michael scalora u.s. army research, development, and engineering center

64
Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento di Energetica OPTICS BY THE NUMBERS L’Ottica Attraverso i Numeri Rome, April-May 2004

Upload: haviva-ross

Post on 02-Jan-2016

21 views

Category:

Documents


2 download

DESCRIPTION

OPTICS BY THE NUMBERS L’Ottica Attraverso i Numeri. Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento di Energetica. Rome, April-May 2004. - PowerPoint PPT Presentation

TRANSCRIPT

Michael Scalora

U.S. Army Research, Development, and Engineering CenterRedstone Arsenal, Alabama, 35898-5000

&Universita' di Roma "La Sapienza"

Dipartimento di Energetica

OPTICS BY THE NUMBERS

L’Ottica Attraverso i Numeri

Rome, April-May 2004

SVEAT: The Slowly Varying Enevelope Approximation In Time, and The Ability To Inlcude Reflections To All Orders In The BPM Algorithm

From the SVEAT to a Vector BPM: Negative Refraction

2 2 2 2 22 2 2

2 2 2 2 2

22

2 2

( ) 2 ( )2 ( )

42 NL

E E n x E i n x EE ik k n x E

z z c t c t c

i Pc t t

22 22

2 2 2 2

4 nlPn EE

c t c t

( )( , , ) ( , , ) . .i kz tE z x t E z x t e c c

Assuming steady state conditions…

2 2 (3)202 0 0

0 0

( ) 4

in in

n x nE iE i E i E E

F n n

2 2 2 22

2 2 2 2

2 22 2 2

2 2 2

( ) 2 ( )2

4( ) 2 NL

E E n x E i n x EE ik

z z c t c t

k n x E i Pc c t t

2 202 0 0

0 0

0 0

0 0

( ) 4

4

/

NLin in

in

n x nE iE i E i P

F n n

nF Fresnel Number

z k nc

F s all

F

m

Wave front does not distort:Plane Wave propagation

Diffraction is very important

2 2 (3)202 0 0

0 0

( ) 4

in in

n x nE iE i E i E E

F n n

This equation is of the form:

Where:

EHE

2 2 (3)20 02 0

0 0

( ) 4

in in

n x ni i E V

n

iD

nFH

Using the split-step BPM algorithm

0

( ', ) '(0, )

/ 2(0, ) (0, ) / 2

( , ) (0, ) (0, )

(0, )D

H xH

V x x

x

V

E x e E x e E x

e e e E x

2 2 22

2 2 2

2 22 2

2 2

( , , )2

2 ( , , )( , , ) 0

E E n z x y EE ik

z z c t

i n z x y Ek n z x y E

c t c

2 22

2 2

( , , )0

n z x y EE

c t

( )( , , ) ( , , ) . .i kz tE z x t E z x t e c c

2 2 22

2 2 2

2 22 2

2 2

( , , )2

2 ( , , )( , , ) 0

E E n z x y EE ik

z z c t

i n z x y Ek n z x y E

c t c

Apply SVEAT, i.e., SVEA in time only:drop higher temporal derivatives. This assumption means that pulse duration must remain always much longer than the optical cycle at all times. In all kinds of problems, if a pulse is as long as the optical cycle it means trouble for

any approximation. So this is a very good approximation almost always.

2 2 22

2 2 2

2 22 2

2 2

( , , )2

2 ( , , )( , , ) 0

E E n z x y EE ik

z z c t

i n z x y Ek n z x y E

c t c

2 22

2 2

22 2

2

2 ( , , )2

( , , ) 0

E E i n z x y EE ik

z z c t

k n z x y Ec

2 22

2 2

22 2

2

2 ( , , )2

( , , ) 0

E E i n z x y EE ik

z z c t

k n z x y Ec

This equation is first order in time. This suggests writing equation in following form:

2 2 22 2 2

2 2 2

22

i n E E Ek n E E ik

c t c z z

2 2 22 2 2

2 2 2

22

i n E E Ek n E E ik

c t c z z

Now, adopting the usual kind of scaling:

