Micro- and Nano-encapsulation Technologies - ?· Micro- and Nano-encapsulation Technologies ... Oregano,…

Download Micro- and Nano-encapsulation Technologies - ?· Micro- and Nano-encapsulation Technologies ... Oregano,…

Post on 30-Jun-2018

218 views

Category:

Documents

4 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Micro- and Nano-encapsulation Technologies</p><p>CSIRO FOOD AND NUTRITION</p><p>Mary Ann Augustin &amp; Luz Sanguansri</p><p>Short Course on Micro- and Nano-encapsulation of Functional Ingredients in Food ProductsWorld Congress on Oils &amp; Fats and 31st Lectureship Series31st Oct 4th November 2015, Rosario, Argentina</p></li><li><p>Outline</p><p> Encapsulation Technology Applications in the Food Industry</p><p> Nanotechnology &amp; Nanoencapsulation Approaches for Control of Size and Assembly of Materials Applications in the Food Industry</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri2 |</p></li><li><p>Encapsulation Technology</p><p>Applications in the Food Industry</p><p>3 | Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>Role of Microencapsulation in the Food Industry </p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri4 |</p><p>Adapted from Perez &amp; Gaonakar, Microencapsulation in the Food Industry, 2014, 543-549</p><p>Health &amp; Wellness</p><p>ENCAPSULATION HAS AN IMPORTANT ROLE IN THE FOOD INDUSTY</p><p>Flavour &amp; Taste</p><p>Interactive Foods &amp; </p><p>Packaging</p><p>CONSUMERS ARE DEMANDING MORE </p><p>PRODUCT ATTRIBUTES</p><p>Convenience&amp; Cost-</p><p>effectiveness</p><p>Food Safety &amp; Stability </p><p>THE FOOD INDUSTRY IS LOOKING FOR SUPERIOR INGREDIENT</p><p>Improved shelf life </p><p>and product attributes</p></li><li><p>What are some of the things to think about?Desired functionality of encapsulated ingredients in selected applicationsApplication Purpose Desired functionality of encapsulant matrix</p><p>Flavours Protection Provide protection against environment and undesirable ingredient </p><p>interactions</p><p>Controlled release Release flavour in the mouth in response to the desired trigger (e.g. shear </p><p>due to chewing for flavour burst, dissolution when in contact with saliva) </p><p>Bioactives Protection Provide protection against environment and undesirable ingredient </p><p>interactions</p><p>Decrease flavour </p><p>release </p><p>Slow the release of undesirable flavours (e.g. bitterness of some nutrients, </p><p>chalky taste of calcium salts)</p><p>Site-specific </p><p>delivery</p><p>Protect against gastrointestinal tract conditions until targeted release site </p><p>(e.g. protect probiotics and bioactive peptides against stomach conditions)</p><p>Controlled release Control rate of release (e.g. decrease size of microcapsules to improve bio-</p><p>accessibility or tailor the thickness of the wall material to increase resistance </p><p>to gastric/intestinal enzymes)</p><p>Leavening Controlled release Leavening control during baking</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri5 |</p><p>Perez &amp; Gaonakar, Microencapsulation in the Food Industry, 2014, 543-549</p></li><li><p>Microencapsulation for Food &amp; Beverage Industry</p><p>Industry Segment Ingredient FunctionReady to Eat Meat Organic acids (et lactate) Improve shelf life</p><p>Increase resistance to bacteria (Listeria monocytogenes, Clostridia, Salmonella)</p><p>Bakery Flavours Fat barrier stabilises flavours in ready-to-bake doughs (eg Flavourshure - Balchem)</p><p>Gums and candies Volatile anti-odour or anti-microbial or taste-masking formulations</p><p>Minimize loss of volatile active components(eg TheraBreth (cinnamic aldehyde) Wrigley;Trident (menthol) Mondolez; </p><p>Instant coffee Thiols, unsaturated aldehydes, ketones</p><p>Flavour components</p><p>Dairy desserts Probioitics and vitamins Improve nutritional value</p><p>Range of dairy and food products</p><p>Omega-3 fatty acids / oil Improve nutritional value</p><p>Beverages Gas Gas-infusing or turbulence-inducing microparticles to produce froth or foams (eg instant cappuccino)</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri6 |</p><p>Perez &amp; Gaonakar, Microencapsulation in the Food Industry, 2014, 543-549</p></li><li><p>Microencapsulation