membrane development for medium and high temperature pemfc ... · membrane development for medium...

23
Membrane development for medium and high temperature PEMFC in Europe Deborah Jones CNRS - National Scientific Research Council, University of Montpellier, France HTMWG - CARISMA joint session 10th October 2007 1

Upload: duongdan

Post on 02-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Membrane development for medium and high temperature PEMFC in Europe

Deborah Jones

CNRS ­ National Scientific Research Council, University of Montpellier, France

HTMWG - CARISMA joint session 10th October 2007 1

           

2

 

 

Funding for H2/FC research in the EU

• European Commission has funded research on materials for fuel cells for over 20 years under 6

1982 previous Framework Programmes

1998 ­ 2002

2002 ­ 2006

• EC support to hydrogen and fuel cell RTD in Framework Programmes 2 to 6

HTMWG ­ CARISMA joint session 10th October 2007

0

50

100

150

200

250

300

350

FP2 FP3 FP4 FP5 FP6

Bud

get /

M€

8 M€ 32 M€

58 M€

145 M€

300 M€

           

3

FP6 Budget Breakdown for H2/FCs

• Total EC Contribution to date ~300 M€

HTMWG ­ CARISMA joint session 10th October 2007

           

4

FP7 2007 - 2013

HTMWG ­ CARISMA joint session 10th October 2007

           

5

European Hydrogen and Fuel Cells Technology Platform

• HFP 2003 – 2007 (FP6) • For FP7, Joint Technology Initiative on Fuel Cells and Strategic Research Agenda Hydrogen, a Public-Private

� Implementation Plan Partnership between Industry ­European Commission – Research Organisations

• The JTI is a new management structure that will allow efficient organisation of the R&DD resources in Europe in fields of major European public interest and will have the necessary critical mass

HTMWG ­ CARISMA joint session 10th October 2007

           

6

Fuel Cell materials projects funded under FP6

Acronym Full Title Aims Coordinator EC funding

FURIM

www.furim.com

Further development and system integration of high

temperature PEMFC

Developing advanced materials for a high temperature PEFC stack operating at nominally 170°C and integration into a

fuel cell system

Technical University of

Denmark 4 M€

Autobrane

www.autobrane.eu

Automotive high temperature membranes

Research to raise the temperature of operation of the transport-application

PEFC and to extend the range of humidity levels at which the MEA

can operate

Daimler, Germany 8.3 M€

IPHE-GENIE IPHE for the

GENeration of novel IonomEr membranes

Association of IPHE partner countries outside Europe (in this case China and

Russia) with Autobrane project

Energy research Centre of the Netherlands

0.7 M€

APOLLON-B Development and testing of

new high temperature polymer electrolyte membranes and fuel

cell performance

Providing innovative solutions in efficient and low-cost high temperature

PEM electrode assemblies.

Fn. Research and Technology Hellas, Greece

(FORTH) 1,8 M€

PEMTOOL www.pemtool.net

Development of novel and validated software-based tools for PEM fuel cell component

and stack-designers

Using mathematical analysis and rapid numerical software with experimental

validation to develop efficient and verified software tools forPE FC development.

KTH, Sweden 1 M€

MOREPOWER http://morepower.gkss.

de/mpower.html

Compact Direct (M)Ethanol Fuel

Cell for Portable Application

Development of Direct Methanol Fuel Cells, including new polymer electrolyte

materials for portable applications. GKSS,

Germany 2,2 M€

CARISMA

www.carisma­network.eu

Coordination Action of Research on Intermediate and high temperature Membrane

electrode Assemblies

Integration of European, national and regional basic and applied research and development efforts on high temperature

PEFC Membrane Electrolyte Assemblies in order to substantially

increase their impact.

National Scientific Research

Council, CNRS, Montpellier,

France

0,56 M€

HTMWG ­ CARISMA joint session 10th October 2007

CARISMA coordination action www.carisma­network.eu

MISTRA SE

FURIM GdR PACTE FP6 FR

SUPERGEN Autobrane UK FP6

CEA Morepower FR FP6

DryD NUME DE IT

Networking of funded groups and groupings

Medium and high temperature MEAs and their components 

Framework for international cooperation e.g. "High Temperature Membranes" project

HTMWG ­ CARISMA joint session 10th October 2007

7

           

8

www.carisma­network.eu

HTMWG ­ CARISMA joint session 10th October 2007

           

9

 

 

   

   

         

   

 

   

     

 

   

       

 

FURIM 160 ­ 180 °C

160 °C APOLLON­B Stationary

130 °C

Automotive

80 °C

ambient

MOREPOWER

Portable

time

RTD approaches to new membranes in the EU

Modified PFSA, sPEEK

Intrinsic proton conductors

PBI/H3PO4

Dry gases, no operation <100 °C

Innovative – high risk

Current:

transport and

domestic

power units

PFSA: perfluorosulfonic acid

sPEEK: sulfonated poly(ether ether ketone)

PBI: polybenzimidazole

HTMWG ­ CARISMA joint session 10th October 2007

           