0 0 0 0/ / / /z x x y y ct

2

2 2 202

0 0

14 4

in in

in

E i i E En i n E E

/k cAnd choosing

2

2 2 202

0 0

14 4

in in

in

E i i E En i n E E

This equation is of the form: 2 ( )E

n D V E HE

Which we can ALMOST easily recognized and compare to:

( )E

D V E HE

2

2 2 202

0 0

14 4

in in

in

E i i E En i n E E

N.B.: the differential operator includes ALL longitudinal and spatial derivatives, which means all boundary conditions are left Intact. Integrating this equation must is therefore equivalent to Including longitudinal and transverse reflections to all orders.

2

2 2 202

0 0

14 4

in in

in

E i i E En i n E E

2 ( )E

n D V E HE

2

1EHE

n

This is a nasty operator equation, which has this formal solution:

2

1

( , ) ( , )H

nE e E

r r The exponential is the product of two non-commuting operators

2

1EHE

n

Here is how I solve the problem:

Why is it important to include the index in the denominator?

EHE

Because that factor accounts for the correct group velocity.

2

1( , ) ( , ) ( , )E E HE

n r r r

2 2 2

1( , ) ( , ) ( ,

1( ( , ))

1, )E E

nE E

nnEH r r r r r

Add zero:

2 2

1( , ) ( , ) 1 , ) ( ,

1( )E

nE E HE

n

r r rr

Group terms as follows:

And recognize…

2 2

1( , )

1( , )( , ) 1 He E

nE E

n

r r r

Solution is accurate up to first order in time

Algorithm:

(1) ( , ) ( , )He EE rr

Which is solution of E

HE

2 2

1( , )

1( , )( , ) 1 He E

nE E

n

r r r

Then algbreically manipulate solution to find

Work very well in all cases except metals. Special considerations must be made in that case.

0

0.25

0.50

0.75

1.00

1.25

-150 -50 50 150

position (microns)

|E|2

n=1n=1.42

0

0.4

0.8

1.2

-150 -50 50 150

position (microns)

|E|2

n=1n=1.42

Red: without the 1/n2 factor in the operator

Example:Assume a PBG structure with cross sectional area as small as 1 mm2,

and a Thickness L~10 mirons. The volume is therefore of order V~10-11 m3. I will further assume that the structure is

not solidly anchored to the earth, i.e., it is free to move. The incident pulse can be tuned

anywhere in the pass band or band gap.The rate of momentum transfer depends on tuning.

mE,B

before

mE,B

after

Pm

E,B

BEc

g

4

1

The total momentum at time t is given by:

dztzBtzEc

tP ),(),(4

1)(

In terms of the Poynting vector dztzSc

tP

),(1

)(2

The momentum stored inside the object is the difference between the initial total momentum and the

instantaneous momentum stored in the field, namely:

dztzSc

tPtPpbg

),(1

)0()(2

dzzSc

tP

)0,(1

)0(2

momentum density

T~0

Tuned inside the gap...1

Ppbg

Pfield

P0

2P0

-P0

...Mirror like interaction

gr cm/sec

time (/c=0.33x10-14 sec.)

2

3Electromagnetic momentum as a function ot position

At different time shots

4At band edge resonance: pulse is almost completely transmitted

With some reflections.

0

1x10-6

2x10-6

3x10-6

0 1x10-12 2x10-12 3x10-12

t (sec.)

P(t) (gr cm/sec)

5

pbg

field

P(z,t)

z

6Electromagnetic momentum as a function ot positionAt different time shots

0

0.02

0.04

0.06

0.08

0.10

0 1x10-12

2x10-12

3x10-12

Time (sec.)

Velocity (cm/sec)

accelerationstage

decelerationstage

<a> ~ 1011 m/sec2

Input Pulse Plane Wave: means no diffraction, even though beam width is finite. I.e., each ray travels straight down.

