 7 A D9 6 A D 1 05 A D 1 14 A D 1 23 A D 1 32 A D 1 439 A D 1 538 A 1 6 / S 33 7 A 1 7 / S 43 6 A 1 8 / S 53 5 A 1 9 /S 6 34 B H E /S 7 26 D E N 27 D T /R 2 8 M /IO 32 R D 29 W R 25 A LE 24 IN T A 33 22 19 21 18 U? MN REA DY C LK RES ET IN T R A A A A A A A A D0 D1 D2 D3 D4 D5 D6 D7 A8 A9 A 10 A 11 A 12 A 13 A 14 A 15 1 6 /S 1 7 /S 1 8 /S 1 9 /S 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 39 38 33 7 43 6 53 5 6 34

8_bit Data Bus 20_bit Address

16_bit Data Bus 20_bit Address

A A A A

SSO

30 31 17 23

H LD A H O LD NMI TE S T 8 0 8 6 M IN

30 31 17 23

H LD A H O LD NMI TE S T 8 0 8 8 M IN

26 D E N 27 D T /R 2 8 IO /M 32 R D 29 W R 25 A LE 24 IN T A

8086

8088Microprocessors 1-37

hsabaghianb @ kashanu.ac.ir

8086 Pin Assignment

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-38

8086 Pin DescriptionVcc (pin 40) : Power Gnd (pin 1 and 20) : Ground AD0..AD7 , A8..A15 , A19/S6, A18/S5, A17/S4, A16/S3 : 20 -bit Address Bus MN/MX (input) : Indicates Operating mode READY (input , Active High) : take uP to wait state CLK (input) : Provides basic timing for the processor RESET (input, Active High) : At least 4 clock cycles Causes the uP immediately terminate its present activity. TEST (input , Active Low) : Connect this to HIGH HOLD (input , Active High) : Connect this to LOW HLDA (output , Active High) : Hold Ack INTR (input , Active High) : Interrupt request INTA (output , Active Low) : Interrupt Acknowledge NMI (input , Active High) : Non-maskable interrupt

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-39

8086 Pin DescriptionDEN (output) : Data Enable. It is LOW when processor wants to receive data or processor is giving out data (to74245) DT/R (output) : Data Transmit/Receive. When High, data from uP to memory When Low, data is from memory to uP (to74245 dir) IO/M (output) : If High uP access I/O Device.

If Low uP access memory

RD (output) : When Low, uP is performing a read operation WR (output) : When Low, uP is performing a write operation ALE (output) : Address Latch Enable , Active High Provided by uP to latch address When HIGH, uP is using AD0..AD7, A19/S6, A18/S5, A17/S4, A16/S3 as address lines

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-40

Z80 CPU Pin AssignmentM1 27 19 20 21 22 28 18 24 16 17 26 25 23 14 15 12 8 7 6 11 29 9 10 13 30 31 32 33 34 35 36 37 38 39 40

System Control Lines

M REQ IOR Q RD WR RFSH H ALT -

CPU Control Lines

W AIT IN T NM I RESET -

Z - 80 CPU

1 2 3 4 5

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1 D2 D3 D4 D5 D6 D7

Address Bus

Bus Control Lines

BU SR Q B U SA K + 5V GND

Data Bus

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-41

Z80 Pin DescriptionA15-A0 :Address bus (output, active high, 3-state). Used for accessing the memory and I/O ports During the refresh cycle the I is put on this bus.

D7-D0 :

Data Bus (input/output, active high, 3-state). Used for data exchanges with memory, I/O and interrupts.

RD:

Read (output, active Low, 3-state) indicates that the CPU wants to read data from memory or I/O

WR:

Write (output, active Low, 3-state) indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.hsabaghianb @ kashanu.ac.ir Microprocessors 1-42

Z80 Pin DescriptionMREQ IORQ M1Memory Request (output, active Low, 3-state). Indicates memory read/write operation. See M1 Input/Output Request(output,active Low,3-state) Indicates I/O read/write operation. See M1 Machine Cycle One (output, active Low). Together with MREQ indicates opcode fetch cycle Together with IORQ indicates an Int Ack cycle

RFSH

Refresh (output, active Low). Together with MREQ indicates refresh cycle. Lower 7-bits address is refresh address to DRAMhsabaghianb @ kashanu.ac.ir Microprocessors 1-43

Z80 Pin DescriptionINT Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. Checked at the end of the current instruction If flip-flop (IFF) is enabled. NMI Non-Maskable Interrupt (Input, negative edge-triggered). Higher priority than INT. Recognized at the end of the current Instruction Independent of the status of IFF Forces the CPU to restart at location 0066H.