for Food &amp; Beverage IndustryIngredient Encapsulation</p><p>MechanismFunction Commercial</p><p>Application Flavour compounds (eg thiols in coffee and esters in fruit)</p><p>Heat resistant coatingIsoelectric precipitation</p><p>Flavour enhancement Tea, coffee, juice</p><p>Omega-3 fatty acids, probiotics, prebiotics</p><p>Heat and moisture-tolerant coating, isoelectric precipitation</p><p>Flavor/odor masking and protection from moisture and heat</p><p>Beverage, nutritional bar, cereal</p><p>Mint flavours Coacervates Flavour release and long lasting</p><p>Chewing gum</p><p>Cheese ripening enzymes Enzyme immobilisation Cheese ripening Cheese products</p><p>Probiotics Biopolymer matrix Stabilisation during storage and protection through stomach</p><p>Dairy products</p><p>Carbonate, pressurised air Gas inclusion system / biopolymers/ cyclodextrin</p><p>Foaming Beverages</p><p>Spoilage by-productreacting agent</p><p>Nanocomposite / Microencapsulation</p><p>Colour change to indicatefood safety</p><p>Interactive and intelligentpackaging</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri7 |</p><p>Perez &amp; Gaonakar, Microencapsulation in the Food Industry, 2014, 543-549</p></li><li><p>Selected Examples from the Literature</p><p>- Dairy encapsulants for hydrophobic, hydrophilic and probiotic cores</p><p>- Plant protein-based micro- and nano-particles</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri8 |</p></li><li><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p><p>Dairy-based encapsulants used with hydrophobic cores Example 1</p><p>9 |</p><p>Encapsulated component</p><p>Dairy encapsulant Encapsulation technique</p><p>Benefit(s) of encapsulation</p><p>Reference</p><p>Orange oil WPI Spray drying Protection against oxidation</p><p>Kim &amp; Morr, 1996</p><p>Soy oil Sodium caseinate Spray drying High encapsulation efficiency (89%)</p><p>Hogan et al., 2001a</p><p>CLA WPC Spray drying Protection against oxidation</p><p>Jimenez et al., 2004; 2006</p><p>Flaxseed oil WPI Spray drying Protection against oxidation</p><p>Partanen, Raula, Seppnen, Buchert, Kauppinen, &amp; Forssell, 2008</p><p>AMF WPI Spray drying Protection against oxidation during storage</p><p>Moreau &amp; Rosenberg, 1996</p><p>AMF WPI, WPC-50, WPC-75</p><p>Spray drying High encapsulation efficiency (&gt; 90%)</p><p>Young et al., 1993a</p><p>Retinol WPI Emulsification/Cold gelation /Air drying</p><p>Gastroresistance and protection against oxidation</p><p>Beaulieu et al., 2002</p><p>Oregano, citronella and marjoram flavours</p><p>SMP or WPC Spray drying Improved retention of flavours during spray drying</p><p>Baranauskien et al., 2006 </p><p>Augustin, M.A. and Oliver C.M..(2014) IN The Art and Science of Microencapsulation: An Application Handbook for the Food Industry. (Eds. Anilkumar Gaonkar, Niraj Vasisht, Atul Khare, Robert Sobel), Academic Press, Chap 19, 211-226.</p></li><li><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p><p>Dairy-based encapsulants used with hydrophilic cores Example 2</p><p>10 |</p><p>Encapsulated component</p><p>Dairy encapsulant Encapsulation technique</p><p>Benefit(s) of encapsulation Reference</p><p>3-methylbutyr-aldehyde </p><p>WPC and sodium caseinate or SMP as secondary emulsifier</p><p>Double emulsification/Spray drying</p><p>Improved retention of aldehyde during storage</p><p>Brckner et al., 2007 </p><p>Sumac concentrate</p><p>Whey powder or SMP</p><p>Spray drying Improved retention of flavour during spray drying</p><p>Bayram et al., 2008</p><p>Ascorbic acid Lactose Co-crystallisation Improved retention of ascorbic acid during co-crystallization</p><p>Kim et al., 2001</p><p>Citric acid Casein Co-crystallisation Development of a novel, efficient and cost-effective microwave encapsulation technique that provided high encapsulation efficiency (100%)</p><p>Abbasi &amp; Rahimi, 2008</p><p>IgY WPC as secondary emulsifier</p><p>Double emulsion /Gelation/Air drying</p><p>Protected IgY from highly acidic conditions and heat treatment processes</p><p>Cho et al., 2005</p><p>Protease enzymes</p><p>High melting milkfat fraction</p><p>Gel beads Increased rate of proteolysis during cheese ripening</p><p>Kailasapathy &amp; Lam, 2005</p><p>Caffeine WPC Hydrogels/Air drying</p><p>Controlled release of caffeine</p><p>Gunasekaran et al., 2006</p><p>Augustin, M.A. and Oliver C.M..