10 20 30 40 50

EL\1

4

5

6

7

8

9E

L\2

0.1

0.2

0.3

0.4

0.6

0.7 0.8

0.9

Same as slide 1

The structure: Cross section of each column is nearly square.

Z (longitudinal)

x

In this case the square cross section does not cause ray bending due to simple refraction

10.00 18.75 27.50 36.25 45.00

EL\1

4

5

6

7

8

9

EL

\2

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.2

0.2

0.2 0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3 0.3

0.4 0.4

0.4

0.4

0.4 0.4

0.4 0.4

0.4

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.6

0.6

0.6 0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8 0.8

0.8

Same as slide 4.

The structure: Cross section of each column is nearly circular. The discretization causes slight imperfections, which can be improved byreducing the integration step. The diameters of each column is close to the /4 condition, but not sure.

Another view: 12 columns long, or ~ 4 microns.

11 13 15 17 19 21 23 25

EL\1

4

5

6

7

8

9E

L\2

0.1

0.2

0.2

0.3 0.4 0.5 0.6

0.7

0.7

0.8

Transmitted portion

10 20 30 40 50 60 70 80 90 100

longitudinal position (microns)

0.0

6.4

12.8

19.2

25.6

tran

sves

re p

osit

ion

(m

icro

ns)

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.3

0.3 0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4 0.4 0.4

0.4 0.4

0.4

0.4

0.4

0.4

0.4

0.6

0.6

0.6 0.6 0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.1 1.1

1.1 1.1

1.3

1.3

1.4

1.4

10 20 30 40 50 60 70 80 90 100

EL\1

0.0

6.4

12.8

19.2

25.6

EL

\2

0.0 0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8 0.8 0

.8 0.8

0.9

0.9

0.9

0.9

1.0

1.0 1.0 1.0 1.1 1.1

1.1 1.1 1.2

1.2

1.2

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

Input

10 20 30 40 50 60 70 80 90 100

EL\1

1

3

5

7

9

11

13

EL

\2

0.0

0.0

0.0

0.0

0.0

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6 0.6 0.6 0.7

0.0 0.1

0.1 0

.2 0.2 0

.2 0.3

0.3 0

.4 0.4 0

.5 0

.5 0

.5 0.6

0.6

0.7

0.7 0.7 0.8 0.8 0.9 0.9

1.0

Input Gaussian

Output

Output

Output

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190

Tra

nsv

erse

Coo

rdin

ate

(in

mic

ron

s)

0.4

0.4

0.4

0.4 0.4

0.4

0.4

0.8

0.8

0.8

0.8

0.8

1.2

1.2

1.6

1.6

2.0

2.0

2.4

2.4

2.8

2.8

3.2

3.2

3.6

3.6 4.0 4.4 4.8 5.2 5.6

6.0 6.4 6.8 7.2

7.6 8.0 8.4 8.8 9.2

9.7 10.

1 1

0.5

10.

9 1

1.3

11.

7 1

2.1

12.

5 1

2.9

13.

3 1

3.7

14.

1 1

4.5

14.

9 1

5.3

15.

7 1

6.1

16.

5 1

6.9

17.

3 1

7.7

18.

1 1

8.5

18.

9 1

9.3

19.

7 2

0.1

20.

5 2

0.9

21.

3 2

1.7

22.1

22.

5 2

2.9

23.

3 2

3.7

24.

1 2

4.5

24.

9 2

5.3

25.

7 2

6.1

26.

5 2

6.9

27.

3 27.7 28.2 28.6 29.0 29.4 29.8

30.2 30.6

31.0 31.4 31.8 32.2 32.6 33.0 33.4 33.8 34.2 34.6

35.0 35.4 35.8 36.2 36.6 37.0 37.4 37.8 38.2 38.6 39.0 39.4

39.8 40.2 40.6 41.0 41.4 41.8 42.2 42.6 43.0 43

.4 4

3.8

44.