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-44

Z80 Pin DescriptionBUSREQ Bus Request (input, active Low). higher priority than NMI recognized at the end of the current machine cycle. forces the CPU address bus, data bus, and MREQ, IORQ, RD, and WR to high-imp. BUSACK Bus Acknowledge (output, active,Low) indicates to the requesting device that address, data, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states.hsabaghianb @ kashanu.ac.ir Microprocessors 1-45

Z80 Pin DescriptionRESET Reset (input, active Low). RESET initializes the CPU as follows: Resets the IFF Clears the PC and registers I and R Sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state And all control output signals go to the inactive state. must be active for a minimum of three full clock cycles before the reset operation is complete.hsabaghianb @ kashanu.ac.ir Microprocessors 1-46

Z80 CPU8IN T E R N A L D A T A B U S (8 B IT )

B U F F E R F F'

MUXIN S T R U C T IO N R E G IS T E RW' Z' W

MUX AZ

D ATA BU S

I

R

TM P A'

B' D' H'

C' E' L' IX IY SP

B D H

C E L

ACT

DECODER

CO NTRO LLER SEQUENCER

ALU

PC k k 16IN T E R N A L A D D R E S S B U S (1 6 B IT )

CONTROL S E C T IO N

B U F F E R

ADDRESS BUS

13IN T E R N A L C O N T R O L B U S

B U F F E R

C O NTRO L BUS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-47

Z80 Programming Model

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-48

Register Set A : Accumulator Register F : Flag register Two sets of six general-purpose registersD E H L)

may be used individually as 8-bit A F B C D E H L (A F B C or in pairs as 16-bit registers AF BC DE HL (AF BC DE HL)

The Alternative registers (A F B C D E H L) not visible to the programmer but can access via:EXX EX AF, AF

what is this instruction useful for?hsabaghianb @ kashanu.ac.ir

(BC)(BC') , (DE)(DE') , (HL)(HL') (AF)(AF')

Microprocessors 1-49

Register Set(cont) 4 16-bit registers hold memory address (pointers) index registers (IX) and (IY) are 16-bit memory pointers 16 bit stack pointer (SP) Program counter (PC)

Program counter (PC) PC points to the next opcode to be fetched from ROM when the P places an address on the address bus to fetch the byte from memory, it then increments the program counter by one to the next location

Special purpose registers I : Interrupt vector register. R : memory Refresh register

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-50

Flag Register7 6 5 4 3 2 1 0

S Z X H XS Z H P V N C

P V

N C

Sign Flag (1:negativ)* Zero Flag (1:Zero) Half Carry Flag (1: Carry from Bit 3 to Bit 4)** Parity Flag (1: Even) Overflow Flag (1:Overflow)* Operation Flag (1:previous Operation wassubtraction)** Carry Flag (1: Carry from Bit n-1 to Bit n, with n length of operand)

*: 2-complement number representation **: used in DAA-operation for BCD-arithmetichsabaghianb @ kashanu.ac.ir Microprocessors 1-51

DAA - Decimal Adjust AccumulatorAdjusts the content of the Accumulator A for BCD addition and subtraction operations such as ADD, ADC, SUB, SBC, and NEG according to the table:before DAA Op ADD ADC N 0 0 0 0 0 0 0 0 0 1 1 1 1 C 0 0 0 0 0 0 1 1 1 0 0 1 1 Bits 4-7 0-9 0-8 0-9 A-F 9-F A-F 0-2 0-2 0-3 0-9 0-8 7-F 6-F H 0 0 1 0 0 1 0 0 1 0 1 0 1 Bits 0-3 0-9 A-F 0-3 0-9 A-F 0-3 0-9 A-F 0-3 0-9 6-F 0-9 6-F after DAA A=A+.. 00 06 06 60 66 66 60 66 66 00 FA A0 9A C 0 0 0 1 1 1 1 1 1 0 0 1 1Microprocessors 1-52