Autobrane perfluorosulfonic acid type polymers

• Nafion® Short-side-chain ionomer

(CF2CF )h (CF2CF2 )k 1,E+00

0,2 0,4 0,6 0,8 1O 0

1,E-01

CF2 1,E-02

CF-CF3

O σσ σσ (S

/cm

)

1,E-03

1,E-04

1,E-05CF2 Hyflon Ion EW=850 N117CF2 1,E-06

p/p° 15%

SO3H PFSA polymers with Long-side-chain ionomer Low EW

High Tg Solvay­Solexis

HTMWG ­ CARISMA joint session 10th October 2007

10

HTMWG - CARISMA joint session 10th October 2007

11

Hybrid and composite membranes: Inorganic particles and networks

• Mechanical and proton conduction properties of hybrid inorganic-organic membranes: PFSA-type

Hybrid membrane

PFSA

40 60 80 100 120

107

108

109

1.83.06.0

E-M

odul

us /

Pa

T / °C

fumapem F950 fumapem FZP KE279 Nafion 115 Nafion 117 Nafion 212

RH / %12.8

PFSA-F-hybridPFSA-F

FuMA-TechUniversity of Perugia

Nafion 112 FZP-930 FZP-930-I FZP-930-II FZP-930-III0

2

4

6

8

10

12

14

16

Proton conductivity@95°C/30% RH

11,1 mS

3,47 mS

14,8 mS

10 mS

7,2 mS

Pro

ton

Con

duct

ivity

in m

S

Membrane MaterialPF-HB-Imp PF-HB-Imp-I PF-HB-Imp-II PF-HB-Imp-III

Hybrid

Standard

3000

3500

Hybrid and composite membranes: Inorganic particles and networks

Stabilisation of heteropolyacids

70

80

90

100

N­Recast

N­10%ZrO2 after H2SO4

N­10%HPW(30)Zr after H2SO4

N­10%HPW(45)Zr after H2SO4

0%

8.70%

8.73%

10.30%

Mass Loss at 700°C

O O

SO 3 -

NH3 +

O

Si(OCH 3)3

Mass Loss, %

60

nNo leaching of 50

40 stabilised HPA from 30

composite membrane 20 200

10 water uptake at: 0 Mesoporous Inorganic 0 200 400 600 800 1000 1200 120 °C

T, °C reinforcement 150 4000

wat

er u

ptak

e (%

) Zr F N-10%HPW(30)Zr S

Swelling reduced at Element Atomic %

O 25.62 80 °C2500 W F 56.83 high T / high RH

Cou

nts 100 W 4.63

Zr 12.92

2000

1500 O

1000 EDS analysis of acid­500 S

washed composite 50 20 °C 0 1 2 3 4 5 6 7 CNRS­ Montpellier

KeV membrane

CNR­ITAE

Messina

0

0 5 10 15 20 25 30 35

wt % silica in hybrid membrane 40

12

HTMWG ­ CARISMA joint session 10th October 2007

0

           

13

            

 

New processing methods for hydrocarbon-type sulfonic acid polymers

preparation conditions spherical pores of diameter 1 – 2 �m spherical pores of diameter 0.4 – 0.8 �m dense membrane

• Modified membrane morphology gives no change in dimension on dry/wet cycles CNRS Montpellier

HTMWG ­ CARISMA joint session 10th October 2007

30

40

50

60

70

80

New polymer designs for acid O doping

TGA

N O P

n Doping level With H3PO4

100 350

90 300

Do

pin

gle

vel(

wt%

)

250

200Combined Properties

Wei

gh

t(%

)

150

100

•SolubilityThermal stability Doping level

•Film forming propertiesup to 500oC 50 up to 300wt%

020

•High molecular weight 0 100 200 300 400 500 600 700 800 0 2 4 6 8 10

Temperature (oC) •High proton conductivity Doping time(h)

1E10

DMA

BBeeffoorree ((­­○○­­)) aanndd aafftteerr ((­­▲▲­­)) 

ttrreeaattmmeenntt wwiitthh HH22OO22

•Thermal/Chemical Stability

•High Tg

•High Membrane Quality 0,036

Conductivity measurements

•Easy Handling for MEA 0,032

0,028

E'(d

yn/c

m2 )

E''(

dyn

/cm

2 )

1E9 preparation High modulus up to 270oC

Con

duct

ivity

(S/c

m)

0,024

0,020

0,016

1E9 0,012T ~270oC Conductivity higherg0,008APOLLON­B than 3*10-2S/cm 0,004

FORTH (GR)1E8 20 40 60 80 100 120 140 160 180

Temperature (0C)50 100 150 200 250

Temperature (0C)HTMWG ­ CARISMA joint session 10th October 2007

14

           

15

P OH

O

HO

New polymers, new functions

• New polymers functionalised with sulfonic or phosphonic groups (phosphonic, sulfonic)

• Innovative approaches to proton conducting membranes using novel protogenic functions and interpenetrating network structures