2

44.

6 4

5.0

45.

4 4

5.8

46.

2 4

6.7

47.

1 4

7.5

47.

9 4

8.3

n=2 - i 0.02gain

air

Reflections appear to be suppressed

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190T

ran

sver

se C

oord

inat

e (i

n m

icro

ns)

0.1

0.1

0.1

0.1

0.1

0.1 0

.1

0.1 0.1

0.1 0.1

0.2

0.2

0.2 0.2

0.2

0.2 0

.2 0

.2

0.3

0.3

0.3

0.3 0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.6 0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

1.0

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.8

1.9

1.9

2.0

2.0

2.1

2.1

2.2

2.2

2.3

2.3

2.4 2.5

2.6 2.7

2.8

2.9

3.0

3.0

3.1 3.2

3.3 3.4

3.5 3.6 3.7

3.8 3

.9 4

.0 4

.1 4

.2 4.3

4.4

4.5 4.6

4.7 4.8

4.9

5.0 5.1 5.2 5.3

5.4

5.5 5.6 5.7 5.8 5.9

6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7

.5 7

.6

7.7

7.8

7.9

8.0

8.1

8.2

n=2 - i 0.01gain

air

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190T

rans

vers

e C

oord

inat

e (i

n m

icro

ns)

n=2air

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190T

ran

sver

se C

oord

inat

e (i

n m

icro

ns)

n=2 + i 0.01

loss

air

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190T

ran

sver

se C

oord

inat

e (i

n m

icro

ns)

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.1

0.1

0.1

0.1 0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1 0

.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 0.2

0.2 0.2

0.2

0.2

0.2

0.2

0.2 0.2

0.2

0.2

0.2

0.2 0.2 0.2 0

.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3 0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4 0.4 0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4 0.4

0.4

0.4

0.4

0.4 0.4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6 0.6

0.6

0.6

0.6

0.6 0.6

0.6

0.6 0

.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7 0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

n=2 + i 0.02

loss

air

10 30 50 70 90 110 130 150 170 190

EL\1

10

30

50

70

90

110

130

150

170

190

EL

\2

n=2+i0.01

n=2

n=2-i0.01

The symbols and the lines indicate the location and direction of motion of

the baricenter of the wave packet.

10 20 30 40 50

Longitudinal coordinate (in microns)

10

20

30

40

50T

ran

sver

se C

oo

rdin

ate

(in

mic

ron

s)

0.0

0.0

0.0

0.1

0.1 0.1

0.1

0.2

0.7

air

air

62 nm of Ag

1

( / )

c t

c t

BE

EB

A discontinuity in gives a fundamental problem:An infinite derivative for sudden chnages in

However, the H field is continuous across interfaces, just as E is continuous. Symmetrize

The equations of motion.

c t

c t

HE

EH

yx z

y x

xz

HE H

c t y z

H E

c t zEH

c t y

( )

( ) ( )

( ( , , ) . )

( ( , , ) . ) ( ( , , ) . )

z y

z y z y

i k z k y tx

i k z k y t i k z k y ty z

E y z t e c c

H y z t e c c H y z t e c c

E i

H j k

yx zx y z z y

y xy z x

xzz y x

HE Hi E ik H ik H

c t c y z

H Ei H ik E

c t c zEH

i H ik Ec t c y

4

cx

S E H

( )

( ) ( )

( ( , , ) . )

( ( , , ) . ) ( ( , , ) . )

z y

z y z y

i k z k y t

i k z k y t i k z k y ty z

E y z t e c c

H y z t e c c H y z t e c c

E i

H j k

* * * *( ) ( ) ( , , ) ( , , )y y z z z yE H E H E H E H S y z t S y z t S k j k j

( ) ( , , )

( ) ( , , )

yz

z z

z y

yz

y y

z y

P t S y z t dy dz and

P t S y z t dy dz

* * * *( ) ( ) ( , , ) ( , , )y y z z z yE H E H E H E H S y z t S y z t S k j k j

Ex

E points into the paper

H lays on the y-z plane, and so it has components along z and y.