SUB SBC NEG

hsabaghianb @ kashanu.ac.ir

Instruction cycles, machine cycles and T-states Instruction cycle is the time taken to complete the execution of an instruction Machine cycle is defined as the time required to complete one operation of accessing memory, accessing IO, etc. T-state = 1/f (f:Z80 Clock Frequency)f= 4MHZ T-state=0.25 uS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-53

Basic CPU Timing Example

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-54

Opcode Fetch Bus Timings (M1 Cycle)

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-55

The R register Is increased at every first machine cycle (M1). Bit 7 of it is never changed by this; only the lower 7 bits are included in the addition. So bit 7 stays the same Bit 7 can be changed using the LD R,A instruction. LD A,R and LD R,A access the R register after it is increased R is often used in programs for a random value, which is good but of course not truly random. the block instructions decrease the PC with two, so the instructions are re-executed.hsabaghianb @ kashanu.ac.ir Microprocessors 1-56

Memory read/write cycle

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-57

Adding One Wait State to an M1 Cycle

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-58

Adding One Wait State to Any Memory Cycle

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-59

IO read/write cycle

During I/O operations a single wait state is automatically insertedhsabaghianb @ kashanu.ac.ir Microprocessors 1-60

Bus Request/Acknowledge Cycle

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-61

Interrupt Request/Acknowledge Cycle

Two wait states are automatically added to this cyclehsabaghianb @ kashanu.ac.ir Microprocessors 1-62

Non-Maskable Interrupt Request Operation

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-63

M1 Refresh Cycle Takes 4T to 6Ts Z80 includes built in circuitry for refreshing DRAM This simplifies the external interfacing hardware DRAM consists of MOS transistors, which store Information as capacitive charges; each cell needs to be periodically refreshed During T3 and T4 (when Z80 is performing internal ops), the low order address is used to supply a 7-bit address for refreshhsabaghianb @ kashanu.ac.ir Microprocessors 1-64

Wait Signal the Z80 samples the wait signal during T2 if low then Z80 adds wait states to extend the machine cycle used to interface memories with slow response time Slow memory is low cost

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-65

InterruptsThere are two types of interrupts: non mask-able (NMI)Could not be masked Jump to 0066H of memory

mask-able(INT)Has 3 mode Can be set with the IM x Instruction IM 0 sets Interrupt mode 0 IM 1 sets Interrupt mode 1 IM 2 sets Interrupt mode 2

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-66

Interrupt Modes Mode 0: An 8 bit opcode is Fetched from Data BUS and executed The source interrupt device must put 8 bit opcode at data bus 8 bit opcode usually is RST p instructions

Mode 1: A jump is made to address 0038h No value is required at data bus

Mode 2: A jump is made to address (register I 256 + value from interrupting device that puts at bus) I is high 8 bit of interrupt vector Value is low 8 bit of interrupt vector

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-67

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-68

Z80 CPU Instruction Description 158 different instruction types Including all 78 of the 8080A CPU. Instruction groups Load and Exchange Block Transfer and Search Arithmetic and Logical Rotate and Shift Bit Manipulation (Set, Reset, Test) Jump, Call, and Return Input/Output Basic CPU Controlhsabaghianb @ kashanu.ac.ir Microprocessors 1-69

Addressing Modes Immediate Immediate Extended Modified Page Zero Addressing (rst p) Relative Addressing Jump Relative (2 byte) One Byte Op Code 8-Bit Twos Complement Displacement (A+2)

Extended Addressing Absolute jump One byte opcode 2 byte address

Indexed Addressing (Index Register + Displacement) (IX+d) 2 byte opcode 1 byte displacementhsabaghianb @ kashanu.ac.ir Microprocessors 1-70

Addressing Modes(cont.) Register AddressingLD C,B

Implied AddressingOp Code implies other operand(s) ADD E

Register Indirect Addressing16-bit CPU register pair as pointer (such as HL) ADD (HL)

