method of applied math -...

22
Lecture 1 Sujin Khomrutai – 1 / 22 Method of Applied Math Lecture 1: Series Solutions of Second Order Linear ODEs Sujin Khomrutai, Ph.D.

Upload: haxuyen

Post on 10-Aug-2019

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Lecture 1 Sujin Khomrutai – 1 / 22

Method of Applied MathLecture 1: Series Solutions of Second Order

Linear ODEs

Sujin Khomrutai, Ph.D.

Page 2: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Introduction

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 2 / 22

We solve second order linear ODE

y′′ + p(x)y′ + q(x)y = f(x) (1)

where p(x), q(x) are functions of a variable x by the power seriesmethod.

Recall

y′ =dy

dx= the first derivative of y,

y′′ =d2y

dx2= the second derivative of y.

Page 3: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 1 (Wedge heat sink)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 3 / 22

EX. The model equation for a wedge heat sink

is

x2 d2y

dx2+ x

dy

dx− µxy = 0

where y(x) is the temperature at x and µ > 0 is a constant.

Page 4: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 2 (Beam under loads)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 4 / 22

EX. The model equation for a beam of length 2L under loads

is

axd2y

dx2− Py =

1

2wx2 − wx

where y(x) is the deflection at x and a > 0 is a constant.

Page 5: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Outline

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 5 / 22

Plan.

1. Power series

2. Ordinary points v.s. Regular singular points

3. Power series solutions near an ordinary point.

Page 6: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Series & Functions

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 6 / 22

A power series is an expression of the form

∞∑

k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + · · · ,

ck are called coefficients and a is called the center.

The sum, where the series converges, defines a function of x, i.e.

f(x) =∞∑

k=0

ck(x− a)k.

Page 7: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 3

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 7 / 22

EX. The power series

3− 6x+ 12x2 − 24x3 + · · ·

has center: a = 0 and coefficients:

c0 = 3, c1 = −6, c2 = 12, . . . , ck = 3 · (−2)k, . . .

It sum is the function

f(x) = 3− 6x+ 12x2 − 24x3 + · · ·

= 3(1 + (−2x) + (−2x)2 + (−2x)3 + · · · )

= 3

∞∑

k=0

(−2x)k =3

1 + 2x

Page 8: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Taylor Series

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 8 / 22

An important group of power series is the Taylor series ofdifferentiable functions.

Definition. Let f be a differentiable function. The Taylor seriesof f(x) about a is

Ta(x) =∞∑

k=0

f (k)(a)

k!(x− a)k

or

Ta(x) = f(a)+f ′(a)(x−a)+f ′′(a)

2!(x−a)2+

f ′′′(a)

3!(x−a)3+· · ·

Page 9: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 4

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 9 / 22

EX. Let f(x) = ex. Since

(ex)′ = ex,

we have

f ′(0) = 1, f ′′(0) = 1, . . . f (k)(0) = 1 ∀ k.

So the Taylor series of f(x) = ex about 0 is

T0(x) =∞∑

k=0

1

k!xk = 1 + x+

x2

2!+

x3

3!+ · · ·

Page 10: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Analytic Functions

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 10 / 22

For a differentiable function f , if its Taylor series at a convergeson an interval I = (a−R, a+R), then

f(x) = Ta(x) =∞∑

k=0

f (k)(a)

k!(x− a)k ∀ x ∈ I.

We say that f is analytic at a.

Fact. Most functions are analytic on their domains.

• ex is analytic at any a ∈ (−∞,∞).

• A polynomial P (x) is analytic at any a ∈ (−∞,∞).

• A rational functionP (x)

Q(x)is analytic at any a where Q(a) 6= 0.

Page 11: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Ordinary and Singular Points

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 11 / 22

Definition. Consider the ODE

y′′ + p(x)y′ + q(x)y = f(x).

If p, q, f are analytic at a, then a is called an ordinary point ofthe ODE.

If p, q, or f is not analytic at a, then a is called a singular pointof the ODE.

Page 12: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 5

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 12 / 22

EX. For the ODE

3y′′ + 4xy′ − 5x2y = 0

find all ordinary points and singular points of this equation.

Page 13: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 6

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 13 / 22

EX. For the ODE

(x2 − 1)y′′ + xy′ − y = 0

find all ordinary points and singular points of this equation.

Page 14: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Series Solutions: An Ordinary Point

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 14 / 22

At an ordinary point, we have the following theorem.

Theorem. [Kreyszig, 5.1 Theorem 1] Let a be an ordinary pointof the ODE

y′′ + p(x)y′ + q(x)y = f(x).

Then any solution of the ODE is analytic at a, so

y = b0 + b1(x− a) + b2(x− a)2 + · · · =∞∑

k=0

bk(x− a)k,

for some constants b0, b1, b2, . . .