Input field is a gaussian in y and z, incident at 45 degrees

H

kz

y interface

1

2

Hy

Hz

E=Ex i

H=Hy j + Hz k

c t

c t

HE

EH

10 30 50 70 90 110 130 150 170 190

Longitudinal coordinate (in microns)

10

30

50

70

90

110

130

150

170

190T

rans

vers

e C

oord

inat

e (i

n m

icro

ns)

n=2 (=4)air

WAVE-FRONTIncident angle=45 degreesRefraction angle ~20.7 degrees

normal refractionat a dielectricinterface

Red dashed line indicates the major axis of the ellipse. It iscompressed in the direction ofpropagation due to packet slowingdown in that direction to a velocityof c/n

10 20 30 40 50

EL\1

10

20

30

40

50

EL

\2

0.0

0.0

0.1

0.1

0.1

0.1

0.2

0.2

0.3 0.4 0.4

Pulse is incident on a Silver half-space.

= -8.98 + i 0.78=1

For =~500nm

This corresponds to an index

n = 0.13 + i 3

Sy

Sz

S

Sy

Sz

S

-0.05

-0.03

-0.01

0.01

0 10 20 30 40 50

Pplus

z(t)

Py

plus(t)

time (/c)

mom

enta

propagation from air into metal substrate = -8.98 +i0.78=1For =~500nm

The maximum refraction angle into the metalIs ~78 degrees at the time indicated, i.e., near peak.

Test 1

Sy

Sz

S

-75

-25

25

75

0 10 20 30 40 50

Pminus

z(t)

Py

minus(t)

time (/c)

mom

enta

propagation from air into metal substrate

This are the momenta as a function of time in the incidence half-space. The reflection causes the z-component (red) to change sign. With both components negative and nearly equal, it corresponds to a reflection angle of 45 degree. There is some absorption, and so each component is not conserved.

Sy

Sz

S

450

trasmessoS

riflessoS

incidenteS

450

Riassumendo:

i

~79-800

argento, con incidentea ~ 500nm

5.00 13.75 22.50 31.25 40.00

EL1\1

15

25

35

EL1

\2

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.2

0.2

0.2

0.2 0.2 0

.2

0.2

0.3

0.3

0.3

0.3

0.3 0.3

0.3

0.4

0.4

0.4

0.4

0.4 0

.4

0.4

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7 0.7

0.7

0.7

0.8

0.8

0.8

0.8 0.8

0.8

0.9

0.9

0.9

0.9

0.9

=1

S0z

S0y

S0z

S0y

S

S

The ellipse seems to be oriented correctly, but propagation occurs in the “wrong” direction.

-20

0

20

40

60

0 10 20 30 40 50

Pplus

y(t)

Pz

plus(t)

time (/c)

mom

enta

insi

de

med

ium

(p

lus

sid

e)

The initial momentum on the plus side is zero for both components. At the end of the interaction, after the pulse has completely entered the medium, the momentum is equally split betweenThe x and z coordinates, and the momentum points in the direction of energy flow.

Sy

Sz

S

450

trasmessoS

riflessoS

incidenteS

450

Riassumendo:

450

Quindi anche in questo caso, dove il momento y non e’ conservato (dovrebbe esserlo se l’assorbimento e’ zero)trovo in ogni caso che il vettore di Poynting punta nella direzione di propagazione.

5.00 13.75 22.50 31.25 40.00

EL\1

15

25

35

EL\

2

0.1

0.1

0.1

0.1

0.1

0.1 0

.1

0.1

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0

.5

0.6

0.6

0.6

0.6

0.6 0

.6

0.8

0.8

0.8

0.8

0.9

0.9

0.9

=1

Boundary

CONCLUSIONS:I AM WILLING TO

BELIEVE

ANYTHING!

(with a grain of salt, of course)