Bit Addressingset, reset, and test instructions. SET 3,A RES 7,Bhsabaghianb @ kashanu.ac.ir Microprocessors 1-71

Minimal Configuration of a Z80 MicrocomputerClock Generator Memory (ROM, RAM) Power Supply

Address Bus

Z - 80 CPU

Data Bus Control Bus

Input Output (I/O)

Out In

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-72

Z80 Memory connection CPU 16 bit address bus 64 k memory(max) CPU 8 bit data bus 8 bit data width Generally should be connectedData to data Address to address Wr to wr Rd to rd Mreq to cs

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-73

Memory connection (cont.) If only one RAM chip Full size (64 kb capacity)

D7~D0

D7~D0

RAM 64 kb

A15~A0

A15~A0

Z80 CPURD WR

RD

WR CS

MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-74

Memory connection (cont.) If RAM capacity was 32 kb A15 composed with MREQ RAM area is from 0000h to 7FFFhD7~D0D7~D0

RAM 32 kb

A14~A0

A14~A0

Z80 CPURD WR

RD

WR CS

A15

MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-75

Memory connection (cont.) There is two 32 kb RAM Problem: Bus Conflict. The two memory chips will provide data at the same time when microprocessor performs a memory read. Solution: Use address line A15 as an arbiter. If A15 outputs a logic 1 the upper memory is enabled (and the lower memory is disabled) and vice-versa.Microprocessors 1-76

hsabaghianb @ kashanu.ac.ir

There is two 32 kb RAM A15 applied to select one RAM chip Two RAM area is from 0000h to 7FFFh (RAM1) and 8000h to FFFFh (RAM1)D7~D0 D7~D0 RAM 32 kb D7~D0 A14~A0RDWR CS

Memory connection (cont.)

RAM 32 kb

A14~A0

A14~A0RDWR CS

Z80 CPURD WR

A15

MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-77

Memory connection (cont.) 32 kb ROM and 32 kb RAM ROM doesnt have wr signalD7~D0 D7~D0

ROM 32 kb

D7~D0 A14~A0

RAM 32 kb

A14~A0

A14~A0OECS

Z80 CPURD WR

RD

WR CS

A15

MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-78

Memory connection (cont.)There is 4 memory chip A14 and A15 applied to chip selection

D7~D0 A13~A0 Z80 CPU

D7~D0 ROM 16 kb A13~A0OECS

RAM RAM RAM 16 kb 16 kb 16 kb A13~A0 A13~A0 A13~A0RDWR CS

D7~D0

D7~D0

D7~D0

RD

WR CS

RD

WR CS

RD WR

hsabaghianb @ kashanu.ac.ir

A14 A15

MREQ

En S0 S1Microprocessors 1-79

Address Bit MapSelects chipA15 to A0 (HEX)0000h 3FFFh 4000h 7FFFh 8000h BFFFh C000h FFFFh

Selects location within chipsAAAA 1198 10 0000 1111 0000 1111 0000 1111 0000 1111 AAAA 7654 0000 1111 0000 1111 0000 1111 0000 1111 AAAA 3210 0000 1111 0000 1111 0000 1111 0000 1111 RAM3Microprocessors 1-80

AA AA 11 11 54 32 00 00 00 11 01 00 01 11 10 00 10 11 11 00 11 11

Memory Chip

ROM RAM1 RAM2

hsabaghianb @ kashanu.ac.ir

Memory Map Represents the memory type Address area of each memory chip Empty areaD7~D0 D7~D0 ROM 16 kb A13~A0 A13~A0 A13~A0CS

0000h 3FFFh 4000h 7FFFh 8000h BFFFh C000h FFFFh

ROM16k

RAM116k

D7~D0 RAM 16 kb

D7~D0 RAM 16 kb A13~A0

D7~D0 RAM 16 kb A13~A0

OE

RD

WR CS

RD

WR CS

RD

WR CS

RAM216k

RD WR

MREQ

En S0 S1

RAM316kMicroprocessors 1-81

hsabaghianb @ kashanu.ac.ir

A14 A15

Memory Map Empty Area cannt write and read Read op. returns FFh value (usualy) Write op. cannt store any value on it 3FFFh 4000hEmptyD7~D0 D7~D0 ROM 16 kb A13~A0 A13~A0 A13~A0CS

