measuring spatial dependence among maxima · 2007. 6. 8. · extending the madogram ⇓ ↓ ↑ ⇑...

41
[email protected] Measuring Spatial Dependence among Maxima P. Naveau Laboratoire des Sciences du Climat et de l’Environnement IPSL, CNRS, France Guillou, A.; Cooley, D.; Diebolt, J. http://amath.colorado.edu/faculty/naveau/

Upload: others

Post on 15-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

⇓ ↓ ↑ ⇑ [email protected]

Measuring Spatial Dependenceamong Maxima

• P. Naveau

Laboratoire des Sciences du Climat et de l’Environnement

IPSL, CNRS, France

• Guillou, A.; Cooley, D.; Diebolt, J.

http://amath.colorado.edu/faculty/naveau/

Page 2: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Outline of the Talk

⇓ ↓ ↑ ⇑ [email protected] 2

1. Motivations

2. Maxima distribution

3. Geostatistics

4. Estimation

Page 3: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Spatial Statistics for Extremes

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 3

10 20 30 40

1020

3040

x

y

−1

01

23

How to describe the

spatial dependence as

a function of the

distance between two

points?

Page 4: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Spatial Statistics for Extremes

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 4

● ●

●●

●●

●●

10 20 30 40

010

2030

40

x

y

How to perform

spatial interpolation

for extreme events?

Page 5: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Spatial Statistics for Extremes

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 5

A few Approaches for modeling spatial extremes

Max-stable processes: Adapting asymptotic results for multivariate ex-

tremes

Schlather & Tawn (2003), Naveau et al. (2007), de Haan & Pereira (2005)

Bayesian or latent models: spatial structure indirectly modeled via the

EVT parameters distribution

Coles & Tawn (1996), Cooley et al. (2005)

Linear filtering: Auto-Regressive spatio-temporal heavy tailed processes,

Davis and Mikosch (2007)

Gaussian anamorphosis: Transforming the field into a Gaussian one

Wackernagel (2003)

Page 6: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Univariate case for Maxima

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 6

Convergence of sample maxima

Normal density ⇒

Uniform density ⇒

Cauchy density ⇒

⇐ Gumbel density

⇐ Weibull density

⇐ Frechet density

n = 50 n = 100

Page 7: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Assumptions

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 7

Suppose we know the marginal distributions of maxima M(x) with

M(x) = the maximum recorded at the location x from a stationary and

isotropic field.

Without loss of generality, we first assume that the margins follow an

unit Frechet

F (u) = P[M(x) ≤ u] = exp(−1/u)

Page 8: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

A central question

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 8

For large n

P [Mn(x) < u, Mn(x + h) < v] = ??

Page 9: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Bivariate case for Maxima

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 9

Asymptotic theory

If one assumes that we have unit Frechet margins then

limn→∞P

[Mn(x)− an

bn6 u,

Mn(x + h)− an

bn6 v

]= exp [−Vh(u, v)]

where

Vh(u, v) = 2∫ 1

0max

(w

u,1− w

v

)dLh(w)

with Lh(.) a distribution function on [0,1] such that∫ 10 w dLh(w) = 0.5.

Page 10: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Bivariate case (M(x), M(x + h))

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 10

Complex non-parametric structure

Vh(u, v) = 2∫ 1

0max

(w

u,1− w

v

)dLh(w)

Special case u = v

Note Vh(u, u) = Vh(1,1)/u

Notations: θ(h) := Vh(1,1)

P [M(x) < u, M(x + h) < u] = exp(−θ(h)/u)

= F (u)θ(h)

because F (u) = exp(−1/u)

Page 11: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

θ(h) = Extremal coefficient

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 11

P [M(x) < u, M(x + h) < u] = F (u)θ(h)

Interpretation

Independence ⇒ θ(h) = 2M(x) = M(x + h) ⇒ θ(h) = 1Similar to correlation coefficients for Gaussian but ...No characterization of the full bivariate dependence

Page 12: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

An important question

Vh(u, v) = 2∫ 10 max

(wu , 1−w

v

)dLh(w) 12

(1) How to estimate θ(h)?

