mỤc lỤc · 2020. 4. 29. · hiỆn thỰc hÓa nỀn kinh tẾ sinh hỌc tuẦn hoÀn ... vai...

46
HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN MỤC LỤC Lời tựa .............................................................................................................................. 1 1. Giới thiệu ......................................................................................................................2 2. Vai trò của vật liệu thải trong nền kinh tế tuần hoàn ..............................................5 2.1. Công nghệ xử lý chất thải bằng phương pháp sinh học thế hệ thứ nhất so với thứ hai ..............6 2.2. Tiến thoái lưỡng nan trong quy trình xử lý chất thải ....................................................6 3. Xử lý rác thải bằng phương pháp sinh học ............................................................... 8 3.1. Chất thải lignocellulose .................................................................................................8 3.2. Chất thải rắn đô thị (MSW) và chất thải thực phẩm .....................................................9 3.3. Chất thải cá ..................................................................................................................10 3.4. Sản xuất nguyên liệu lên men từ khí công nghiệp ......................................................11 3.5. Chất thải nhựa là một vấn đề trong CBE.....................................................................11 4. Một số sáng kiến xử lý chất thải sinh học được lựa chọn ......................................12 4.1. Xử lý sinh học và ủ phân từ chất thải xenlulo ............................................................. 12 4.2. Cht thi thc phẩm và đồ ung..................................................................................14 4.3. Lên men khí .................................................................................................................16 4.4. Xử lý chất thải bằng phương pháp sinh học kỵ khí .....................................................17 4.5. Xử sinh nước thải bằng công nghệ sinh học ............................................................... 18 5. Hiệu suất tài nguyên trong CBE ..............................................................................19 5.1. Khái niệm hiệu suất tài nguyên ...................................................................................19 5.2. Hiệu suất tài nguyên trong công nghiệp ......................................................................20 5.3. Hướng tới đánh giá hiệu suất tài nguyên trong CBE ..................................................21 5.4. Nền kinh tế sinh học hiệu suất tài nguyên: vai trò của việc sử dụng phân tầng sinh khối ............................................................................................................................. 26 6. Cân nhắc chính sách ..................................................................................................29 6.1. Làm rõ các định nghĩa và thuật ngữ ............................................................................30 6.2. Các công cụ quan trọng nhất trong xử lý sinh học chất thải .......................................31 6.3. Điều chỉnh chính sách xử lý chất thải sinh học với mục tiêu bền vững ......................32 6.4. Tài trợ cho công nghệ xử lý sinh học chất thải ........................................................... 36 6.5. Trợ cấp R&D ...............................................................................................................37 6.6. Một sân chơi bình đẳng ............................................................................................... 39 6.7. Các quy định, tiêu chuẩn nhãn cho các sản phẩm dựa trên sinh học liên quan đến hiệu quả tài nguyên .....................................................................................................40 Kết luận .......................................................................................................................... 44

Upload: others

Post on 07-Dec-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN

MỤC LỤC

Lời tựa .............................................................................................................................. 1

1. Giới thiệu ...................................................................................................................... 2

2. Vai trò của vật liệu thải trong nền kinh tế tuần hoàn .............................................. 5

2.1. Công nghệ xử lý chất thải bằng phương pháp sinh học thế hệ thứ nhất so với thứ hai .............. 6

2.2. Tiến thoái lưỡng nan trong quy trình xử lý chất thải .................................................... 6

3. Xử lý rác thải bằng phương pháp sinh học ............................................................... 8

3.1. Chất thải lignocellulose ................................................................................................. 8

3.2. Chất thải rắn đô thị (MSW) và chất thải thực phẩm ..................................................... 9

3.3. Chất thải cá .................................................................................................................. 10

3.4. Sản xuất nguyên liệu lên men từ khí công nghiệp ...................................................... 11

3.5. Chất thải nhựa là một vấn đề trong CBE..................................................................... 11

4. Một số sáng kiến xử lý chất thải sinh học được lựa chọn ...................................... 12

4.1. Xử lý sinh học và ủ phân từ chất thải xenlulo ............................................................. 12

4.2. Chất thải thực phẩm và đồ uống .................................................................................. 14

4.3. Lên men khí ................................................................................................................. 16

4.4. Xử lý chất thải bằng phương pháp sinh học kỵ khí ..................................................... 17

4.5. Xử sinh nước thải bằng công nghệ sinh học ............................................................... 18

5. Hiệu suất tài nguyên trong CBE .............................................................................. 19

5.1. Khái niệm hiệu suất tài nguyên ................................................................................... 19

5.2. Hiệu suất tài nguyên trong công nghiệp ...................................................................... 20

5.3. Hướng tới đánh giá hiệu suất tài nguyên trong CBE .................................................. 21

5.4. Nền kinh tế sinh học hiệu suất tài nguyên: vai trò của việc sử dụng phân tầng sinh

khối ............................................................................................................................. 26

6. Cân nhắc chính sách .................................................................................................. 29

6.1. Làm rõ các định nghĩa và thuật ngữ ............................................................................ 30

6.2. Các công cụ quan trọng nhất trong xử lý sinh học chất thải ....................................... 31

6.3. Điều chỉnh chính sách xử lý chất thải sinh học với mục tiêu bền vững ...................... 32

6.4. Tài trợ cho công nghệ xử lý sinh học chất thải ........................................................... 36

6.5. Trợ cấp R&D ............................................................................................................... 37

6.6. Một sân chơi bình đẳng ............................................................................................... 39

6.7. Các quy định, tiêu chuẩn và nhãn cho các sản phẩm dựa trên sinh học liên quan đến

hiệu quả tài nguyên ..................................................................................................... 40

Kết luận .......................................................................................................................... 44

Page 2: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

1

Lời nói đầu

Khái niệm nền kinh tế tuần hoàn đang được thực hiện ở nhiều nước OECD.

Trong khái niệm này, các vật liệu được duy trì thời gian sử dụng càng lâu càng tốt,

thông qua các hành động như tái chế và tái sản xuất. Sản xuất dựa trên cơ sở sinh

học phù hợp với khái niệm này khi nói đến việc sử dụng dư lượng và chất thải làm

nguyên liệu cho quá trình xử lý sinh học. Đặc biệt, hiệu suất tài nguyên trong sản

xuất đã mang lại những lợi ích chắc chắn.

Nền kinh tế sinh học có trước cuộc cách mạng công nghiệp đầu tiên. Khi chưa

có tài nguyên hóa thạch, con người sống nhờ vào tài nguyên đất. Tuy nhiên, vào thời

điểm đó (giữa những năm 1700), dân số thế giới là khoảng 700 triệu người, và cuộc

cách mạng công nghiệp đã khiến lực lượng lao động gia tăng nhanh chóng. Đến năm

1800, dân số đạt 1 tỷ người. Thời gian đầu của cuộc cách mạng công nghiệp lần thứ

tư, việc quay trở lại nền kinh tế sinh học trở nên cực kỳ phức tạp bởi dân số đã tăng

gấp bảy lần so với năm 1800. Mặc dù tình trạng thiếu hụt dầu, khí không xảy ra,

nhưng sự gia tăng dân số là nguyên nhân dẫn đến hình thành một vòng xoáy cạn kiệt

tài nguyên cần được giải quyết. Nguồn thay thế khả thi duy nhất cho cacbon là năng

lượng tái tạo. Đó là mục tiêu định hướng của nhiều chính sách kinh tế sinh học -

chuyển đổi sang sản xuất và dịch vụ dựa trên nền tảng sinh khối.

Tương tự, những nỗ lực nhằm giảm thiểu và tái chế chất thải tuy đã được thực

hiện trong nhiều thập kỷ, nhưng không tác động đến áp lực đối với tài nguyên thiên

nhiên. Nền kinh tế tuần hoàn dự kiến sẽ chấm dứt việc “lấy, làm, bỏ” theo kiểu

tuyến tính để giữ cho tài nguyên được tuần hoàn càng lâu càng tốt thông qua việc tái

sử dụng, tái chế, tái sản xuất và giảm thiểu chất thải.

Sinh học không tạo chất thải và thường mang tính tuần hoàn - con đường trao

đổi chất tuần hoàn, chu trình của nitơ, cacbon, phốt pho, thậm chí cả chu kỳ sự sống

và cái chết là vĩnh viễn. Tuy nhiên, việc kết hợp kỹ thuật với công nghệ sinh học để

tạo ra các vật liệu sinh học như nhiên liệu, hóa chất, nhựa và vải vóc có thể - nhưng

không nhất thiết - mang tính tuần hoàn. Cục Thông tin khoa học và công nghệ quốc

gia thực hiện tổng luận này cố gắng chỉ ra cách thức kết hợp giữa khái niệm kinh tế

sinh học và kinh tế tuần hoàn được thực hiện để tạo ra tương lai bền vững hơn. Trên

lộn trình này có nhiều vấn đề chính sách, các chính sách vừa thúc đẩy thay đổi cũng

như loại bỏ các rào cản để thay đổi.

Xin trân trọng giới thiệu.

CỤC THÔNG TIN KHOA HỌC VÀ

CÔNG NGHỆ QUỐC GIA

Page 3: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

2

1. Giới thiệu

Đầu tiên là nền kinh tế sinh học và sau đó là nền kinh tế tuần hoàn đã có được

sức hút chính trị trong thập kỷ thứ hai của thế kỷ này. Mặc dù có những điểm tương

đồng về khái niệm, nhưng xét về ý nghĩa xã hội sâu rộng và lâu dài của hai nền kinh

tế, mâu thuẫn chính sách có khả năng xảy ra, gây lãng phí tiền bạc và thời gian để

khắc phục.

OECD năm 2009 đã mô tả nền kinh tế sinh học là “tập hợp các hoạt động kinh

tế, trong đó công nghệ sinh học đóng góp chủ yếu vào sản xuất sơ cấp và công

nghiệp, đặc biệt là khoa học đời sống tiên tiến được ứng dụng trong chuyển đổi sinh

khối thành vật liệu, hóa chất và nhiên liệu”. Khái niệm được mở rộng cũng đồng

nghĩa với việc có nhiều cách giải thích, lý giải khác nhau.

Để kinh tế sinh học đạt hiệu quả, cần thiết phải huy động một lượng lớn sinh

khối từ nhiều nguồn tài nguyên, bao gồm cả các loại vật liệu hiện được coi là chất

thải (ví dụ như phế thải nông lâm nghiệp và thành phần hữu cơ trong rác thải sinh

hoạt). Mục tiêu chính là thay thế dần sản xuất dựa trên nguyên/ nhiên liệu hóa thạch

bằng sản xuất dựa trên nền tảng sinh học, và do đó, cần đảm bảo lợi ích kinh tế, môi

trường và xã hội và đảm bảo tương lai dựa trên sản xuất bền vững.

Trong khái niệm nền kinh tế tuần hoàn, mô hình sản xuất tuyến tính (“lấy, làm

và bỏ”) được thay thế bằng mô hình tuần hoàn, trong đó các sản phẩm thải bị bỏ đi

trong mô hình tuyến tính sẽ được giữ lại trong hệ thống, nhờ đó vật liệu thải được

giảm mạnh và các chất thải được tái chế và tái sản xuất.