0000h

ROM

D7~D0 RAM 16 kb

D7~D0 RAM 16 kb A13~A0

7FFFh 8000h

OE

RD

WR CS

RD

WR CS

RAM2BFFFh C000h

RD WR

hsabaghianb @ kashanu.ac.ir

A14 A15

MREQ

En S0 S1

RAM3FFFFhMicroprocessors 1-82

Memory Map Empty Area cannt write and read Read op. returns FFh value (usualy) Write op. cannt store any value on it 3FFFh 4000hEmptyD7~D0 D7~D0 ROM 16 kb A13~A0 A13~A0 A13~A0CS

0000h

ROM

D7~D0 RAM 16 kb

7FFFh 8000h

OE

RD

WR CS

RAMBFFFh C000hEmpty

RD WR

hsabaghianb @ kashanu.ac.ir

A14 A15

MREQ

En S0 S1

FFFFhMicroprocessors 1-83

Full and Partial Decoding Full (exhaust) Decoding All of the address lines are connected to any memory/device to perform selection Absolute address : any memory location has one address

Partial Decoding When some of the address lines are connected the memory/device to perform selection Using this type of decoding results into roll-over addresses (fold back or shading). roll-over address : any memory location has more than one address

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-84

Partial Decoding A15~A12 has no connection Then doesnt play any role in addressing What is the Memory and Address Bit map?

D7~D0

D7~D0

RAM 4 kb

A11~A0 A15~A12 X

A11~A0

RD

WR CS

Z80 CPU

RD WR

MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-85

Partial Decoding Every memory location has more than one address For example first RAM location has addresses: 0000h 1000h 2000h 3000h Roll-over Address. .

0000h 0FFFh 1000h 1FFFh 2000h 2FFFh 3000h 3FFFh

RAM RAM RAM RAM

F000h FFFFh

RAM

F000hD7~D0

D7~D0

A15 to A0 (HEX)X000h XFFFh

AAAA 1111 5432 xxxx xxxx

AAAA 1198 10 0000 1111

AAAA 7654 0000 1111

AAAA 3210 0000 1111

Memory Chip

A11~A0A15~A12

A11~A0

RAM 4 kb

X

RD

WR CS

RAM

Z80 CPU

RD WR MREQ

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-86

Partial Decoding A12 only connected to RAM A13 has no connection What is the memory map?