(2014) IN The Art and Science of Microencapsulation: An Application Handbook for the Food Industry. (Eds. Anilkumar Gaonkar, Niraj Vasisht, Atul Khare, Robert Sobel), Academic Press, Chap 19, 211-226.</p></li><li><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p><p>Dairy-based encapsulants used for probiotics Example 3</p><p>11 |</p><p>Encapsulated component</p><p>Dairy encapsulant</p><p>Encapsulation technique</p><p>Benefit(s) of encapsulation</p><p>Reference</p><p>Lactobacillus sp Milkfat and/or denatured WPI</p><p>Emulsification/Spray drying</p><p>Improved cell viability in yogurt and after exposure to simulated gastrointestinal fluids</p><p>Picot &amp; Lacroix, 2003; 2004</p><p>Lactobacillus sp WPI Freeze drying Improved cell viability during storage and in yogurt</p><p>Kailasapathy &amp; Sureeta, 2004 </p><p>Bifidobacterium sp WPI Freeze drying Improved cell viability in simulated gastrointestinal fluids</p><p>Reid et al., 2005</p><p>WPI Freeze drying Improved cell viability during the production and storage of biscuits, and improved pH stability</p><p>Reid et al., 2007</p><p>Milkfat Spray coating Improved cell viability during storage </p><p>Champagne et al., 1995 </p><p>Augustin, M.A. and Oliver C.M..(2014) IN The Art and Science of Microencapsulation: An Application Handbook for the Food Industry. (Eds. Anilkumar Gaonkar, Niraj Vasisht, Atul Khare, Robert Sobel), Academic Press, Chap 19, 211-226.</p></li><li><p>Plant protein-based micro- and nanoparticles for food ingredient Delivery - 1</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri12 |</p><p>Type of particle Method Core</p><p>Zein microparticles Spray drying or supercritical anti-solvent method</p><p>Food grade antimicrobials: lysozyme, thymol, nisin</p><p>Spray or freeze drying Flax oil</p><p>Zein nanoparticles Liquidliquid dispersion method</p><p>Polyphenols: curcumin, quercetin, tangeretin, cranberryprocyanidins</p><p>Phase separation or liquidliquid</p><p>Essential oils: oregano, red thyme, cassia and carvacrol</p><p>Liquidliquid dispersion method or electrospraying</p><p>Bioactive lipids: fish oil, DHA, Food coloring agents: curcumin, indigocarmine</p><p>Zein-chitosan complex nanoparticles</p><p>Low-energy phase separation method</p><p>Vitamin D3</p><p>SPI-zein complex microparticles / SPI nanoparticles</p><p>Ca2+-induced cold gelation method</p><p>Riboflavin / Vitamin B12</p><p>Wan et al. (2015) Food &amp; Function 6, 2876 2889 </p></li><li><p>Plant protein-based micro- and nanoparticles for food ingredient Delivery - 2</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri13 |</p><p>Type of particle Method Core</p><p>SPI/FA-conjugated SPI Ethanol solvation method Curcumin</p><p>SPI-CMCS complex nanoparticles</p><p>Ca2+ induced co-gelation method</p><p>Vitamin D3</p><p>Soy protein-soy polysaccharide complex nanogels</p><p>High-pressure homogenization and heating</p><p>Folic acid</p><p>Soy lipophilic protein Ultrasonic treatment Conjugated linoleic acid</p><p>Gliadin nanoparticles Antisolvent precipitation method</p><p>All-trans-retinoic acid, vitamin E</p><p>Barley protein microparticles</p><p>Pre-emulsifying process followed by microfluidizing</p><p>Fish oil, -carotene</p><p>Barley protein nanoparticles High pressure homogenization</p><p>-Carotene</p><p>Soy protein nanocomplex Ligand binding properties Vitamin B12, cranberry polyphenols, curcumin, RES and grape polyphenol</p><p>Wan et al. (2015) Food &amp; Function 6, 2876 2889 </p></li><li><p>Nanotechnology and Nanoencapsulation</p><p>14 | Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>Nanotechnology</p><p>Nanotechnology is the ability to work at the atomic, molecular and supramolecular level (in the order of 1-100nm) in order to understand, create and use material structures, devices and systems with fundamentally new properties and functions resulting from their small structures</p><p>15 |</p><p>Roco, Current Opinion in Biotechnology 2003, 14:337</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>Relevance of the concept of scale to food materials Link to Nanotechnology