Do đó có sự giao thoa rõ ràng giữa hai khái niệm, đó là: lượng chất thải sẽ

giảm mạnh nhờ sử dụng vật liệu thải trong sản xuất dựa trên công nghệ sinh học trên

quy mô toàn cầu. Đây là chủ đề trọng tâm của nền kinh tế sinh học tuần hoàn (CBE).

Các tác động rõ ràng nhắm vào phần cốt lõi của nền kinh tế.Các chuỗi cung ứng và

giá trị, thay vì bắt nguồn từ các nguồn nguyên liệu hóa thạch, tiếp đó là vận chuyển

qua các đại dương, có cơ hội được phát triển ở phạm vi cục bộ hơn. Điều này góp

phần tạo ra nhiều việc làm gắn liền hơn với nguyên liệu: đặc biệt đây là cơ hội để

giải quyết mục tiêu chính sách của tái tạo nông thôn. Nhưng điều này sẽ tạo ra nhu

cầu hình thành một thế hệ các công ty sản xuất, NC&PT mới gần như đang hoàn

toàn biến mất hiện nay. Từ đó, yêu cầu về các kỹ năng mới, đào tạo và giáo dục trên

quy mô lớn được đặt ra và ngành giáo dục đại học sẽ cần phải được điều chỉnh để

đáp ứng những yêu cầu này. Chỉ riêng ở Hà Lan, dự kiến sẽ cần 10.000 chuyên gia

công nghệ sinh học trong tám năm tới.

Các bên liên quan chủ chốt và công chúng chủ yếu sẽ cần phải tham gia liên

tục vào các quá trình chuyển đổi này. Vì chi phí cho sản xuất dựa trên sinh học

thường vẫn cao hơn so với sản xuất dựa trên hóa thạch, nên các chính phủ cần phải

Page 4: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

3

kêu gọi sự tham gia của người dân một cách rõ ràng về cách thức thực hiện CBE

hiệu quả nhất để tiến tới các mục tiêu bền vững quan trọng. Điều này đặc biệt quan

trọng khi các mục tiêu chính sách dự kiến sẽ giải quyết một số thách thức lớn nhất

mà nhân loại đang phải đối mặt, ví dụ: biến đổi khí hậu, an ninh lương thực và năng

lượng. Những thách thức lớn này diễn biến rất phức tạp bởi thực tế là chúng tương

tác với nhau theo những cách không rõ ràng, điều này sẽ tạo ra sự kết năng và mâu

thuẫn chính sách. Những thách thức được xem như là một hệ sinh thái thách thức

lớn, theo đó các giải pháp tiềm năng giải quyết một thách thức có thể dẫn đến những

tác động tích cực hoặc tiêu cực.

Bất cứ khi nào có sự can thiệp của con người vào một hệ thống, từ mức độ cơ

sở đến toàn bộ cộng đồng, cho đến toàn cầu, đều có sự tương tác với các thành phần

khác của hệ thống và hậu quả mới. “Hành vi” của các thách thức lớn này là giả định

các đặc điểm của một hệ sinh thái: sự can thiệp vào một địa điểm dẫn đến những

thay đổi không những ở đó mà còn ở những nơi khác. Cuối cùng, mục tiêu là tương

tác các giải pháp để từ đó tương tác với những thách thức lớn. Điều này đòi hỏi

nghiên cứu đa ngành và đổi mới hệ thống. Bảng 1 dưới đây đưa ra ví dụ về một số

kết năng và mâu thuẫn chính sách tiềm tàng.

Bảng 1. Những kết năng và mâu thuẫn chính sách kinh tế tuần hoàn và kinh tế sinh học tiềm

tàng

Địa điểm Chính sách kinh

tế sinh học quan

trọng

Chính sách kinh

tế tuần hoàn

quan trọng

Kết năng và xung đột

EU Chỉ thị năng

lượng tái tạo

(Hiện tại: EC,

2009; Viết lại

Sau 2020: EC,

2017c )

Chiến lược kinh

tế sinh học (EC,

2012)

Kế hoạch hành

động EU đối với

kinh tế tuần

hoàn (EC,

2015)

Kế hoạch hành động cho nền kinh tế tuần

hoàn và chiến lược kinh tế sinh học phù hợp

trong việc thúc đẩy việc sử dụng phân tầng

sinh khối, trong đó ưu tiên sử dụng vật liệu

sinh khối hơn so với sử dụng năng lượng.

Tuy nhiên, cả chỉ thị năng lượng tái tạo hiện

tại và sau 2020 đều không đặt ra một hạn

chế có hệ thống đối với việc sử dụng trực

tiếp sinh khối cho các mục đích năng lượng,

bên cạnh tính bền vững và tiêu chí truy xuất

nguồn gốc.

Đan

Mạch

Khung kinh tế

sinh học quốc

gia 2014

Chiến lược

ngăn chặn chất

thải (chính phủ

Đan mạch

2015)

Đi tiên phong trong nền kinh tế tuần hoàn và

cộng sinh công nghiệp từ năm 1972

(Kalundborg), Đan Mạch đặt mục tiêu tái chế

50% chất thải sinh hoạt vào năm 2022.

Khung kinh tế sinh học công nhận rằng pháp

luậtchất thải hiện tại có thể cản trở việc tận

dụng chất thải để sản xuất năng lượng (ví

dụ: bùn, MSW).

Page 5: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

4

Phần Lan Chiến lược kinh

tế sinh học quốc

gia 2014

Chương trình

chiến lược (EC

2017b)

Phần Lan hướng tới mục tiêu thúc đẩy mạnh

mẽ việc triển khai chung các chiến lược cho

kinh tế sinh học và kinh tế tuần hoàn (thông

qua sử dụng phân tầng gỗ làm vật liệu và sử

dụng năng lượng) theo cách thức tối ưu.

Thụy

Điển

Chiến lược

nghiên cứu và

đổi mới đối với

nền kinh tế nền

tảng sinh học

2012

Chiến lược tiêu

thụ bền vững

(Văn phòng

chính phủ Thụy

Điển 2016)

Những nỗ lực đáng kể được thực hiện để

khử cacbon trong nền kinh tế Thụy Điển

thông qua sinh khối (ví dụ: nhiên liệu sinh

học), được kết hợp chặt chẽ trong một chiến

lược cấp cao hơn để giảm tiêu thụ tài

nguyên thông qua tái sử dụng và tái chế.

Italia Chiến lược kinh

tế sinh học 2016

Mô hình kinh tế

tuần hoàn hiện

đang được

tham vấn

Chiến lược kinh tế sinh học bao gồm mục

tiêu chuyển từ sử dụng nhiên liệu hóa thạch

sang tài nguyên tái tạo, nhưng cũng đề cập

đến vấn đề "giữ chất thải sinh học” và tính

tuần hoàn. Tài liệu mô hình kinh tế tuần

hoàn nhấn mạnh về sự cần thiết phải dành

tài nguyên chất thải để sản xuất nhiên liệu

sinh học tiên tiến.

Scốt-len Lộ trình nhà máy

sinh học cho

Scốt-len (doanh

nghiệp Scốt-len

2015)

Chiến lược cho

nền kinh tế tuần

hoàn 2016

Scốt-len đã xây dựng một cách tiếp cận tích

hợp trong đó tối đa sử dụng tài nguyên sinh

học thông qua các nhà máy sinh học. Vật

liệu và hóa chất có nguồn gốc từ sinh khôi

được ưu tiên cho tái tạo năng lượng.

Trung

Quốc

Kế hoạch năm

2012 đối với

Phát triển công

nghiệp sinh học

(UB kinh tế sinh

học Đức 2015)

Kế hoạch 5 năm

lần thứ 13

(2016-2020)

Luật thúc đẩy

kinh tế tuần

hoàn năm 2009

(diễn đàn kinh

tế thế giới

2014)

Trung Quốc có một chiến lược đầy hoài bão,

tham vọng để đương đầu với những thách

thức quản lý chất thải và tối ưu hóa tài

nguyên. Việc loại bỏ cacbon của nền kinh tế

cũng là một phần của kế hoạch 5 năm,xây

dựng dựa trên tài nguyên sinh khối để thay

thế vật liệu và nguồn năng lượng hóa thạch.

Bra-xin Luật đổi mới

năm 2005

Chính sách

quốc gia về

chất thải rắn

năm 2010

Brazil có một lịch sử lâu dài về nền kinh tế

sinh học với tiên phong là chương trình

Proalcool vào những năm 1970. Hiện tại

không có chính sách liên bang nào quy định

chiến lược kinh tế tuần hoàn, nhưng rất

nhiều sáng kiến khu vực và tư nhân xem xét

tối ưu hóa tài nguyên và hậu cần nghịch

đảo.

Tây Ban

Nha

Chiến lược quốc

gia về kinh tế

sinh học 2016

Tuần hoàn Tây

Ban nhanăm

2030, Bản thảo

Kinh tế sinh học được coi là một công cụ

cho kinh tế tuần hoàn ở Tây Ban Nha, đặc

biệt là đối với mục đích sử dụng chất thải

sinh học và phế thải. Kế hoạch hành động

hàng năm của kinh tế sinh học là một biện

pháp đề xuất trong Chiến lược kinh tế tuần

hoàn

Page 6: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

5

Nghiên cứu này nhằm tóm tắt điểm giao của hai khái niệm kinh tế chính này

để cho thấy cách chúng có thể kêt hợp với nhau để biểu thị một cách tiếp cận thống

nhất để phát triển tính bền vững trong lĩnh vực chính sách hoạt động. Cả nhóm chính

sách kinh tế sinh học và kinh tế tuần hoàn cần kết nối chặt chẽ với nhau để xây dựng

chính sách mạch lạc nhằm tối đa hóa hiệu quả và giảm thiểu mâu thuẫn. Điều khiến

cho sản xuất sinh học khác với một số hoạt động của nền kinh tế tuần hoàn là nó tập

trung vào giá trị gia tăng. Có nghĩa là tạo ra một hóa chất đặc biệt có giá trị cao từ

chất thải với tái chế đơn giản.

2. Vai trò của vật liệu thải trong nền kinh tế tuần hoàn

Chất thải được coi là vấn đề cốt lõi của chính sách CBE. Trong khi nền kinh tế

tuần hoàn dự kiến sẽ thực hiện giảm thiểu chất thải trong thời gian dài, thì trong nền

kinh tế sinh học, chất thải hữu cơ được sử dụng làm nguyên liệu cho sản xuất dựa

trên nền tảng sinh học (hiện tại và về lâu dài). Điều này không những giúp giải quyết

vấn đề chất thải mà còn tạo ra giá trị gia tăng ở các mức độ khác nhau (mức độ cao

đối với sản phẩm khối lượng nhỏ, giá trị cao như hóa chất đặc biệt, mức độ thấp hơn

đối với nhiên liệu vận tải lỏng khối lượng lớn). Các vấn đề môi trường và kinh tế

cùng được giải quyết phải được coi là một đặc tínhxác định của CBE. Hơn nữa, các

vấn đề xã hội được giải quyết thông qua hỗ trợ tạo việc làm trong cơ cấu CBE - nhà

máy xử lý sinh học hoặc nhà máy sản xuất sinh học.