Page 13: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Geostatistics: Variograms

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 13

γ(h) = 12E|Z(x + h)− Z(x)|2

●●

● ●

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

distance

sem

ivar

ianc

e

Finite if light tails

Capture all spatial

structure if {Z(x)}

Gaussian fields

but not well adapted

for extremes

Page 14: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

A Different Variogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 14

|F (M(x + h))− F (M(x))|with F (u) = exp(−1/u)

Page 15: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

A Different Variogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 15

νh =1

2E |F (M(x + h))− F (M(x))|

with F (u) = exp(−1/u)

Defined for light & heavy tails

Called a Madogram

Nice links with extreme value theory

Page 16: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

A Different Variogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 16

νh =1

2E |F (M(x + h))− F (M(x))|

Why does it work?

1

2|a− b| = max(a, b)−

1

2(a + b)

a = F (M(x + h)) and b = F (M(x))

Ea = Eb = 1/2

Emax(a, b) = EF (max(M(x + h), M(x)︸ ︷︷ ︸max-stable

)) =θ(h)

1 + θ(h)

Page 17: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Madogram νh ⇒ Extremal coeff θ(h)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 17

θ(h) =1 + 2νh

1− 2νh

The madogram νh gives the extremal coefficient θ(h)

Page 18: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Comparisons with other estimators

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 18

Gumbel (1960)

P (X ≤ x, Y ≤ y) = exp

−(1

x

)1α+

(1

y

)1α

α

Four estimators

- Pickands’ estimator (1975)

- Deheuvels’ estimator (1991)

- Hall and Tajvidi’s estimator (2000)

- Caperaa et al. (1997) estimator

Page 19: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Comparisons with other estimators

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 19

α = 0.3 α = 0.7

Page 20: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Schlather’s models (2003)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 20

10 20 30 40

1020

3040

x

y

−1

01

23

θ(h) = 1 +

√1−

1

2(exp(−h/40) + 1)

Page 21: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Madogram νh ⇒ Extremal coeff θ(h)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 21

Schlather’s fields

Madogram Extremal coeff

0.0

0.2

0.4

0.6

0.8

distance

estim

ated

mad

ogra

m

●●

1 4 6 8 10 12 14 16 18 20

●●

●●

●●

●●

●●

1.0

1.2

1.4

1.6

1.8

2.0

distance

thet

aHat

●●

● ●●●●

1 4 6 8 10 12 14 16 18 20

●●

●●

●●

●●

● ●

Page 22: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Smith’s models (2003)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 22

10 20 30 40

1020

3040

x

y

01

23

θ(h) = 2Φ(√

hTΣ−1h/2)

Page 23: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Madogram νh ⇒ Extremal coeff θ(h)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 23

Smith’s fields

Madogram Extremal coeff

0.0

0.2

0.4

0.6

0.8

1.0

distance

estim

ated

mad

ogra

m

1 4 6 8 10 12 14 16 18 20

●●

●●

●●

1.0

1.2

1.4

1.6

1.8

2.0

distance

thet

aHat

1 4 6 8 10 12 14 16 18 20

●●

Page 24: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Building valid Extremal coeff

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 24

Proposition A

Any extremal coefficient function θ(h) is such that 2 − θ(h) is positive

semi-definite.

Proposition B

Any extremal coefficient function θ(h) satisfies the following inequalities

θ(h + k) ≤ θ(h)θ(k),

θ(h + k)τ ≤ θ(h)τ + θ(k)τ − 1, for all 0 ≤ τ ≤ 1,

θ(h + k)τ ≥ θ(h)τ + θ(k)τ − 1, for all τ ≤ 0.