Concepts</p><p>Leser et al., IN Food colloids, biopolymers and materials (Eds Dickinson and van Vliet, 2003), pp3-13</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri16 |</p></li><li><p>Nanotechnology Applications across Agrifood </p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri17 |</p><p>http://www.bing.com/images/search?q=nanotechnology+in+food&amp;view=detailv2&amp;&amp;id=B6E9F703FECEF1068BC82C8DFE20233396618D39&amp;selectedIndex=0&amp;ccid=8LqON4nK&amp;simid=608000695069049234&amp;thid=OIP.Mf0ba8e3789ca59ba3e7f3eeadf1d949bH0&amp;ajaxhist=0</p></li><li><p>Concept of Size and Its Implications for Food Materials, Processes and Products </p><p>Size relates to functionality in terms of the physical properties of food materials</p><p> Smaller size means bigger surface area for the purposes of water absorption (solubility), chemical reaction (e.g. oxidation, digestion), catalyst/enzyme activity, flavour release, bioavailability etc</p><p>Controlling the size and assembly of food components provides opportunities for designing new food products</p><p> Link b/w nanoscale and food microstructure Effects on nutritional and physiological functionality</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri18 |</p></li><li><p>Nanoencapsulated particles</p><p>Nanoemulsions and Nanoparticles- Developed using a range of materials- Co-block polymer micelles, polyelectrolyte capsules, colloidosomes, </p><p>polymersomes, gelled macromolecules</p><p>Target release- In response to environment (eg pH, salt concentration, ultrasound)</p><p>Target distribution- Control of surface properties of polymers- Control interaction between particle and cells in body</p><p>19 | Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>New materials based on Nanotechnology</p><p>20 | Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>Nanotechnology and Nanoencapsulation</p><p>Approaches for Control of Size and Assembly of Materials</p><p>21 | Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri</p></li><li><p>Top down and bottom up approaches</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri22 |</p></li><li><p>Scientific Approaches for Modification of Materials in Nanotechnology</p><p> Top-down approach</p><p> Nanostructures are produced by breaking up bulk materials </p><p>with large structures into smaller ones</p><p> Physical machining of materials to nanometre range by </p><p>grinding, milling, precision engineering, homogenisation </p><p>and lithography </p><p> Bottom-up approach</p><p> Nanostructures are built-up from individual atoms or </p><p>molecules that are capable of self-assembling</p><p>BioSilicon</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri23 |</p><p>http://pubs.acs.org/journals/mdd/about.htmlhttp://pubs.acs.org/journals/mdd/about.html</p></li><li><p>Top-Down Approach for Size reduction of food </p><p> Ball Milling and Jet Milling</p><p> High Pressure Homogenisation </p><p> Microfluidisation</p><p> Ultrasound Emulsification</p><p> Membrane Emulsification</p><p>Materials_ Microencapsulation | Augustin &amp; Sanguansri</p><p>http://www.avestin.com/c5page.htmlhttp://www.avestin.com/c5page.html</p></li><li><p>Solid Lipid Nanoparticles (SLNs)</p><p>Materials_ Microencapsulation | Augustin &amp; Sanguansri25 |</p><p>SLNs are particles consisting of a matrix made of solid lipid shell Weiss et al. (2008) Food Biophysics, 3, 146-154</p></li><li><p>Emulsions How the components assemble will affect its functional properties</p><p>Micro and Nanoencapsulation Technologies | Augustin &amp; Sanguansri26 |</p></li><li><p>Bottom-up Approach in NanotechnologyBuilding up products by assembly of molecules [Molecule-by-</p><p>molecule formation of hierarchical structures] Biomimetic Approach (Mimics strategy used by biological systems for </p><p>structuring of molecules) Nanometre scale self-assembly by autonomous organisation of components into </p><p>structures and patterns without human intervention Organisation of nanometre scale molecular assemblies into larger structures from </p><p>10 nm to sub-micrometre range)</p><p>A) Self-assembled polymer structures block co-polymer micellesB) Polyelectrolyte capsulesC) Colloidosomes...</p></li></ul>