Nhà máy xử lý sinh học là biểu hiện trung tâm của kinh tế sinh học, có thể là

một cơ sở độc lập chuyên sản xuất sản phẩm riêng lẻ (chẳng hạn như các nhà máy

ethanol thế hệ đầu tiên) hoặc nhiều cơ sở phức tạp tại một khu phức hợp sản xuất

nhiều sản phẩm hơn (điển hình là khái niệm nhà máy xử lý sinh học tích hợp). Có

nhiều loại mô hình cơ sở sản xuất khác nhau và ngày càng có nhiều mô hình được

mở rộng theo thời gian.

Đặc điểm của nhà máy xử lý sinh học cũng phù hợp với khái niệm nền kinh tế

tuần hoàn, đặc biệt là nhà máy sinh học xử lý “chất thải sinh học” sử dụng chất thải

hoặc phế liệu để làm nguyên liệu. Tuy nhiên, bản chất của sự phù hợp này không dễ

nhận thấy. Việc sử dụng các vật liệu như vậy rõ ràng không được coi là phương

pháp tái chế điển hình, tái sử dụng hoặc tái sản xuất truyền thống, vì quá trình xử lý

chất thải bằng phương pháp sinh học tạo ra các vật liệu "nguyên bản" có giá trị gia

tăng từ các nguồn chất thải. Việc tạo ra giá trị này giúp phân biệt xử lý sinh học chất

thải với thực hành quản lý chất thải tiêu chuẩn, và do đó rất khó để đặt nó trong hệ

thống phân cấp quản lý chất thải. Nó nhấn mạnh sự cần thiết phải xác định lại các

vật liệu làm nguyên liệu thô thứ cấp để tránh vi phạm quy định quản lý chất thải.

Page 7: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

6

Hiệu quả tài nguyên là trung tâm của kinh tế sinh học. Tranh cãi về thực phẩm

và nhiên liệu nảy sinh trong thập kỷ đầu tiên của thế kỷ này đã thúc đẩy tiến tới R &

D nhà máy sinh học xenlulo và sử dụng đồng thời các chất thải được nêu ở trên.

Giảm phát thải GHG hiện đã được coi là hiệu quả tài nguyên. Nó cũng nói về các

vấn đề rộng lớn hơn nhiều về tính bền vững sinh khối, liên quan đến lượng sinh khối

có thể được sử dụng mà không làm giảm tính bền vững của tài nguyên. Do đó, các

động lực chính cho kinh tế sinh học có liên quan trực tiếp đến hiệu quả tài nguyên.

2.1. Công nghệ xử lý sinh học thế hệ thứ nhất so với thứ hai

Phần lớn các nhà máy xử lý sinh học hiện có trên thế giới là các nhà máy

ethanol thế hệ đầu tiên sử dụng cây lương thực làm nguyên liệu. Vấn đề này đã được

giải quyết trong những dự án khác và không phải là trọng tâm của các dự án hiện tại

về CBE của OECD. Thay vào đó, xử lý sinh học chất thải trong bối cảnh hiện tại cần

tập trung vào xử lý sinh học chất thải thế hệ thứ hai, trong đó nguyên liệu bao gồm

các nguồn nguyên liệu phi thực phẩm (tái tạo hoặc không tái tạo), chúng thường sẽ

là các vật liệu thải. Theo lý thuyết, cùng với dư lượng nông nghiệp và lâm nghiệp,

nó được xem là một nguồn nguyên liệu lớn và tiềm năng.

Tuy nhiên, việc không bao gồm nhà máy xử lý sinh học thế hệ đầu tiên ở đây

không có nghĩa rằng chúng không có tính bền vững hoặc tuần hoàn. Trên thực tế, xử

lý sinh học cây lương thực có thể vượt qua nhiều tiêu chí khi xem xét tính bền vững.

Đặc biệt, hiệu quả sử dụng đất đai trồng một số cây lương thực như củ cải đường,

trong khi giảm phát thải GHG đã được chứng minh ở mức cực kỳ cao, điều này có

nghĩa là việc loại trừ những tiêu chí này ra khỏi chính sách quốc gia không phải lúc

nào cũng được bảo đảm. Yếu tố chính để áp dụng trong chiến lược quốc gia là tuân

thủ các tiêu chí về tính bền vững và việc sử dụng cây lương thực theo cách này

không làm ảnh hưởng đến vấn đề an ninh lương thực.

Lý do chính đáng giải thích cho việc này là nó tìm ra lối thoát khác cho nông

dân và các loại nông sản. Đối mặt với tình trạng rớt giá và/hoặc giá cả biến động của

cây lương thực, phương pháp xử lý sinh học thế hệ đầu tiên mang đến cho người

nông dân niềm tin chắc chắn hằng năm rằng có một cách thay thế để tiếp thị sản

phẩm của họ, giúp giảm rủi ro đầu tư nông nghiệp trong tương lai.

2.2. Khó khăn trongxử lý chôn lấp chất thải

Tại nhiều nước trên thế giới đã từng diễn ra phong trào giảm thiểu lượng rác

thải chôn lấp thông qua việc thực hiện các biện pháp can thiệp chính sách như thuế

chôn lấp rác thải, nhờ đó biện pháp chôn lấp chất thải trở thành một lựa chọn ít phổ

biến hơn trong quản lý rác thải. Ở hầu hết các quốc gia, việc tìm các địa điểm phù

hợp để sử dụng cho mục đích chôn lấp rác thải ngày càng trở nên khó khăn hơn.

Ngay cả ở Úc – quốc gia có diện tích đất đai rộng lớn và dân số thấp, vẫn xảy ra tình

Page 8: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

7

trạng khan hiếm nguồn cung cấp bãi chôn lấp rác thải và cần phải sử dụng một cách

dè xẻn, thận trọng. Ở đất nước có điều kiện hoàn toàn đối lập với Úc như Nhật Bản

với diện tích đất đai hạn chế và mật độ dân số cao, việc xây dựng các cơ sở xử lý rác

thải như các bãi chôn lấp không dễ nhận được sự chấp thuận từ người dân do áp lực

ngày một gia tăng đối với việc sử dụng đất và mối lo ngại ngày càng lớn về vấn đề

bảo vệ môi trường và sức khỏe của con người. Nước Anh cũng đang gặp phải tình

trạng thiếu bãi chôn lấp ở mức độ trầm trọng, ngoài ra, lượng rác thải còn tồn đọng

lại đang được vận chuyển tới các địa điểm xa hơn có công suất chôn lấp rác thải lớn.

Trong khi đó, việc tăng cường khai thác các điạ điểm chôn lấp rác cũ đang được

xem xét một cách nghiêm túc, trong đó, khoảng nửa triệu Euro đã được sử dụng cho

mục đích phục hồi tài nguyên.

Kể từ những năm 1980, hơn ba phần tư số lượng các bãi chôn lấp ở Mỹ đã

đóng cửa, trong khi lượng rác thải ngày một tăng lên. Lượng rác thải của Chicago

hiện nay tăng hơn 300% so với giai đoạn đầu những năm 1980, các bãi chôn lấp rác

hiện tại đều được đặt ở những khu vực xa thành phố. Trên toàn nước Mỹ, lượng rác

thải đã tăng khoảng 65%, hơn một nửa trong số đó vẫn đang trong quá trình được xử

lý chôn lấp. Thống kê trong năm 2013 cho thấy, tuổi thọ bãi rác trên toàn phạm vi

bang Illinois là 21 năm. Ở Chicago, con số này chưa đến 10 năm. Từ năm 1997, bốn

trong số các quận của thành phố New York đã chuyển MSW (chất thải rắn đô thị)

theo đường bộ hoặc đường sắt đến các bãi chôn lấp rác ở xa như Ohio,

Pennsylvania, South Carolina và Virginia. Trong khi đó, Tiểu bang New York đã

đưa MSW từ New England và Canada đến các bãi chôn lấp ở ngoại ô.

Tại EU, lĩnh vực quản lý và tái chế chất thải có tốc độ phát triển cao, sử dụng

nhiều lao động và cung cấp từ 1,2 đến 1,5 triệu việc làm. Tuy nhiên, lượng rác thải

vẫn tiếp tục gia tăng. Trong khi một số quốc gia chôn lấp rác 100%, thì ở một số

quốc gia khác không xử lý chôn lấp. Nhìn chung, dữ liệu châu Âu cho thấy các ưu

tiên xử lý chất thải đã thay đổi trong thập kỷ qua, với việc ngày càng nhiều chất thải

được sử dụng để sản xuất năng lượng hoặc tái chế. Chôn lấp vẫn là phương pháp xử

lý rác thải chính tại một nửa số nước công nghiệp phát triển (OECD).

Trong khi đó, việc xây dựng bãi chôn lấp mới là hình thức ít phổ biến nhất mà

một đô thị phải thực hiện. Các vấn đề quy định phức tạp vốn có của quá trình chôn

lấp gồm có: hạn chế trong việc chọn địa điểm chôn lấp rác ở các vùng đồng bằng

ngập nước, vùng đất ngập nước; bảo vệ các loài có nguy cơ tuyệt chủng; bảo vệ

nguồn nước bề mặt; bảo vệ nguồn nước ngầm; kiểm soát bệnh và véc tơ gây bệnh

(loài gặm nhấm, chim, côn trùng); cấm đốt lửa ngoài trời; kiểm soát khí metan dễ

cháy nổ; phòng chống cháy thông qua việc sử dụng vật liệu phủ; phòng chống các

Page 9: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

8

sự cố va chạm với chim đối với máy bay; yêu cầu đối với việc đóng cửa và sau đóng

cửa bãi chôn lấp. Từ một số phương diện, vấn đề giảm thiểu lượng vật liệu chôn lấp

liên tục đối mặt với áp lực. Một số loại MSW, nếu có thể phân loại, có thể được xử

lý theo phương pháp sinh học.

Ngoài ra,, một số động lực thúc đẩy chính sách mạnh mẽ chẳng hạn như “Chỉ

thị chôn lấp rác” ở EU, Chỉ thị 99/31/EC, giới hạn lượng chất thải phân hủy sinh học

(chất thải nhà bếp và chất thải tương tự, bao gồm cả giấy) có thể được chôn lấp.

Việc vận chuyển chất thải hữu cơ đến các bãi chôn lấp không được khuyến khích

thông qua hình thức thuế chôn lấp. Một số tiểu bang Hoa Kỳ bao gồm Connecticut,

Vermont, California và Massachusetts đang thông qua quy định nhằm thúc đẩy phân

loại chất thải hữu cơ, (dần dần) tạo ra áp lực pháp lý để áp dụng các công nghệ

chuyển đổi khác. Trong thập kỷ qua, Nhật Bản đã chuyển từ chính sách quản lý chất

thải sang phương pháp quản lý tích hợp vật liệu và chất thải nhằm thúc đẩy quá trình

tăng hiệu suất tài nguyên. Sự thiếu hụt các địa điểm xử lý chất thải và phụ thuộc vào

nguồn tài nguyên thiên nhiên là những động lực chính cho những thay đổi này.