We will pay a special attention to the case a = 0 and f(x) = 0.

Page 15: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Series Solutions: An Ordinary Point

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 15 / 22

Thus, solutions to y′′ + p(x)y′ + q(x)y = 0 have the form ofpower series, about each ordinary point a.

Method. Step 1. Set the solution y as a series about a

y = b0 + b1(x− a) + b2(x− a)2 + b3(x− a)3 + · · · ,

that is

y =∞∑

k=0

bk(x− a)k

Step 2. Termwise differentiation:

Page 16: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Series Solutions: An Ordinary Point

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 16 / 22

y′ = b1 + b2(2)(x− a) + b3(3)(x− a)2 + · · ·

y′′ = b2(2)(1) + b3(3)(2)(x− a) + b4(4)(3)(x− a)2 + · · ·

that is

y′ =∞∑

k=0

bk+1(k + 1)(x− a)k

y′′ =∞∑

k=0

bk+2(k + 2)(k + 1)(x− a)k.

Step 3. Solve for b0, b1, b2, . . .

Page 17: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 17 / 22

EX. Show that 0 is an ordinary point of the ODE

y′′ − xy = 0.

Then find the general solution of the ODE as power series about 0.

Sol. It is easy to verify that a = 0 is an ordinary point.

According to the series solution method, we set

y =∞∑

k=0

bkxk

y′′ =∞∑

k=0

bk+2(k + 2)(k + 1)xk

Page 18: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 18 / 22

∞∑

k=0

bk+2(k + 2)(k + 1)xk − x

∞∑

k=0

bkxk = 0

∞∑

k=0

bk+2(k + 2)(k + 1)xk −

∞∑

k=0

bkxk+1 = 0

Shift the index the second series to align the powers of x(j = k + 1):

∞∑

k=0

bkxk+1 =

∞∑

j=1

bj−1xj dummy

=∞∑

k=1

bk−1xk

(we throw away j finally, and re-use k).

Page 19: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 19 / 22

Thus

∞∑

k=0

bk+2(k + 2)(k + 1)xk −

∞∑

k=1

bk−1xk = 0

Split terms in the first series (to align the starting sum):

b2 · 2 · 1 +∞∑

k=1

bk+2(k + 2)(k + 1)xk

So

b2 · 2 · 1 +∞∑

k=1

bk+2(k + 2)(k + 1)xk −

∞∑

k=1

bk−1xk = 0

Page 20: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 20 / 22

Combine series

b2 · 2 · 1 +∞∑

k=1

[bk+2(k + 2)(k + 1)− bk−1]xk = 0

Note.∑

k=0 ck(x− a)k = 0 then ck = 0 for all k. So

2b2 = 0, bk+2(k + 2)(k + 1)− bk−1 = 0 for all k ≥ 1.

Thus

b2 = 0, bk+2 =bk−1

(k + 1)(k + 2)for all k ≥ 1.

These equations are recurrence equations.

Page 21: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 21 / 22

Solve recurrence equations

• b2 = 0, b5 = 0, b8 = 0, b11 = 0, . . .

b3n+2 = 0 (n ≥ 4)

• b3 =b0

2 · 3, b6 =

b0

2 · 3 · 5 · 6, b9 =

b0

2 · 3 · 5 · 6 · 8 · 9

b3n =b0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)(n ≥ 4)

• b4 =b1

3 · 4, b7 =

b1

3 · 4 · 6 · 7, b10 =

b1

3 · 4 · 6 · 7 · 9 · 10

b3n+1 =b1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)(n ≥ 4)

Page 22: Method of Applied Math - pioneer.netserv.chula.ac.thpioneer.netserv.chula.ac.th/~ksujin/Slide01(ISE,317).pdf · Introduction Introduction EX1. EX2. EX3. EX4. Ord & Sing Points EX5

Example 7 (Airy’s equation)

Introduction

EX 1.

EX 2.

EX 3.

EX 4.

Ord & Sing Points

EX 5.

EX 6.

Series Sol Method

EX 7

Lecture 1 Sujin Khomrutai – 22 / 22

Set back to the solution:

y =∞∑

k=0

bkxk = b0

[

1 +x3

2 · 3+

x6

2 · 3 · 5 · 6+ · · ·

]

+ b1

[

x+x4

3 · 4+

x7

3 · 4 · 6 · 7+ · · ·

]

This is the general solution where the fundamental solutions are

y1 = 1 +x3

2 · 3+

x6

2 · 3 · 5 · 6+ · · · ,

y2 = x+x4

3 · 4+

x7

3 · 4 · 6 · 7+ · · ·