D7~D0

D7~D0

ROM 4 kb

D7~D0 A12~A0

RAM 8 kb

A12~A0 A13

A11~A0

X

OE

CS

RD

WR CS

Z80 CPUA15 A14hsabaghianb @ kashanu.ac.ir

RD WR

MREQ

Microprocessors 1-87

Partial Decoding 8 roll-over address for ROM 4 roll-over address for RAM

D7~D0

D7~D0

D7~D0

ROM 4 kbA12~A0 A11~A0 A12~A0

RAM 8 kb

AAAA 1111 5432 0xxx 0xxx X0x0 X0x1

AAAA 1198 10 0000 1111 0000 1111

AAAA 7654 0000 1111 0000 1111

AAAA 3210 0000 1111 0000 1111

Memory Chip

Z80 CPU

A13

X

OE

CS

RD W R CS

ROM

RD WR

MREQ

RAM

hsabaghianb @ kashanu.ac.ir

A15 A14

Microprocessors 1-88

Partial DecodingD7~D0 D7~D0 D7~D0

0000h

0000h

RAM1FFFh

0FFFh 1000h 1FFFh

ROM

Conflict ROM2000h 2FFFh 3000h 3FFFh 4000h 4FFFh 5000h

ROM 4 kbA12~A0 A11~A0 A12~A0

RAM 8 kb

2000h

ROM ROM ROM ROM ROM ROM

RAM3FFFh 4000h

Z80 CPU

A13

X

OE

CS

RD W R C S

RD WR

AAAA 1111 5432 0xxx 0xxx X0x0 X0x1

hsabaghianb @ kashanu.ac.ir

A15 A14

MREQ

5FFFh 6000h

5FFFh 6000h 6FFFh

AAAA 1198 10 0000 1111 0000 1111

AAAA 7654 0000 1111 0000 1111

AAAA 3210 0000 1111 0000 1111

Memory Chip4k

7000h 7FFFh 8000h 7FFFh F000h

RAM ROM8k 9FFFh A000h

RAM

RAMBFFFh C000h

Microprocessors 1-89

Partial DecodingD7~D0 D7~D0 D7~D0

0000h

0000h 0FFFh 1000h

ROM ROM

1FFFh

1FFFh

ROM 4 kbA12~A0 A11~A0 A12~A0

RAM 8 kb

2000h

2000h 2FFFh 3000h

ROM ROM ROM ROM ROM ROM

Z80 CPU

A13

X

OE

CS

RD W R C S

3FFFh 4000h

RD WR

Conflict RAM4000h 4FFFh 5000h 5FFFh 6000h

3FFFh

AAAA 1111 5432 0xxx 0xxx X1x0 X1x1

hsabaghianb @ kashanu.ac.ir

A15 A14

MREQ

5FFFh 6000h

AAAA 1198 10 0000 1111 0000 1111

AAAA 7654 0000 1111 0000 1111

AAAA 3210 0000 1111 0000 1111

RAM Memory Chip4k7FFFh 8000h

6FFFh 7000h 7FFFh F000h

ROM8k

9FFFh A000h

RAM

BFFFh C000h

RAM

Microprocessors 1-90

Full (exhaustive) decodingAAAA 1111 5432 0000 0001 0010 0010 AAAA 1198 10 0000 1111 0000 0111 AAAA 7654 0000 1111 0000 1111 AAAA 3210 0000 1111 0000 1111 RAM ROM Memory Chip

A12~A0

A12~A0 D7~D02764 EPROM 8k 8

OERD

CE

D7~D0 A13 A12 A11 C B A Y00000h-07FFh

Y1 0800h-0FFFh Y2 1000h-17FFh Y3 Y4 Y5 Y6 Y71800h-1FFFh 2000h-27FFh

7421

A10~A0

74138A15 A14MREQ

A10~A0 D7~D06116 RWM 2k 8

G2A G2B G1

RD WR CS

RD

WR

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-91

Partial decodingAAAA 1111 5432 0000 0001 001x 001x AAAA 1198 10 0000 1111 x000 x111 AAAA 7654 0000 1111 0000 1111 AAAA 3210 0000 1111 0000 1111 RAM ROM Memory Chip

A12~A0

A12~A0 D7~D02764 EPROM 8k 8

OERD

CE

D7~D0 A15 A14 A13 C B A Y0 Y20000h-1FFFh

Y1 2000h-3FFFh Y3 Y4 Y5 Y6 Y7RD WR

A10~A0

74138MREQ GND VCC

A10~A0 D7~D06116 RWM 2k 8

G2A G2B G1

RD WR CS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-92

1 Bit Memory With Separated I/OD7-D0 D7 D1 D0

DinA11-A0 A11~A02147 RWM 4k 1

DinA11-A0 A11~A02147 RWM 4k 1

DinA11~A0 A11-A02147 RWM 4k 1

Dout

Dout

Dout

WR/ RD CS

WR/ RD CS

WR/ RD CS

WR / RD

CS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-93

What is the memory(addr. bit) mapA12~A0 D7~D0 2764 EPROM 8k 8

OERD D7-D0

CE

A15 A14 A13

C B A

Y0 Y1 Y2 Y3 Y4

0000h-1FFFh 2000h-3FFFh

D7

D1

D0

74138MREQ GND VCC

DinA11-A0 A11~A0 Dout2147 RWM 4k 1

DinA11-A0 A11~A0 Dout2147 RWM 4k 1

DinA11~A0 Dout A11-A02147 RWM 4k 1

G2A G2B G1WR

Y5 Y6 Y7WR

W R/ R D C S

W R/ R D C S

W R/ R D C S

RD

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-94

Adding RAM & ROM

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-95

Minimum Z80 Computer System

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-96

Z80-P-Family (Typical Environment)PIOINT -

+5V INT -

DMAIEI RDY

System Buses (Address, Data, Control)