3. Xử lý rác thải bằng phương pháp sinh học

3.1. Chất thải lignocellulose

Xét về mặt lý thuyết, lượng chất thải rắn, lỏng và khí có sẵn trong tự nhiên có

thể mang lại giá trị là vô cùng lớn, nhưng trong thực tế, điều này lại bị hạn chế vì

nhiều lý do. Điển hình như việc thu gom rơm rạ hoặc tàn dư cây trồng có thể không

có ý nghĩa đối với những người nông dân hoặc chủ rừng, do đó cần phải được

khuyến khích. Chất thải rắn đô thị chứa rất nhiều vật liệu lên men, nhưng chúng

thường bị trộn lẫn với các vật liệu không lên men. Khí thải công nghiệp tồn tại rất

nhiều và thường ở dạng tương đối tinh khiết, nhưng việc nuôi cấy vi sinh vật phục

vụ cho quá trình lên men khí chưa được nhận thức đầy đủ, và có rất ít cơ chế khuyến

khích cho các công ty thu giữ khí thải.

Rõ ràng có một lượng lớn chất thải có thể được sử dụng làm nguyên liệu,

nhưng cần phải có ý chí chính trị để khuyến khích thu gom chất thải. Ví dụ, lượng

rơm rạ có sẵn ở châu Á là hơn nửa tỷ tấn thường xuyên bị xử lý bằng cách đốt cháy.

Xử lý sinh học rơm rạ thay cho đốt cháy sẽ làm giảm GHG và các khí thải khác.

Ở Mỹ, nút thắt trong sản xuất sinh học xảy ra do nhiều yếu tố như chi phí tài

nguyên sinh khối cao, tính chất bền vững của các nguyên liệu lignoxenluloza, chi

phí sử dụng enzyme hoặc hóa chất để phân tích sinh khối cao và yêu cầu cho các

quy trình xử lý sinh học tối ưu cho phạm vi nguyên liệu rộng hơn. Bộ Nông nghiệp

Mỹ (USDA) đã và đang giải quyết yêu cầu đó đối với các nguyên liệu mới (Hộp 1),

Page 10: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

9

đồng thời, giúp duy trì và phát triển ngành công nghiệp ethanol và diesel sinh học

thế hệ đầu tiên.

Hộp 1. Nhu cầu sử dụng các nguyên liệu mới ở Mỹ: các sáng kiến của USDA

Để giải quyết các yếu tố nút thắt của sản xuất sinh học, Bộ Nông nghiệp Hoa Kỳ (USDA) đã lập

ra 5 Trung tâm Nghiên cứu Sinh khối Khu vực. Một ưu thế của chương trình này là nó cung

cấp ưu đãi cho các nhà nghiên cứu thực địa, tối ưu hóa cây trồng làm nguyên liệu cho nhiên

liệu sinh học, để hợp tác chặt chẽ với các nhà nghiên cứu phát triển công nghệ nhà máy sinh

học. Khi ngành này phát triển, trọng tâm đã chuyển từ sản xuất etanol từ ngô và các loại ngũ

cốc sang sản xuất etanol xenlulo, và giờ đây hướng tới phát triển các quy trình tích hợp sản

xuất các sản phẩm thay thế cho sản phẩm dầu mỏ. Các công nghệ sản xuất nhiên liệu sinh

học tiên tiến như n-butanol, dầu sinh học nhiệt phân, hydroxymethylfurfural, khí sinh học hóa

lỏng và thậm chí hydro (sinh học) đã được phát triển và có khả năng thương mại hóa.

Tuy nhiên, cần lưu ý rằng, ngành công nghiệp sản xuất ethanol từ ngô là một ngành trị giá hàng

tỷ đô la, đáng để nghiên cứu theo hướng làm cho nó hoạt động hiệu quả nhất có thể. Ngành

công nghiệp này đã đóng góp 44 tỷ USD vào GDP của Mỹ và đóng thuế 10 tỷ USD. Chiến lược

nhằm cuối cùng đạt được các mục tiêu Tiêu chuẩn Nhiên liệu tái tạo là thực hiện cải tiến từng

bước trong các khái niệm nhà máy sinh học hiện có. Những cải tiến này phải bao gồm một

chiến lược khu vực đủ linh hoạt để sử dụng nguồn cacbon tái tạo rẻ nhất trong một khu vực

nhất định. Ví dụ, tính linh hoạt này thể hiện thông qua việc sử dụng cây cao lương, cỏ kê, hoặc

cỏ chè vè ở vùng Trung Tây Hoa Kỳ, cao lương ngọt hoặc đường mía ở miền Nam Hoa Kỳ, bã

cây ở Tây Nam Hoa Kỳ, đường vỏ hạnh nhân ở California và thậm chí cả vỏ cam quýt ở

Florida. Một yếu tố quan trọng khác là khả năng tích hợp các nhà máy ethanol hiện có với các

hoạt động khác, đặc biệt là sử dụng chuyển đổi nhiệt hóa của tất cả các nguồn sinh khối hoặc

sử dụng quy trình tích hợp để sản xuất khí sinh học và các sản phẩm có nguồn gốc từ khí sinh

học. Các chiến lược nhà máy sinh học tối ưu nhất khi kết hợp nghiên cứu nguyên liệu thực địa

về năng suất, chất lượng cây trồng và chi phí sinh khối các với chiến lược nhà máy sinh học.

3.2. Chất thải rắn đô thị (MSW) và chất thải thực phẩm

Chất thải rắn đô thị (MSW) là chất thải sinh hoạt thường được xử lý chôn lấp

theo truyền thống. Nó chứa một lượng đáng kể chất thải thực phẩm. Hơn 50% MSW

có khả năng phân hủy sinh học, cho phép sử dụng làm nguyên liệu tiềm năng để sản

xuất nhiên liệu sinh học, năng lượng sinh học, hóa chất hàng hóa. Một người sống

trong khu vực OECD tạo ra trung bình 520 kg chất thải mỗi năm; con số này nhiều

hơn 20 kg so với năm 1990, nhưng thấp hơn 30 kg so với năm 2000.

Lượng MSW rất lớn và việc xử lý sinh học MSW sẽ có ý nghĩa hơn ở một số

quốc giaso với các quốc gia khác, đặc biệt là những quốc gia có lượng MSW lớn

được chôn lấp. Với việc thu gom chất thải riêng biệt bắt buộc ở châu Âu vào năm

2023, mô hình này có thế áp dụng cho các quốc gia khác.

Chất thải thực phẩm, về bản chất, là chất thải có thể phân hủy sinh học và

nhiều loại có thể chuyển hóa trong các nhà máy sinh học. Đến nay, hầu như không

có chất thải thực phẩm nào được sử dụng theo cách này, mặc dù ước tính hàng năm

trên toàn cầu có khoảng 1,3 tỷ tấn chất thải thực phẩm tại các bãi chôn lấp. Điều này

cho thấy rằng một phần ba tổng sản lượng lương thực toàn cầu bị lãng phí, gây thiệt

Page 11: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

10

hại cho nền kinh tế toàn cầu hơn 900 tỷ USD. Chất thải thực phẩm trong bãi rác cuối

cùng sẽ được biến đổi sinh học thành khí sinh học, một hỗn hợp dễ cháy của metan

và CO2 và một lượng nhỏ hydro. Tại các bãi chôn lấp kỹ thuật hiện đại, khí sinh học

này có thể được thu giữ và sử dụng để sưởi cho khu vực hoặc để sản xuất điện. Tuy

nhiên, ở quy mô toàn cầu, nó chỉ đơn giản là bổ sung phát thải GHG vì khí mê-tan

tạo GHG mạnh hơn nhiều so với CO2. Thiệt hại thực phẩm toàn cầu và chất thải

thực phẩm tạo ra hàng năm 4,4 tye tấn CO2 tương đương, hay khoảng 8% tổng

lượng khí thải GHG do con người tạo ra, chỉ ít hơn một chút so với giao thông

đường bộ toàn cầu.

Những năm gần đây người ta tập trung rất nhiều vào chất thải xenlulo. Dữ liệu

về xử lý sinh học chất thải thực phẩm rất khó thu thậpvà không nhiều. Cách tiếp cận

thu thập dữ liệu đơn thuần về chất thải thực phẩm không có giá trị cụ thể. Tuy nhiên,

nguồn dữ liệu còn hạn chế cho thấy tình trạng tổn thất lương thực cao hơn nhiều so

với giai đoạn ngay sau thu hoạch ở các nước đang phát triển. Đối với các nền kinh tế

thịnh vượng, chất thải thực phẩm sau tiêu dùng chiếm phần lớn nhất, với sự ảnh

hưởng từ các yếu tố như tính thẩm mỹ và thời hạn sử dụng. Ước tính rằng lượng

thực phẩm bị lãng phí ở Anh là 25% (tính theo trọng lượng) của lượng đã mua, đó

chỉ là nguồn thực phẩm bị lãng phí ở các hộ gia đình. Bánh mì được coi là nguồn

thực phẩm bị lãng phí nhất, chiếm tới 32%.

Do đó, việc kiểm tra chất thải thực phẩm tại các điểm khác nhau trong chuỗi

cung ứng thực phẩm là nguồn cung cấp thông tin cho các chính phủ vì giai đoạn

thực phẩm bị lãng phí ảnh hưởng rất lớn đến vết cacbon liên quan đến chất thải.

Chuỗi cung ứng càng xa điểm thu hoạch mà sản phẩm thực phẩm bị lãng phí, cường

độ cacbon của chất thải kể từ khi thu hoạch, vận chuyển và chế biến tích lũy thêm

GHG theo chuỗi cung ứng càng lớn.

3.3. Chất thải cá

Nghề đánh bắt cá hoang dã và nuôi trồng thủy sản là sản xuất cho thực phẩm

ítkhí thải cho con người so với sản xuất động vật nhai lại. Tuy nhiên, khoảng 40%

lượng cá bị thải bỏ và hơn 20 triệu tấn chất thải từ cá bao gồm gan, đầu, ruột, xương

và da bị thải ra môi trường trên khắp thế giới, dẫn đến ô nhiễm môi trường hoặc

khiến cho quá trình xử lý chất thải gặp nhiều khó khăn, và tổn thất chất dinh dưỡng

có giá trị.

Một trong những thách thức đối với việc mở rộng nuôi trồng thủy sản là cung

cấp thức ăn cho cá chất lượng cao. Nội dung kịch bản để cải thiện thách thức cung

cấp thức ăn là tận dụng nhiều chất thải chế biến cá trong sản xuất bột cá và dầu cá.

90% thành phần được sử dụng trong bột cá được sản xuất là từ rác thải cá.

Page 12: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

11

3.4. Sản xuất nguyên liệu lên men từ khí công nghiệp

Trong một cuộc hội thảo OECD, Adani (2015) đã cố gắng định lượng lượng

các loại chất thải khác nhau có sẵn và đưa những con số đó vào bối cảnh sản xuất

công nghiệp. Các khí lên men được sản xuất với số lượng lớn từ các ngành khác

nhau. Tuy nhiên, việc thu gom chúng từ một số ngành này lại không khả thi. Hai

nguồn khả thi để thu gom là cung cấp năng lượng và công nghiệp – là những ngành

có lượng phát thải lớn.