HTMWG ­ CARISMA joint session 10th October 2007

(phosphonic, sulfonic, imidazole)

F2C S

O

OH

O

O OH

O

S N H

N

Sulfonic – water needed for proton

transfer

Phosphonic – quasi-anhydrous, some water needed

Imidazole

Combinations of polymer types to draw best advantage from each

Blends and interpenetrating networks

Strong acid + weak acid

Acid + base

           

16

   

with high degrees of functionalisation

• Polyphosphonated thermostable polymers

New thermostable polymers

100 M-P8

polyphosphonatedpolyphosphonated

did php oso php ono ata edei h s h n t d

mom non php oso php ono ata edeo o h s h n t d

95 M-P8N1(2,2wt%)

90 M-P8N2(5,1wt%)85

80

75

70

65

60

55

50

Wat

er U

ptak

e (w

t.%)

University of Lund

10 20 30 40 50 60 70 80 90 100 110 120 130 Temperature (C)

HTMWG ­ CARISMA joint session 10th October 2007

           

17

   

 

 

New thermostable polymers with high degrees of functionalisation

@ 100 % RH50

30

cond

uctiv

ity

(mS

/

cm)

HNHN

NN

ZZ ZZ ZZ mm

10

8

6 ssppaacceerr nn

IImmmmoobbiilliisseedd hheetteerrooccyyccllee 4 20 40 60 80 100 120

temperature (°C)

110000

CARISMA joint session 10th October 2007

@ 120 °C

405060708090100

RH (%)

10

1

11

2

22

cycle 2

cycle 1

405060708090100

RH (%)

10

1

1 1

2

2 2

cycle 2

cycle 1

"Immobilised solvent" – proton conducting heterocycle solvents

ccoonndd

uuccttiivv

iittyy ((

mmSS

//ccmm

))

tethered to polymer backbone

11CNRS

HTMWG ­

           

18

 

HTMWG ­ CARISMA joint session 10th October 2007

Blends and interpenetrating networks

BASF

           

19

           

Alkaline PEFC membranes

J. Varcoe, R. Slade, University of Surrey

HTMWG ­ CARISMA joint session 10th October 2007

HTMWG - CARISMA joint session 10th October 2007

20

Durability: steady state operation

0,0

0,2

0,4

0,6

0,8

1,0

0 5000 10000 15000 20000

Time [h]

Hydrogen / Air

• 20,000 h steady state operation, 160 °C, 0.2 A/cm 2

• voltage drop < 6µV / h

Celtec-P1000

APOLLON-BPoly (PPEP)-H3PO4

BASF

FORTH

• Continuousoperation at 0.5 V and 180-200 °C

FURIMPBI-H3PO4

• Continuousoperation at 0.5 A/cm2, 150 °C

H2/air – 150 °C

H2/air – 160 °CH2/air – 180-200 °C

Tech.Uni.Denmark

           

21

   

 

  

            

   

 

  

   

 

 sity (m

12

 

  

  

 

 

 

0

100

200

300

700

800

1000

Durability Start/stop, thermal cycling

14

12

10

8

6

2

0

0 2 4 6 8 10

cycle n°

Power

density

(mW

/cm

2

)

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2

Current density (A/cm2)

Voltage

(mV)

Power

den

W/cm

2

)

131

112

100

108

V H2

V O2

APOLLON-B: Thermal cycling, no load at low temperature vo

lume

of

pro

duc

ed

water

(cm

3)

4

Celtec-P1000: trigger liquid water failure mode by inducing degradation

160°C ­ H2

120°C ­ H2

80°C ­ H2

60°C ­ H2

420

339

254

242

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2

Current density (A/cm2)

450 1000 450 1000

229 192

168 168

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2

Current density (A/cm2)

900 900 900 400 400 400

600

500

400

800 800 350 350 350

Power

density

(mW

/cm

2)

Voltage

(mV)

700

600

500

400

700

300

250

200

150

300 300

600

250

500

200 200

400

150

300 300

100 100 200 200

50 50 100 100

0 0 00

CNRS­BASF­EDF

Temperature cycle from 160 to 60 °C under 0.4 A/cm2

HTMWG ­ CARISMA joint session 10th October 2007

Voltage

(mV)

0

50

100

150

250

450

           

22

Perspectives (Membrane) • Pursue development of new membrane materials – with high and low

Perspectives and Opportunities

temperature conductivity, at high and low relative humidity – satisfying operation protocols for transport and stationary applications

• Pursue development of medium-high temperature membranes for alternative fuels

• Develop and pursue collaborations to enable robust sets of characterisation techniques to validate preparative strategies

Challenges (Membrane) • Durability, Impact of MEA degradation products, Scale-up feasibility,

Reproducibility, Feasibility of MEA development with new membranes, Cost

HTMWG ­ CARISMA joint session 10th October 2007

           

23

Acknowledgments

• CARISMA is funded by the European Commission under contract 039041

HTMWG ­ CARISMA joint session 10th October 2007