INT -

INT -

INT IEO IEI

IEO

W/RDYB -

Z80 CPU+5V IEI

CTCZC/TO1 ZC/TO2

SIOTxCA TxCB RxCA RxCB -

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-97

Z80 Input Output Z80 at most could have 256 input port and 256 output 8 bit port address is placed on A7A0 pin to select the I/O device OUT (n), A n is 8 bit port address OUT (C), r Content of C is a port address IN A, (n) n is 8 bit port address IN r (C) Content of Reg C is a port address Data is transfered to A r is a data register Content of A is data

Input data is hsabaghianb @ kashanu.ac.irtransfered

to r (data reg)

Microprocessors 1-98

Remember IO read/write cycle

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-99

Z80 and simple output portA15 A14 : A0 D7 D6 D5 D4 D3 D2 D1 D0

OUT (03), AD0 D1 D2 D3 D4 74LS373 D5 D6 D7 LE Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 OE

Z80 CPU

hsabaghianb @ kashanu.ac.ir

WR IORQIOWR AAAAAAAA 76543210

Microprocessors 1-100

Z80 and simple input portA15 A14 : A0 D7 D6 D5 D4 D3 D2 D1 D0

IN A, (02)Y0 A0 Y1 A1 Y2 A2 Y3 A3 Y4 74LS244 A4 Y5 A5 Y6 A6 Y7 A7 G1 G2

5V

Z80 CPU

hsabaghianb @ kashanu.ac.ir

RD IORQIORD AAAAAAAA 76543210

Microprocessors 1-101

8088 and simple output portA19 A18 : A0 D7 D6 D5 D4 D3 D2 D1 D0 D0 D1 D2 D3 D4 74LS373 D5 D6 D7 LE IOR IOW Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 OE

8088 Minimum Mode

AAAAAAAAAAAAAAAAIOW 1111119876543210 5 4 32 10

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-102

8088 and simple input portA19 A18 : A0 D7 D6 D5 D4 D3 D2 D1 D0 Y0 A0 Y1 A1 Y2 A2 Y3 A3 Y4 74LS244 A4 Y5 A5 Y6 A6 Y7 A7 G1 G2 IOR IOW5V

What is this?

8088 Minimum Mode

AAAAAAAAAAAAAAAAIOW 1111119876543210 5 4 32 10

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-103

Simplified Drawing of 8088 Minimum ModeA7 - A0 DEN DT / R AD7 - AD0 GND E DIR B7 - B0

D7-D0

74LS245Q7 - Q0

D7 - D0 OE LE

A7-A0

74LS373Q7 - Q0

A15 - A8

D7 - D0 GND OE LE

A15-A8

8088A19/S6 - A16/ S3

74LS373Q7 - Q4 Q3 - Q0

D7 - D4 D3 - D0 GND OE LE

A19-A16

ALE RD IO / M WR

74LS373MEMR MEMW IOR IOW

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-104

Minimum Mode220 bytes or 1MB memoryD7 - D0 D7 - D0

A19 - A0

A19 - A0

Simplified Drawing of 8088 Minimum ModeMEMR MEMW RD

1 MB Memory

WR

CS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-105

What are the memory locations of a 1MB (220 bytes) Memory?A19 to A0 (HEX) 00000 FFFFF AAAA 1111 9876 0000 1111 AAAA 1111 5432 0000 1111 AAAA 1198 10 0000 1111 AAAA 7654 0000 1111 AAAA 3210 0000 1111

Example: 34FD0 0011 0100 11111 1101 0000

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-106

Minimum Mode512 kB memoryD7 - D0 A19 D7 - D0

What do we do with A19? Dont connect it Connect to cs

A18 - A0

A18 - A0

1) Simplified 2)

Drawing of 8088 Minimum What is the difference? ModeMEMR MEMW RD

512 kB Memory

WR

CS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-107

512 kB Memory Map Dont connect it00000h 7FFFFh 80000h FFFFFh

A19 is not connected to the memory so even if the 8088 microprocessor outputs a logic 1,the memory cannot see it. A19=0 is the same as A19=1 for Memory