Trong các lĩnh vực mà việc thu gom khả thi, CO2 đến nay là khí quan trọng

nhất. Bốn số liệu quan trọng được đưa ra bởi Adani liên quan đến tiềm năng sử dụng

khí trong xử lý sinh học chất thải là:

1. Tiêu thụ nguyên liệu thô tái tạo cho ngành hóa chất và các ngành khác: 857

triệu tấn mỗi năm

2. Tổng khối lượng sử dụng để sản xuất hóa chất: 271 triệu tấn mỗi năm

3. Tổng khối lượng từ ngành công nghiệp CO2 và sản xuất năng lượng: 7 596

triệu tấn mỗi năm

4. Tổng khối lượng từ chất thải sinh học và thất thoátthực phẩm: ~ 354 triệu

tấn mỗi năm.

Các số liệu sẽ chỉ ra rằng lượng CO2 có sẵn vượt xa mức cần thiết. Tuy nhiên,

con số tổng có thể chưa nói hết lên những vấn đề khả thi, ví dụ như hiệu quả của

việc sử dụng khí trong hoạt động của nhà máy xử lý sinh học, các khía cạnh kỹ thuật

liên quan khácchẳng hạn như độ tinh khiết của khí, tính dễ dàng và chi phí của việc

thu gom. Ước tính sơ bộ từ LanzaTech, một công ty hàng đầu về lên men khí, cho

thấy có thể sản xuất hơn 30 tỷ gallon mỗi năm các sản phẩm có giá trị cao chỉ từ khí

thải của nhà máy cán thép; đây là một đóng góp đáng kể cho nguồn năng lượng và

hóa chất trên toàn thế giới.

3.5. Chất thải nhựa trong CBE

“Chúng ta cần giảm chất thải và tiến tới các chất thay thế có thể phân hủy sinh

học mới cho nhựa. Nhưng một trong những bước đơn giản nhất là thay đổi cách

chúng ta sử dụng và loại bỏ các sản phẩm nhựa dễ phân hủy hơn." (The Guardian,

22/3/2018)

Vấn đề tích tụ chất thải nhựa trong đại dương không phải là mới. Bãi rác Thái

Bình Dương được phát hiện có kích thước gấp đôi nước Pháp và lớn hơn 16 lần so

với ước tính trước đây. Điều đáng lo ngại là các hạt vi nhựa bắt đầu được các tế bào

Page 13: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

12

sống hấp thụ và đã được chứng minh là ảnh hưởng vào quá trình sinh sản và hoạt

động của thế hệ con cái ở loài hàu.

Đến năm 2050, ước tính sẽ có thêm 33 tỷ tấn nhựa trên hành tinh. Tính không

phân hủy sinh học của lượng nhựa này đồng nghĩa với việc chất thải nhựa là một

vấn đề ngày càng đáng lo ngại trừ khi chúng ta tìm được các giải pháp. Giải pháp

tuần hoàn là đốt chất thải nhựa và thu hồi năng lượng, được thực hiện phổ biến,

nhưng không ngăn được sự tích tụ nhựa trong các đại dương.

Nhựa sinh học có thể phân hủy sinh học hoặc bền vững, và xu thế thị trường tỷ

lệ nhựa bền vững tăng lên. Nhựa phân hủy sinh học vẫn được coi là sản phẩm thích

hợp. Mặc dù trải qua nhiều thập kỷ nghiên cứu và phát triển, sự thâm nhập thị

trường của nhựa sinh học có thể phân hủy sinh học vẫn còn khá nhỏ. Tuy nhiên,

những thị trường ngách quan trọng này, bao gồm: túi đựng chất thải sinh học có thể

phân hủy, túi trái cây và rau quả, túi xách nhẹ; túi đựng chè và cà phê viên nén;

sửdụng màng mỏng bọc trái cây và rau quả.

Nhựa phân hủy sinh học có thể gia tăng giá trị trong nền kinh tế tuần hoàn.

Chúng có thể được xử lý trong các cơ sở chế biến phân bón hoặc góp phần tạo ra khí

sinh học trong các cơ sở phân hủy kỵ khí. Nhựa được chứng nhận tự hủy sinh học

công nghiệp góp phần vào việc quản lý chất thải hiệu quả và sử dụng tài nguyên

tuần hoàn theo nhiều cách khác nhau, bao gồm:

- Góp phần chuyển đổi chất thải sinh học từ chôn lấp sang tái chế hữu cơ

- Góp phần tránh đốt chất thải sinh học, vốn phức tạp bởi độ ẩm cao

- Góp phần chuyển chất thải sinh học khỏi tái chế nhựa cơ học

- Cung cấp thêm nguyên liệu nền tảng sinh học thứ cấp cho các mục đích công

nghiệp.

4. Một số sáng kiến xử lý chất thải sinh học chọn lọc

4.1. Xử lý sinh học và ủ phân bón từ chất thải xenlulo

Nhà máy xử lý sinh học xenlulô

Lignocellulose bao gồm các polyme carbohydrate (cellulose, hemiaellulose) và

một loại polymer thơm (lignin). Đây là nguyên liệu thô dồi dào nhất để xử lý sinh

học vì nó chứa một lượng lớn đường có thể lên men. Tuy nhiên, các loại đường cần

thiết cho quá trình lên men liên kết chặt chẽ trong lignocellulose. Điều này trở thành

rào cản cho việc sử dụng lignocellulose từ sinh khối trong quá trình xử lý sinh học.

Phần lớn nỗ lực kỹ thuật để giải phóng lượng lớn liên kết cho hoạt động lọc sinh học

Page 14: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

13

có liên quan đến việc khắc phục tính bền vững của nguyên liệu. Khoảng 40-60%

tổng chi phí vận hành của một nhà máy xử lý sinh học điển hình có liên quan đến

các nguyên liệu được chọn. Tuy nhiên, chi phí đáng kể nhất cho các nhà máy nhiên

liệu sinh học xenlulo thế hệ thứ hai có thể là việc chuyển đổi sinh khối gỗ thành

đường lên men.

Các nhà máy xử lý sinh học tích hợp, khai thác các thành phần chất thải

lignocellulose tổng thể để tạo ra nhiên liệu, hóa chất và năng lượng, được mô tả là

"trụ cột của nền kinh tế tuần hoàn". Tuy nhiên, việc phân loại là vấn đề trong quá

trình xử lý sinh học xenlulo. Các vấn đề kỹ thuật xung quanh việc chuyển đổi đã

được chứng minh là khó đến nỗi chỉ một số ít các nhà máy sinh học này là khả thi về

mặt thương mại và tại thời điểm này, hầu hết các cơ sở này vẫn còn gặp khó khăn.

Ủ phân bón quy mô công nghiệp

Một giải pháp thay thế và tuần hoàn là chuyển đổi chất thải xenlulo thành phân

hữu cơ và chất cải tạo đất. Không giống như xử lý xenlulô, phương pháp ủ phân đã

được sử dụng trong hàng thế kỷ để duy trì độ phì nhiêu của đất, theo nghĩa rộng là vi

sinh . Việc ủ phân ở quy mô công nghiệp mới hơn rất nhiều, chưa tối ưu, đòi hỏi kết

hợp với các công nghệ khác để cải thiện hiệu quả và kiểm soát quy trình. Các quy

trình này trong CBE có thể được chứng minh bằng số lượng và loại vật liệu thải có

thể sử dụng để ủ phân bón quy mô công nghiệp. Chất thải và phế thải thích hợp bao

gồm: cỏ, lá cây, hàng rào, thực phẩm thừa, chất thải rau quả từ ngành công nghiệp

thực phẩm, chất thải từ ngành lên men, phân rắn và lỏng từ trại động vật, phế

thảilâm nghiệp, chất thải từ ngành công nghiệp giấy, dạ cỏ của gia súc giết mổ và

bùn thải từ các nhà máy xử lý nước thải.

Thoạt nhìn các sản phẩm này không hấp dẫn và giá trị gia tăng thấp. Tuy

nhiên, nhìn chung phải xem xét đến tình trạng đất trồng trọt nói chung và tầm quan

trọng bị đánh giá thấp của đất đối với sức khỏe con người và hành tinh. Tình trạng

của đất đáng nhận được sự quan tâm nghiêm túc từ các nhà hoạch định chính sách.

Một ví dụ điển hình về nâng cao nhận thức là sáng kiến Năm quốc tế về đất đai

(2010) của Tổ chức Lương thực và Nông nghiệp Liên Hợp Quốc.

Sau đây là những vấn đề mang tính bắt buộc mà các nhà hoạch định chính sách

cần phải nắm được đối với nền kinh tế tuần hoàn:

- Hơn 95% toàn bộ thực phẩm có nguồn gốc từ đất trồng trọt

- Đất hấp thụkhoảng 20% lượng phát thải CO2 của con người

- Tốc độ hình thành chậm có nghĩa là đất nên được coi là tài nguyên không tái

tạo - phải mất 1000 năm để tạo ra 3 cm tầng đất mặt.

Page 15: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

14

- Đất đang bị phá hủy với tốc độ chưa từng thấy - nếu tốc độ thoái hóa như

hiện tại còn tiếp diễn, tất cả tầng đất mặt trên thế giới có thể biến mất trong vòng 60

năm.

- Xét về mặt kinh tế, đất nên được xem là vốn tự nhiên. Người ta ước tính rằng

17% GDP của New Zealand phụ thuộc vào 150 mm tầng đất mặt.

Tuy phân bón nhân tạo đã nâng cao đáng kể năng suất nông nghiệp, nhưng

chúng cũng tạo ra những vấn đề ảnh hưởng tới ngành công nghiệp, nông nghiệp,

năng lượng và môi trường. Các vấn đề môi trường xung quanh phân vô cơ được mô

tả rõ ràng và đã được biết đến trong nhiều thập kỷ. Quy trình Haber-Bosch sản xuất

phân bón tiêu tốn rất nhiều năng lượng, chiếm 3-5% lượng khí đốt tự nhiên của thế

giới và thải ra lượng lớn CO2 vào khí quyển.

4.2. Chất thải thực phẩm và đồ uống

4.2.1.Chất thải phô mai - nhiều, chi phí xử lý cao và gây hại cho môi trường

Váng sữa (whey) là sản phẩm phụ gây ô nhiễm cao của quá trình sản xuất bột

phô mai và casein với sản lượng váng sữatrên toàn thế giới ước tính khoảng 190

triệu tấn mỗi năm. Đây được coi là dạng chất thải nguy hại nên không thể thải trực

tiếp vào các nguồn nước. Có nhiều quy trình bay hơi và không bay hơi (khác nhau

để xử lý váng sữa. Quy trình bay hơi bằng công nghệ sinh học là một phương pháp

tiếp cận kinh tế sinh học kinh điển và tuần hoàn theo nghĩa các nguồn tài nguyên

được duy trì lâu hơn trong nền kinh tế bằng cách tạo ra các vật liệu "nguyên gốc" từ

dòng chất thải gây ô nhiễm.