Page 25: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

An important question

Vh(u, v) = 2∫ 10 max

(wu , 1−w

v

)dLh(w) 25

(1) How to estimate θ(h) = Vh(1,1)? Done!!

(2) How to estimate Vh(u, v)?

Note:

Because Vh(u, v) = Vh(u/(u + v), v/(u + v))/(u + v) is sufficient to only

estimate Vh(λ,1− λ) for λ ∈ [0,1].

Page 26: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Extending the madogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26

νh(λ) =1

2E∣∣∣∣Fλ(M(x + h))− F1−λ(M(x))

∣∣∣∣

Defined for light & heavy tails

Called a λ-Madogram

Nice links with extreme value theory

νh(0) = νh(1) = 0.25

Page 27: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

The λ-madogram

νh(λ) = 12E

∣∣∣Fλ(M(x + h))− F1−λ(M(x))∣∣∣ 27

Page 28: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

A fundamental relationship

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 28

νh(λ) =Vh(λ,1− λ)

1 + Vh(λ,1− λ)− c(λ), with c(λ) =

3

2(1 + λ)(2− λ)

Conversely,

Vh(λ,1− λ) =c(λ) + νh(λ)

1− c(λ)− νh(λ)

Page 29: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Estimation of Vh(u, v)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 29

Suppose that we have T iid years of daily annual maxima fields with un-

known margins.

How to estimate νh(λ) = 12E

∣∣∣Fλ(M(x + h))− F1−λ(M(x))∣∣∣?

A naive estimator

νh(λ) =1

2T

T∑t=1

∣∣∣Fλn,T (Mn,t(x + h))−G1−λ

n,T (Mn,t(x))∣∣∣

with

Fn,T (u) =1

T

T∑t=1

1l{Mn,t(x+h)≤u} and Gn,T (u) =1

T

T∑t=1

1l{Mn,t(x)≤u}

But, the conditions Eνh(0) = Eνh(1) = 0.25 are not satisfied

Page 30: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Estimation of Vh(u, v)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 30

How to estimate νh(λ) = 12E

∣∣∣Fλ(M(x + h))− F1−λ(M(x))∣∣∣?

A modified estimator

νh(λ) =1

2T

T∑t=1

∣∣∣Fλn,T (Mn,t(x + h))−G1−λ

n,T (Mn,t(x))∣∣∣

−λ

2T

T∑t=1

(1− Fλ

n,T (Mn,t(x + h)))

−1− λ

2T

T∑t=1

(1−G1−λ

n,T (Mn,t(x)))

+1

2

1− λ + λ2

(2− λ)(1 + λ)

Page 31: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Simulations: 300 iid Schalther’s fields

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 31

Page 32: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Mean Square Error from simulations

300 iid Schalther’s fields 32

Page 33: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Notations for asymptotic results

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 33

Margins of (X, Y ): unknown continuous margins: F, G

Bivariate distribution H and copula:

H(x, y) = C(F (x), G(y)) and C(u, v) = H

(F←(u), G←(v)

)

φ(H)(u, v) := H

(F←(u), G←(v)

)Bivariate empirical process ZT (u, v):

ZT (u, v) :=√

T

φ(HT )(u, v)− φ(H)(u, v)

with

HT (u, v) =1

T

T∑t=1

1l{Xt≤u,Yt≤v}

Page 34: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Asymptotic properties

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 34

ZT (u, v) =√

T

(φ(HT )(u, v)− φ(H)(u, v)

)Proposition 1. Let (Xt, Yt)t=1,...,T be a sample of T bivariate random

vectors with df H, continuous margins F and G, and with its associ-

ated copula C whose partial derivatives are continuous. Then, the pro-

cess {ZT (u, v),0 ≤ u, v ≤ 1} converges weakly to the Gaussian process

{NC(u, v),0 ≤ u, v ≤ 1} in `∞([0,1]2) that is defined as

NC(u, v) = BC(u, v)− BC(u,1)∂C

∂u(u, v)− BC(1, v)

