mech 2241 (w2015) lecture 08

18
Stephen G. Ribarits [email protected] Office: Room 202 SW9 (604) 4328332 Lecture 8

Upload: curtis-luu

Post on 16-Jan-2016

16 views

Category:

Documents


0 download

DESCRIPTION

dynamics lecture 8

TRANSCRIPT

Page 1: MECH 2241 (W2015) Lecture 08

Stephen G. [email protected]

Office: Room 202  SW9(604) 432‐8332

Lecture 8

Page 2: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 2 of 18

∆∆

∆∆∆∆

∆∆∆∆

Clockwise(CW)

CounterClockwise

(CW)

∆∆

∆∆

∆∆

∆∆∆∆

1212

22

1212

22

Averages

Constant Acceleration Equations

Averages

Constant Acceleration Equations

Relations

Page 3: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 3 of 18

NORMAL AND TANGENTIAL ACCELERATION

Section 16‐3

Page 4: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 4 of 18

NORMAL AND TANGENTIAL ACCELERATION

Why don't people on the Roundup ride fall out when they are at the top?

There must be some invisible force that is counteracting gravity!   

We will learn that a free particle (i.e., a human) has to be accelerated to feel a force.   

But we already learned that angular acceleration is given by:

Page 5: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 5 of 18

,

NORMAL AND TANGENTIAL ACCELERATION

Let's look at rotationalmotion in detail

A particle is traveling in a circle of radius  .  Imagine the motion as, at every instant, a rope attached to the particle is pulling it tangential to the circle.   If the rope has constant speed

, then we already know that the angular velocity of the particle is,

We also know that if the imaginary rope is pulled with constant acceleration  (meaning the speed would be increasing or decreasing), that the angular acceleration of the particle is,

Page 6: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 6 of 18

constant

NORMAL AND TANGENTIAL ACCELERATION

,

Since the acceleration depicted in the previous slide is tangential to the circle, let us denote it with a subscript  ,

Now let's reconsider the case where the imaginary rope is pulled at constant speed  ,

0

0 constant

tangentialacceleration

Page 7: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 7 of 18

NORMAL AND TANGENTIAL ACCELERATION

We know from the Roundup ride discussion that there must be an acceleration in the constant speedcase.  So where does it come from?

=  = constant=  = 

v

Let us look at the particle at another position  on the circle.

v

The speed at points  and  is equal, however the direction is not.

It is the change in direction that is causing the acceleration.  From our previous work we know that,

∆∆

∆∆

Page 8: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 8 of 18

NORMAL AND TANGENTIAL ACCELERATION

,  constant=  = 

Let us look in detail at the change in velocity, ∆ , over a very small change in angle ∆ .

∆∆

∆∆

The direction of  is toward the center of the circle.

Page 9: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 9 of 18

NORMAL AND TANGENTIAL ACCELERATION

∆∆∆∆

We know that  because the velocity magnitude is not changing.  Let  ,

∆ 2 cos ∆

but we know,

For a very small angle ∆ ,

to circle center

∆ 2 1 cos ∆

∆ 2 1 cos ∆

∆ 2 1 cos ∆

cos ∆ ≅ 1∆2

∆ in radians!

Page 10: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 10 of 18

NORMAL AND TANGENTIAL ACCELERATION

∆∆∆∆

∆ 2 1 cos ∆

∆∆

cos ∆ ≅ 1∆2

∆ 2 1 1∆2

∆ ∆

∆ ∆

∆ ∆

∆∆∆∆

but

normalacceleration

Page 11: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 11 of 18

NORMAL AND TANGENTIAL ACCELERATION

,

= tangential acceleration

This is the acceleration due to a change in speed around the circle.

r tangentialacceleration

= normal acceleration

This is the acceleration due to a change in direction around the circle.

normalacceleration

Page 12: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 12 of 18

NORMAL AND TANGENTIAL ACCELERATION

1. As before, pay careful attention to sign convention of both given data and calculated values. If initial velocity or displacement is positive, then acceleration is positive and deceleration is negative. 

2. Mating pulleys and gears have a common tangential velocity. 

3. For a rotating object:a) If angular velocity is zero,  but  may 

be present.b) If angular acceleration is zero,  but 

may be present.

Page 13: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 13 of 18

NORMAL AND TANGENTIAL ACCELERATION

Example11‐10

A 1.2 m wheel, mounted in a vertical plane, accelerates uniformly from rest at 3 rad/s2 for 5 seconds and then maintains uniform velocity in a clockwise direction.  Determine the normal and tangential acceleration of a point at the top of the wheel for t=0 seconds and t=6 seconds.

At  seconds: 0 0

3 3 0.6 1.8

At  seconds: 0 0

0 3

speed increase only to 5 seconds!

15

15 0.6 135

Page 14: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 14 of 18

NORMAL AND TANGENTIAL ACCELERATION

Problem 11‐65Point A has a total acceleration of 240 in/s2  

For member ABC, rotating clockwise, determine:a) angular velocity b) angular acceleration 

35

35240

Total acceleration:

sin 35°

cos 35°

tan512 22.6°

5 12 13

Page 15: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 15 of 18

NORMAL AND TANGENTIAL ACCELERATION

35

240 sin 35° 22.6°

240 cos 35° 22.6°

51.5 234.4

234.4

13

51.5

13

4.254.25

3.963.96

Page 16: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 16 of 18

Relative Motion on a plane

Page 17: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 17 of 18

ANGULAR MOTION KINEMATICS

1. Determine the normal and tangential accelerations for point P in the figure.(Answers  an = 270 m/sec2 →, at = 1.5 m/sec2 ↓)

2. The object shown in the figure rotates about A and accelerates from an initial speed of 10 rpm to 40 rpm in 5 seconds. At t = 5 seconds, determine the total acceleration of point B for the position shown.(Answer aB = 87.8 m/sec2 ∠ ‒55.2°)

Page 18: MECH 2241 (W2015) Lecture 08

MECH 2241 (W2015) Dynamics S. Ribarits / D. Stropky Week 4/Lecture 8/Slide 18 of 18

ANGULAR MOTION KINEMATICS

3. A car accelerates uniformly from rest to 50 mph over a distance of 1/8 mile along a curve of 700 ft radius. Determine the total acceleration at the instant that the speed of 50 mph is reached.(Answer 8.69 ft/sec2)

4. The total acceleration of a point A is 4 m/sec2∠ 45°. For member ABCD determine (a) the angular velocity  and (b) the angular acceleration  .  (Answer  = 3.3 rad/sec CCW,  = 2.17 rad/sec2 CW)