Dự án hàng đầu AgriChemWhey12 của Bio-based Industries Joint Undertaking

(BBIJU) đề xuất xây dựng một nhà máy sinh học tích hợp ở Ai-xơ len nhằm chuyển

đổi dòng sữa phụ phẩm thành các sản phẩm giá trị gia tăng như axit L-lactic, axit

polylactic (một loại nhựa sinh học có thế phân hủy mới), các khoáng chất thiết yếu

cho dinh dưỡng của người và phân bón sinh học. Do đó, dự án giải quyết các mục

tiêu chính sách của CBE như sau:

- Tạo việc làm cho người lao động ở vùng nông thôn và phát triển vùng

- Giảm áp lực đối với đất đai

- Giảm thiểu phát thải nhà kính (GHG)

- Chống ô nhiễm môi trường

- Xử lý chất thải bằng trích li bay hơi

- Tạo chuỗi giá trị tuần hoàn mới và hệ sinh thái đổi mới

- Tăng tính bền vững của ngành sản xuất sữa.

Page 16: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

15

4.2.2. Sản xuất axit succinic từ phế thải bánh mì

Tại Hà Lan, chất thải từ bánh mì chiếm một phần tư lượng chất thải thực phẩm

trong nước, trung bình một người thải loại 9,2 kg bánh mì mỗi năm. Do số lượng

chuột ngày càng tăng nhanh, một số hội đồng đã lập kế hoạch đặt các thùng thu

gom bánh mì thải nhằm loại bỏ nguồn thực phẩm chính của loài này. Hiện tại có

khoảng 50 điểm thu gom bánh mì thải ở Rotterdam. Trên thực tế, bánh mì thải có

thể được xử lí để sản xuất phân bón, tuy nhiên, cũng có một vài kế hoạch xây dựng

nhà máy phân hủy kỵ khí quy mô lớn để tạo khí sinh học từ bánh mì phế thải.

Tuy nhiên, năng lượng tiêu thụtrong quá trình nướng bánh mì ngay từ đầu

nhiều hơn so với năng lượng được tái tạo trong khí sinh học. Phương pháp tiếp cận

khác được đánh giá là phù hợp trong CBE nhằm tạo ra giá trị gia tăng lớn hơn thông

qua quy trình sản xuất sinh học. Điển hình như trong một nghiên cứu, sản phẩm thủy

phân bánh mì lên men là nguyên liệu duy nhất để sản xuất axit succinic, với năng

suất tổng thể là 0,55 g axit succinic trên mỗi gam bánh mì. Đây là sản lượng axit

succinic cao nhất đạt được so với các sản phẩm có nguồn gốc từ chất thải thực phẩm

khác được báo cáo tại thời điểm đó. Axit succinic được coi là một trong những hóa

chất nền tảng trong tương lai của ngành công nghiệp hóa chất bền vững. Nó là tiền

thân của nhiều hóa chất, với công suất đạt khoảng 30 000 tấn mỗi năm. Giá trị thị

trường axit succinic dự kiến đạt 1,1 tỷ USD.

4.2.3. Chất thải cá làm thức ăn nuôi cá

Ngăn chặn chất thải từ cá trở thành một mối quan ngại trong xử lý chất thải,

ngoài bột cá và dầu cá là thức ăn chất lượng cao cho cá nuôi, nhiều ứng dụng khác

cũng được quan tâm lựa chọn. Dầu cá được xử lý trước và thông qua quá trình este

hóa chéo tạo ra các phần axit béo este ethyl bão hòa và không bão hòa (FAEE). Hàm

lượng bão hòa có thể được sử dụng làm nhiên liệu sinh học, trong khi FAEE chưa

bão hòa có thể được este hóa chéo thêm bằng glycerol (là sản phẩm phụ của quá

trình sản xuất diesel sinh học) để thu được dầu giàu axit béo đa không bão hòa

(PUFAs). PUFA là sản phẩm có giá trị cao; vì vậy, đây được coi là điển hình của

việc sử dụng phế thải cá.

4.2.4. Sản xuất nhiên liệu sinh học từ phế thải rượu Whiskey

Phế thải của ngành công nghiệp sản xuất rượu whisky mạch nha ở Scotland

hiện bao gồm 750.000 tấn cặn và 2 tỷ lít nước thải rượu, dòng chất thải nguy hại một

lần nữa có thể gây nguy hiểm cho sức khoẻ con người và môi trường. Bã rượu - phụ

phẩm trong quá trình sản xuất rượu whiskey có nhu cầu oxy sinh hóa (BOD) cao và

chứa men, muối vô cơ và nhiều loại hợp chất hữu cơ bao gồm cả đường chưa lên

Page 17: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

16

men. Các biện pháp xử lý trước đây liên quan đến quá trình phân hủy kỵ khí để tạo

ra khí sinh học được sử dụng nhằm mục đích sưởi hoặc tạo ra điện.

Nghiên cứu tại Celtic Renewables Ltd đã chứng minh công nghệ cần thiết để

chuyển đổi bã rượu thành butanol, một loại nhiên liệu sinh học tiên tiến, thông qua

con đường vi sinh vật (công nghệ vi sinh). Công ty đang bắt đầu xây dựng một nhà

máy mẫu tại thành phố Grangemouth, Scotland, nơi đặt trụ sở của khu liên hợp hóa

dầu lớn. Dự tính đây sẽ là một nhà máy mẫu thương mại có khả năng sản xuất hơn

nửa triệu lít nhiên liệu sinh học mỗi năm

Các mục tiêu chính sách của CBE được giải quyết bao gồm:

- Phát triển khu vực

- Giảm áp lực đối với đất đai

- Giảm thiểu phát thải nhà kính (GHG)

- Phòng chống ô nhiễm môi trường

- Tăng giá trị chất thải

- Tạo chuỗi giá trị tuần hoàn mới và hệ sinh thái đổi mới

- Tăng tính bền vững của ngành sản xuất rượu whisky.

4.3. Lên men khí

Các vi sinh vật lên men khí có khả năng cố định CO2 và CO, và cũng thường

sử dụng H2. Chúng được sử dụng nhằm mục đích chuyển đổi khí cacbon thành nhiên

liệu và hóa chất. Công nghệ này có thể sử dụng nhiều nguyên liệu rắn nếu các

nguyên liệu đó có thể dễ dàng khí hóa. Những nguyên liệu này bao gồm: MSW (chất

thải rắn đô thị); các dạng sinh khối , phế thải nông nghiệp; và đáng kể nhất là khí

thải công nghiệp.

4.3.1. Sản xuất ethanol từ khí thải ra từ nhà máy thép

Trong nhiều năm, phương pháp lên men khí đã phát triển mạnh tại một nhà

máy thép của Trung Quốc và hiện nay, kế hoạch xây dựng một nhà máy thép lớn

hơn ở Ghent, Bỉ cũng đã được đưa ra. Dự án hợp tác giữa các công ty khởi nghiệp

LanzaTech có trụ sở ở thành phố Chicago (Mỹ), ArcelorMittal - tập đoàn thép đa

quốc gia có trụ sở chính ở thành phố Luxembourg và công ty Primetals

Technologies (Áo), sẽ tạo ra 47.000 tấn ethanol mỗi năm từ khí thải của các hoạt

động sản xuất thép.

Có sự khác biệt giữa ‘cacbon xanh’ và ‘cacbon đen’. Điều này là do, xét về

phương diện pháp lý, chỉ có khí tổng hợp từ sinh khối rắn mới có thể được coi là

‘cacbon xanh’. Trong khi đó, khí tổng hợp được sản xuất từ các nguồn năng lượng

Page 18: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

17

hóa thạch hoặc các sản phẩm làm từ các nguồn năng lượng hóa thạch được coi là

‘cacbon đen’.

Tuy nhiên, công nghệ sản xuất ethanol này phức tạp, chưa được tiêu chuẩn hóa

và chưa cạnh tranh. Giá trị gia tăng có thể được tạo ra bằng cách tích hợp các quá

trình nhiệt hóa, sinh hóa và hóa học phù hợp. Công nghệ này rõ ràng có thể được áp

dụng cho các hóa chất trung gian có giá trị hơn ethanol. Chiến lược này hỗ trợ các

khái niệm về nhà máy sinh học tích hợp và khái niệm sử dụng phân tầng (cho dù là

‘cacbon đen’ hay ‘cacbon xanh’).

Điều cần nhấn mạnh là việc sử dụng ‘cacbon đen’ tự nhiên với số lượng lớn có

lợi thế lớn trong việc sử dụng đất tiết kiệm. Các vấn đề chính sách xung quanh thay

đổi sử dụng đất về cơ bản được loại bỏ bằng cách sử dụng khí thải công nghiệp thay

cho cây lương thực hoặc cây phi lương thực.

4.3.2. Sản xuất thức ăn cho cá từ khí : nuôi cá làm thức ăn cho con người

Hiện tại, nuôi trồng thủy sản đã vượt các hoạt động đánh bắt thủy sản tự nhiên

và có tiềm năng lớn phát triển trong tương lai. Ngành nuôi trồng thủy sản cần tìm

nguồn thức ăn mới cho cá, đặc biệt là thay thế hoặc bổ sung các đầu vào chất lượng

cao hiện có, có nguồn gốc từ bột cá và dầu cá, điều này ngày càng được coi là một

hạn chế đối với khả năng phát triển của ngành nuôi trồng thủy sản trong tương lai.

Đồng thời, giảm tác động môi trường của hoạt động nuôi trồng thủy sản đã trở thành

ưu tiên lớn trong mục tiêu thúc đẩy bền vững hơn nữa.

4.4. Xử lý chất thải bằng phương pháp sinh học kỵ khí

Phân hủy kỵ khí bùn thải để sản xuất khí sinh học đã được áp dụng trong xử lý

sinh học nước thải trong hơn 1 thế kỉ. Phương pháp này ổn định bùn thải bằng cách

loại bỏ các tác nhân gây bệnh. Tuy nhiên, khí mêtan thường được sử dụng để tạo ra

điện và có thể đủ để cung cấp năng lượng cho toàn bộ nhà máy xử lý nước thải,

đóng góp vào phát triển bền vững về môi trường và kinh tế của các nhà máy này.

Quá trình phân hủy kỵ khí có khả năng mở rộng và đã được hoàn thiện cho

phù hợp với cấp độ trang trại riêng lẻ, trong đó, nhiều loại phế liệu có thể được

chuyển đổi thành khí sinh học, ví dụ: bùn, cỏ, phân rắn, phân gà và rơm. Hơn nữa,

tính cân bằng sau quá trình phân hủy kỵ khí của nước thải được cải thiện để đáp ứng

nhu cầu cây trồng tốt hơn so với bùn phân thô, từ đó, làm giảm thiểu nhu cầu sử

dụng phân bón hóa học N và P bổ sung, đồng thời giảm phát thải GHG. Mặc dù

công nghệ đã được chuẩn hóa và có nhiều ưu điểm như vậy, tại các nước OECD, chỉ

khoảng 5% thành phần hữu cơ của chất thải rắn đô thị (OFMSW) được phân hủy. Đối

với một số nước thì giải pháp ưu tiên vẫn là xử lý bằng hình thức đốt.

Page 19: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

18

Hiện nay, sản xuất khí sinh học đang được xem là một phần của khái niệm nhà

máy sinh học. Sản xuất nhiều nhiên liệu sinh học từ xơ lúa mạch (ethanol sinh học,

hydro sinh học và khí sinh học) có thể làm tăng hiệu quả sử dụng sinh khối được ghi

nhận trong việc sử dụng phân tầng của khái niệm sinh khối. Các axit béo dễ bay hơi

(VFAs) được tạo ra từ hoạt động của vi sinh vật kỵ khí, thường được coi là mối gây

hại, ảnh hưởng nghiêm trọng đến môi trường, có tiềm năng trở thành tiền chất cho

quá trình sản xuất công nghệ sinh học polyhydroxyalkanoates (PHAs) – vật liệu

nhựa có khả năng phân hủy sinh học.