∂C

∂v(u, v),

where BC is a Brownian bridge on [0,1]2 with covariance function

E[BC(u, v) · BC(u′, v′)

]= C(u ∧ u′, v ∧ v′)− C(u, v) · C(u′, v′)

Page 35: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Convergence of the λ−madogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 35

(X1, Y1), ..., (XT , YT ) T bivariate rv with unknown margins F and G

νT (λ) :=1

2T

T∑t=1

∣∣∣∣(FT (Xt))λ−(

GT (Yt))1−λ∣∣∣∣

Proposition 2. Under the assumptions of Proposition 1, let J be a function

of bounded variation, continuous. Then, we have

1√T

T∑t=1

J

(FT (Xt), GT (Yt)

)− EJ

(F (X), G(Y )

)d−→

∫[0,1]2

NC(u, v)dJ(u, v)

The special case, J(x, y) := 12|x

λ−y1−λ|, provides the weak convergence of

the λ−madogram estimator

Page 36: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Madogram & EVT

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 36

• (Z(x), Z(x + h))= precip. measurements at two nearby locations(Mn(x), Mn(x + h)

)=(

maxi=1,...,n

Zi(x), maxi=1,...,n

Zi(x + h))

n = recording unit, either hourly, daily or monthly

• Suppose that such bivariate vectors can be computed for a series

of years and that these vectors are assumed to be iid in time

Fn,T (u) =1

T

T∑t=1

1l{Mn,t(x+h)≤u} and Gn,T (u) =1

T

T∑t=1

1l{Mn,t(x)≤u}

νn,T (h, λ) =1

2T

T∑t=1

∣∣∣Fλn,T

(Mn,t(x + h)

)−G1−λ

n,T (Mn,t(x))∣∣∣

Page 37: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Madogram & EVT (cont’d)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 37

Proposition 3. Let (Mn,t(x), Mn,t(x + h)) be a sample of T bivariate vec-

tors with that satisfies the assumptions of Proposition 1 and such that(Mn,t(x)−an

bn,Mn,t(x+h)−an

bn

)converges in distribution to a bivariate EV distri-

bution with an extremal function defined by Vh(., .). Then, we have

√T

(νn,T (h, λ)−

1

2E|Fλ(M(x + h))− F1−λ(M(x))|

)d−→

∫[0,1]2

NC(u, v)dJ(u, v)

where n tends to ∞ as T goes to ∞

Page 38: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

An application: in Bourgogne (Dijon)

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 38

Locations (in Lambert coordinates). Pre-processed 30-year maxima of daily precipitation

Page 39: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

λ−madogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 39

Our estimator of our λ−madogram ν(h, λ)

1

2|Nh|∑

(xi,xj)∈Nh

∣∣∣Fλ(M(xj))− F1−λ(M(xi))∣∣∣+ 1

2

1− λ + λ2

(2− λ)(1 + λ)

−λ

2|Nh|∑

(xi,xj)∈Nh

(1− Fλ(M(xi))

)−

1− λ

2|Nh|∑

(xi,xj)∈Nh

(1− F1−λ(M(xi))

)

where Nh is the set of sample pairs lagged by the distance h.

Page 40: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

λ−madogram

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 40

Estimated λ−madogram for the field of maxima of daily precipitation over 1970-1999

Page 41: Measuring Spatial Dependence among Maxima · 2007. 6. 8. · Extending the madogram ⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 26 νh(λ) = 1 2 E λ F (M(x + h)) −F1−λ(M(x))

Take-home messages

⇓ ↓ ↑ ⇑ Motivations Max Geostat Estimation 41

Fields of maxima 6= Gaussian ones

Spatial structure defined by the function Vh(u, v)

λ−Madogram νh ⇒ dependence function Vh(u, v)

We have proposed and study an estimator νh(λ)

Future research

Develop spatial interpolation methods for maxima

Derive statistical schemes for downscaling for maxima