512k Mem

512k Mem

Connect to cs

00000h 7FFFFh 80000h FFFFFh

If A19=0 Memory chip act normal fanction

512k Mem

Empty

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-108

2 512 kB memoryD7 - D0 A19 A18 - A0MEMR

D7 - D0

512 kB RAM1A18 - A0 RD WR

MEMR MEMWMEMW

CS

D7 - D0

Simplified Drawing of 8088 Minimum Mode

512 kB RAM2A18 - A0MEMR MEMW

RD WR

CS

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-109

2 512 kB memoryWhat are the memory locations of two consecutive 512KB (219 bytes) Memory?AAAA 1111 9876 0000 0111 1000 1111 AAAA 1111 5432 0000 1111 0000 1111 AAAA 1198 10 0000 1111 0000 1111 AAAA 7654 0000 1111 0000 1111 AAAA 3210 0000 1111 0000 1111 Memory Chip 7FFFFh 00000h

512k RAM1

ROM RAM

80000h

512k RAM2

FFFFFh

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-110

Interfacing four 256K Memory Chips to the 8088 MicroprocessorA19 A18 A17:

A17:

A0 D7:

D0 RD WR CS A17:

256KB #4

A0 D7:

A0 D7:

D0 MEMR MEMW

D0 RD WR CS A17:

256KB #3

8088 Minimum Mode

A0 D7:

D0 RD WR CS A17:

256KB #2

A0 D7:

D0 RD WR CS

256KB #1

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-111

Interfacing four 256K Memory Chips to the 8088 MicroprocessorA19 A18 A17:

A17:

A0 D7:

D0 RD WR CS A17:

256KB #4

A0 D7:

A0 D7:

D0 MEMR MEMW

D0 RD WR CS A17:

256KB #3

8088 Minimum Mode

A0 D7:

D0 RD WR CS A17:

256KB #2

A0 D7:

D0 RD WR CS

256KB #1

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-112

Memory chip#__ is mapped to:AAAA 1111 9876 AAAA 1111 5432 AAAA 1198 10 AAAA 7654 AAAA 3210

Memory Chip RAM#1 RAM#2 RAM#3 RAM#4

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-113

A12:

Interfacing several 8K Memory Chips to the 8088 P

A19 A18 A17 A16 A15 A14 A13 A12:

A0 D7:

D0 RD WR CS

8KB #?

A0 D7:

8088 Minimum Mode

D0 MEMR MEMW

: :A12:

A0 D7:

D0 RD WR CS A12:

8KB #2

A0 D7:

D0 RD WR CS

8KB #1

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-114

Interfacing 128 8K Memory Chips to the 8088 P8088 Minimum Mode

A12:

A19 A18 A17 A16 A15 A14 A13 A12:

A0 D7:

D0 RD WR CS

8KB #128

A0 D7:

D0 MEMR MEMW

: :A12:

A0 D7:

D0 RD WR CS A12:

8KB #2

A0 D7:

D0 RD WR CS

8KB #1

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-115

A12:

Interfacing 128 8K Memory Chips to the 8088 P

A19 A18 A17 A16 A15 A14 A13 A12:

A0 D7:

D0 RD WR CS

8KB #128

A0 D7:

8088 Minimum Mode

D0 MEMR MEMW

: :A12:

A0 D7:

D0 RD WR CS A12:

8KB #2

A0 D7:

D0 RD WR CS

8KB #1

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-116

Memory chip#__ is mapped to:AAAA 1111 9876 AAAA 1111 5432 AAAA 1198 10 AAAA 7654 AAAA 3210

Memory Chip RAM#1 RAM#2

RAM#126 RAM#127 RAM#128

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-117

What is the Memory and Address Bit map?A12~A0 A12~A0 D7~D02764 EPROM 8k 8

OE

CE

D7~D0

A14 A13 A12

C B A

7408Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 A10~A0

RD

74138MREQ

A10~A0 D7~D06116 RWM 2k 8

74244 inputG1G 2

G2A G2B G1

A15VCC

RD WR CS

RD

WR

hsabaghianb @ kashanu.ac.ir

Microprocessors 1-118