4.5. Xử sinh nước thải bằng công nghệ sinh học

Quản lý nước thải cần đóng vai trò trung tâm trong mục tiêu đạt được an ninh

nguồn nước trong tương lai trong một thế giới mà áp lực nước ngọt sẽ ngày càng gia

tăng. Và hiện nay tại các nước đang phát triển, 90% lượng nước thải và 70% lượng

chất thải công nghiệp được thải ra nước mặt mà không được xử lý. Với kinh nghiệm

hơn một thế kỷ trong vấn đề xử lý nước thải bằng sinh học, các vấn đề nghiêm trọng

có thể được giải quyết đơn giản bằng việc áp dụng hiệu quả các công nghệ xử lý

nước thải sinh học hiện nay. Tuy nhiên, xử lý sinh học nước thải sẽ tăng thêm giá trị.

Xem xét trường hợp của Nam Phi, Việc duy trì tính toàn vẹn của cơ sở hạ tầng

xử lý nước cơ bản và hiệu suất tối ưu của nó là một thử thách mà Nam Phi đang phải

đối mặt cùng với tình trạng dân số đô thị đang ngày một tăng và nguồn lực tài chính

và kỹ năng hạn chế. Việc kết hợp các mục tiêu xử lý nước với các mục tiêu của kinh

tế sinh học được xem là một giải pháp nhằm vượt qua những thách thức này và tạo

ra một ngành công nghiệp mới. Nhà máy sinh học nước thải (WWBR) được coi là

một phần của sự kết hợp này.

4.5.1. Sản xuất nhựa từ nước thải

Nghiên cứu đang chứng minh làm thế nào cacbon hữu cơ có trong nước thải

sinh hoạt có thể được chuyển đổi bằng cách nuôi cấy hỗn hợp vi sinh vật thành nhựa

sinh học PHA. Một quy trình nhà máy xử lý sinh học quy mô thí điểm đã được vận

hành trong hơn 22 tháng tại Nhà máy xử lý nước thải (WWTP) phía Bắc Brussels để

đánh giá sản xuất PHA, kết hợp với các dịch vụ quản lý nước thải và bùn thải đô thị.

4.5.2. Tế bào điện phân vi sinh vật: Sản xuất điện từ nước thải

Về mặt lý thuyết, các tế bào điện phân vi sinh vật (MECs) có khả năng chuyển

đổi bất kỳ chất thải phân hủy sinh học nào thành H2, nhiên liệu sinh học và các sản

phẩm giá trị gia tăng khác. Kể từ phát minh vào năm 2005, tỷ lệ và sản lượng sản

xuất H2 đã tăng lên nhiều cấp. Tuy nhiên, vẫn còn đó những thách thức cần phải

được giải quyết để MEC có thể được áp dụng trong các hệ thống quy mô lớn.

Page 20: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

19

Trên lý thuyết, việc tích hợp công nghệ MEC vào xử lý sinh học lignocellulose

là khả thi. Các nhà máy sinh học này tạo ra một lượng lớn nước thải có chứa các

chất hữu cơ có khả năng phân hủy sinh học, có thể được sử dụng trong MEC để sản

xuất năng lượng bổ sung, nhờ đó góp phần vào việc phát triển tính bền vững của quá

trình xử lý sinh học xenlulo và việc sử dụng phân tầng sinh khối.

5. Hiệu suất tài nguyên trong CBE

Hiệu quả tài nguyên như một mục tiêu phù hợp với kinh tế sinh học, với sự

nhấn mạnh đáng kể mà chính sách kinh tế sinh học đặt vào tính bền vững. Hiệu quả

tài nguyên rất phổ biến trong công nghiệp. Tuy nhiên, do nhiều lĩnh vực đang được

thúc đẩy bởi hành động kinh doanh để nghiên cứu và cải thiện tính bền vững của

hoạt động, sản phẩm và dịch vụ của họ, liên kết này sẽ liên tục được tham chiếu -

liên kết giữa hiệu quả tài nguyên và tính bền vững.

Trong số 17 Mục tiêu phát triển bền vững (SDGs), 12 mục tiêu phụ thuộc trực

tiếp vào quản lý bền vững tổng thể các tài nguyên thiên nhiên trong nền kinh tế

(UNEP, 2016). Ở châu Âu, hiệu quả tài nguyên đã giành được ưu tiên chính sách

thông qua việc đưa nó trở thành một trong những trụ cột chính của chiến lược Châu

Âu 2020.

Khía cạnh hiệu quả tài nguyên trong kinh tế sinh học khác với hầu hết các

trường hợp cụ thể trong công nghiệp là khả năng định giá chất thải, thay vì tái chế

tài nguyên cuối vòng đời. Rõ ràng có nhiều cơ hội để biến khối lượng lớn chất thải

thành nguyên liệu mà nếu không sẽ bị loại bỏ.

5.1. Khái niệm hiệu suất tài nguyên

Giống như tính bền vững sinh khối, hiệu suất tài nguyên là một thuật ngữ bổ

sung để đo lường. Ở Uỷ ban châu Âu (EU), thuật ngữ này đã được tóm tắt đơn giản

như sau: “Hiệu suất tài nguyên có nghĩa là sử dụng các nguồn lực hạn chế của Trái

đất một cách bền vững trong khi giảm thiểu tác động đến môi trường”. Đó là một

định nghĩa khó nắm bắt khi “Phát triển bền vững là thách thức lớn nhất, phức tạp

nhất mà loài người từng phải đối mặt”. Tình hình còn trở nên phức tạp hơn khi các

mối tương tác giữa sử dụng tài nguyên thiên nhiên toàn cầu, hiệu suất tài nguyên,

tăng trưởng kinh tế và phát thải GHG chưa được nghiên cứu rõ ràng. Theo OECD,

hiệu suất tài nguyên là lĩnh vực ưu tiên hàng đầu của Chương trình Môi trường Liên

Hợp Quốc.

Về mặt hiệu suất tài nguyên, hiệu suất có thể được xem là tỷ lệ giữa ảnh hưởng

dự kiến (lợi ích) và tác động môi trường. Hiệu suất tài nguyên nhờ đó có thể được

Page 21: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

20

cải thiện bằng cách giảm lượng tài nguyên được sử dụng để sản xuất đầu ra hoặc

bằng cách giảm tác động môi trường liên quan đến đầu ra. Khái niệm hiệu suất tài

nguyên đã trở nên phổ biến với cả các nhà hoạch định chính sách và khu vực tư

nhân vì đây là một cách tiếp cận đầy hứa hẹn để đồng thời giảm tác động môi trường

và tăng hiệu quả kinh tế. Trong điều kiện thực tế, những lợi ích của nó là rõ ràng khi

chi phí vật liệu và năng lượng chiếm khoảng 50% chi phí hoạt động của các doanh

nghiệp vừa và nhỏ.

Với tính chất hữu hạn của nhiều tài nguyên thiên nhiên, hiệu suất tài nguyên có

nghĩa là tạo ra giá trị lớn hơn với ít tài nguyên đầu vào hơn. Chính sách trong lĩnh

vực này nên xem xét nguy cơ cạn kiệt tài nguyên và nguy cơ cạn kiệt tài nguyên

tương đối, đang làm gia tăng chi phí sản xuất. Năng lượng có thể được bao gồm vì

những cải tiến lớn về hiệu quả năng lượng của nhiều thiết bị gia dụng và phương

tiện giao thông đã được thực hiện.

Để xác định phạm vi hiệu suất tài nguyên, nó cần được áp dụng cho tất cả các

bước của vòng đời sản phẩm; mục tiêu đổi mới sinh thái nên được áp dụng vào thiết

kế sản phẩm, cả sản xuất và tiêu dùng cần phải thông minh hơn, tái chế và giảm chất

thải cần được hỗ trợ trong chính sách để loại bỏ hoàn toàn chất thải. Hiệu suất tài

nguyên phải được coi là một trụ cột của các khái niệm và hành động kinh tế tuần

hoàn. Nó là yếu tố dẫn đầu trong việc phát triển kinh tế sinh học bền vững.

5.2. Hiệu suất tài nguyên trong công nghiệp

Với mục tiêu tăng hiệu quả kinh tế đồng thời giảm tác động môi trường,

không có gì ngạc nhiên khi phương pháp tiếp cận hiệu suất tài nguyên đã trở nên

phổ biến trong các ngành công nghiệp.

Thông điệp dành cho các nhà hoạch định chính sách ở đây là hiệu suất tài

nguyên đang được thực hiện một cách nghiêm túc xuyên suốt các ngành công

nghiệp, tuy nhiên, nhiều nhà hoạch định chính sách đang phải đương đầu với việc

thiếu một phương pháp luận tiêu chuẩn hóa. Nếu vấn đề này không được giải quyết,

sẽ không thể đi đến kết luận trong cùng một ngành và giữa các ngành khác nhau.

Ảnh hưởng dễ nhận biết có thể kể đến là:

• Nhiều nhóm ngành đang đề xuất các phương pháp và số liệu mới để đo lường

hiệu suất tài nguyên. Tuy nhiên, điều này càng dễ xảy ra thì khả năng tiêu chuẩn hóa

càng trở nên xa vời.

• Đánh giá đúng đắn về động lực hướng tới hiệu suất tài nguyên sẽ bị hạn chế

bởi sự thiếu chắc chắn, khiến việc thiết lập và triển khai các hành động chính sách

trong tương lai sẽ trở nên khó khăn hơn.

Page 22: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

21

• Các ngành công nghiệp có khả năng “tự thực hiện” khi các mục tiêu pháp lý

được đáp ứng nhưng lại thiếu các phương pháp chuẩn hóa

• Khả năng hỗ trợ mục tiêu đối với các lĩnh vực hàng đầu hoặc tụt hậu là

không thể.

• Chiến lược tiếp thị Greenwashing (“nhuộm xanh”) là một khả năng khác

biệt.’

5.3. Hướng tới đánh giá hiệu suất tài nguyên trong CBE

Các phương pháp đánh giá hiệu suất tài nguyên ngày một nhiều trong khi tiêu

chuẩn hóa đã vượt quá khả năng. Phân tích Dòng Vật chất và Năng lượng cung cấp

thông tin liên quan đến tác động môi trường của sản phẩm, quy trình hoặc cấp độ hệ

thống kết hợp cũng như các khía cạnh tính toán. Một phương pháp được thiết lập bắt

nguồn từ sản xuất tinh gọn là Sơ đồ chuỗi giá trị (Value Stream Mapping-VSM) phân

tích một cách có hệ thống các chuỗi quy trình nhằm phản ánh sự không hiệu quả liên

quan đến thời gian, trữ lượng và chất lượng. Các phiên bản mở rộng cũng kết hợp

các khía cạnh xa hơn như nhu cầu năng lượng của các quy trình và dịch vụ hỗ trợ

(Energy VSM/EVSM).

Nhược điểm là tất cả các phương pháp tiếp cận này là các phương thức độc lập

thường được thực hiện riêng lẻ cho một mục đích cụ thể. Vì vậy, mỗi phương pháp

sử dụng dữ liệu khác nhau và Các Chỉ số Hiệu suất Chính khác nhau (KPIs) làm hạn

chế sự so sánh của các kết quả tương ứng. Trên thực tế, vẫn chưa có nghiên cứu về

đánh giá và các chỉ số của nền kinh tế tuần hoàn. Sản xuất trên cơ sở sinh học đòi

hỏi một cách tiếp cận khác do tính chất rất khác nhau của các nguyên liệu.

Về cơ bản, CBE khác với các nền kinh tế đã được thiết lập trước đó, thường là

các ngành công nghiệp phụ thuộc vào nguồn tài nguyên hóa thạch. Trước hết, sản

xuất sinh học non trẻ vừa đặt ra những thách thức vừa mở ra cơ hội. Thách thức nằm

ở những vấn đề chưa được làm rõ xung quanh tính bền vững sinh khối và chuỗi

cung ứng và giá trị phân mảnh và chưa được thử nghiệm. Ngoài ra, sản xuất sinh

học không bị giới hạn trong một ngành công nghiệp duy nhất; nó được áp dụng trên

nhiều ngành công nghiệp lớn nhất, quan trọng nhất như ô tô, hóa chất, nhựa, dệt may

và thực phẩm. Vì các ngành công nghiệp này không đạt được sự đồng nhất về các

phương pháp đo lường hiệu suất tài nguyên, nên đây có thể là số phận của sản xuất

sinh học.

Tuy nhiên, cơ hội quan trọng hơn cả nằm ở cơ hội xây dựng khung hiệu suất

tài nguyên từ những ngày đầu tiên này. Tính bền vững và hiệu suất tài nguyên phải

được đặt lên trên mô hình kinh doanh hoặc “cách thức làm việc” được thiết lập hiệu

Page 23: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

22

quả. Do đó, hiệu suất tài nguyên phải được thực hiện sao cho phù hợp. Trong CBE,

có thể điều chỉnh phù hợp hiệu suất tài nguyên thay vì phải bổ sung thêm.

Tuy nhiên, nghiên cứu trước đây cho thấy đã từng tồn tại những vấn đề tương

tự đối với sản xuất sinh học như đối với các ngành công nghiệp đã được hình thành

trước đó, đặc biệt là liên quan đến sinh khối - nguyên liệu thiết yếu. Các tiêu chí và

kế hoạch về tính bền vững đối với nhiên liệu sinh học lỏng được đề ra nhưng không

thể khẳng định tình hình hiện tại là lý tưởng; vào năm 2012, UNICA đã mô tả các

tiêu chí bền vững cho năng lượng sinh học là “một vũ trụ mở rộng không ngừng”.

Tiêu chí cho sinh khối rắn vẫn được phát triển và thống nhất. Lời nói đầu của

một tài liệu so sánh các chương trình bền vững quốc gia đối với trạng thái sinh khối

rắn ở EU là: “Không có tiêu chí bền vững hài hòa nào cho năng lượng sinh học

hoặc nguồn cung ứng sinh khối trên toàn EU”. Tài liệu cũng nhấn mạnh nhận thức

rằng nếu các quốc gia thành viên sử dụng lượng sinh khối được chỉ ra trong các kế

hoạch năng lượng tái tạo của họ, thì riêng lượng gỗ sử dụng để sản xuất năng lượng

sẽ tương đương với tổng sản lượng gỗ thu hoạch của EU ngày nay.

5.3.1. Số đo và chỉ số đánh giá

Đo lường tính tuần hoàn

Hiệu suất tài nguyên khi được áp dụng cho CBE cần tham chiếu năm giai đoạn

chính của mô hình nền kinh tế tuần hoàn. Những điều này liên quan đến logic vòng

khép kín của nền kinh tế tuần hoàn:

1. Nguyên liệu đầu vào

2. Thiết kế

3. Sản xuất

4. Tiêu thụ

5. Kết thúc vòng đời sản phẩm.

Các giai đoạn này bao gồm các quá trình có hiệu suất cần được đánh giá để

ước lượng mức độ tuần hoàn của toàn bộ hệ thống trong phân tích. Hộp 2 cho thấy

các hành động được đề xuất để đánh giá tính tuần hoàn.

Hộp 2. Các hành động cần thiết để định lượng hiệu suất của các sản phẩm và

hệ thống tuần hoàn

1. Thiết kế và sản xuất sản phẩm tuần hoàn: có thể bao gồm một số hành động trong

danh mục này bắt đầu từ các phương pháp thiết kế sinh thái được định hướng để tạo

thuận lợi cho việc tái sử dụng, làm mới và tái chế sản phẩm, thiết kế các sản phẩm và

quy trình bằng các chất liệu ít độc hại hơn.

Nguyên tắc hoạt động của sản xuất sinh học là chúng phải có các đặc tính về hiệu

Page 24: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

23

suất tương tự, giống hệt hoặc tốt hơn so với các sản phẩm có nguồn gốc hóa thạch

mà chúng thay thế, nhưng quan trọng nhất vẫn là phải giảm thiểu đáng kể lượng phát

thải (nhìn chung, những cấp độ này vẫn chưa được chuẩn hóa). Sau này, có thể có

vật liệu ít độc tính hơn và khả năng phân hủy sinh học lớn hơn. Ngoài ra, nhựa sinh

học có tính bền vững, không phân hủy sinh học cô lập cacbon trong thời gian dài hơn.

2. Mô hình kinh doanh: danh mục này chủ yếu bao gồm việc phổ biến các mô hình

mới, chẳng hạn như hệ thống dịch vụ sản phẩm thay vì quyền sở hữu sản phẩm hoặc

công cụ tiêu dùng chia sẻ dựa trên sự phổ biến rộng rãi hơn các kênh từ người tiêu

dùng đến người tiêu dùng.

Việc dự tính trong sản xuất sinh học khó khăn hơn vì mô hình mang tính quan hệ

doanh nghiệp - doanh nghiệp cao hơn, và ít mang tính doanh nghiệp - khách hàng

hơn. Đây cũng là đặc tính cố hữu tồn tại trong ngành hóa chất. Một sản phẩm sinh

học thường sẽ là một phần của sản phẩm chứ không phải toàn bộ sản phẩm, ví dụ

như nhựa sinh học là một thành phần trong sản phẩm là thiết bị điện thoại. Trong khi

đó, có những sản phẩm khác có đặc điểm rõ ràng hơn, ví dụ như sản phẩm làm sạch

thân thiện với môi trường.

3. Kỹ năng phân tầng/nghịch đảo: về cơ bản, các can thiệp tập trung vào hỗ trợ các

chu trình vòng khép kín, ví dụ: với các công nghệ tiên tiến phục vụ tái chế chất lượng

cao, cho phép hạn chế tình trạng xuống cấp hoặc sử dụng vật liệu phân tầng mà việc

tái chế chất lượng cao là không khả thi. Cần thiết phải hỗ trợ hiệu quả hơn cho thị

trường nguyên liệu thứ cấp.

Đây sẽ là một thế mạnh lớn của nền kinh tế sinh học nhưng việc sử dụng phân tầng

sinh khối vẫn chưa được hỗ trợ mạnh mẽ về chính sách. Hành động này là hoàn toàn

cần thiết cho CBE trong tương lai, khi đó, các dạng sinh khối khác nhau phải được coi

là nguyên liệu thô thứ cấp chứ không phải là phế liệu.

4. Hợp tác liên chu kỳ và liên ngành: các hành động trong hạng mục này tập trung vào

việc xây dựng hợp tác xuyên suốt chuỗi giá trị mới, cũng thông qua sự tham gia của

các tác nhân mới, ngăn sản phẩm phụ trở thành phế thải thông qua sự cộng sinh công

nghiệp hiệu quả.

Đây là một thành phần mới và quan trọng của chuỗi giá trị trong nền kinh tế sinh học,

chưa được thử nghiệm và thường bị phân mảnh. Khái niệm sản xuất, thu gom và vận

chuyển sinh khối tại địa phương đến các cơ sở sản xuất sinh học, cùng với việc tiêu

thụ và tái sử dụng sản phẩm tại địa phương, xác định tính tuần hoàn thường không

thể thực hiện được đối với các sản phẩm có nguồn gốc hóa thạch, trong đó, nguyên

liệu thô, chủ yếu là dầu, có thể được vận chuyển hàng ngàn km đến các nhà máy sản

xuất. Thách thức lớn trong tương lai gần là việc xây dựng các công ty và tạo ra các

hệ sinh thái công nghiệp nơi các sản phẩm hóa thạch là những sản phẩm đi trước và

chi phí cạnh tranh.

Ở cấp độ sản phẩm riêng lẻ, cần phải đánh giá các yếu tố sau đây đối với sản

phẩm CBE:

• Giảm đầu vào và sử dụng tài nguyên thiên nhiên (nguồn gốc hóa thạch,

không tái tạo)

Page 25: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

24

• Giảm mức phát thải, cả trực tiếp (đặc biệt là giảm thiểu phát thải do thu hồi

và cô lập cacbon gốc sinh học) và gián tiếp (ví dụ: giảm năng lượng hóa thạch chính

được sử dụng trong sản xuất)

• Giảm thiểu lãng phí vật liệu thông qua các quy trình vòng kín, ví dụ: hạn chế

chôn lấp hoặc đốt chất thải

• Tăng tỷ lệ tài nguyên gốc sinh học (chủ yếu là sinh khối và xử lý sinh học) và

tài nguyên tái tạo (năng lượng gió, thủy điện hoặc năng lượng mặt trời trong quá

trình sản xuất)

• Tăng độ bền của sản phẩm khi thích hợp.

6.3.2. Hiệu suất tài nguyên dựa trên sinh học khác với các phương pháp tiếp

cận khác như thế nào?

Đây là một câu hỏi quan trọng vì có hai yếu tố khá khác biệt cần được xem

xét. Huysveld và cộng sự (2015) phân biệt chúng là hiệu suất tài nguyên ở cấp độ

cây trồng (1) và ở cấp độ sản phẩm dựa trên sinh học (2). Nếu sản xuất dựa trên tài

nguyên hóa thạch, “cấp độ cây trồng” sẽ tương đương với “cấp độ nguyên liệu hóa

thạch”, và sẽ không phù hợp ... Đối với sản xuất sinh học, nguyên liệu không nhất

thiết phải là cây trồng. Tuy nhiên, thường sẽ là một loại cây lương thực hoặc phi

lương thực.

Ở “cấp độ sản phẩm dựa trên sinh học”, phép đo hiệu suất tài nguyên sẽ trở

nên quen thuộc hơn nhiều vì nó mang dấu hiệu tương tự với hiệu suất tài nguyên

trong các ngành khác, ví dụ: yếu tố quá trình sản xuất. Thật sai lầm khi mặc định

rằng sản xuất sinh học thân thiện với môi trường hơn so với sản xuất gốc hóa thạch.

Các quy trình sinh học được biết đến là không hiệu quả về độ chuẩn, nhưng cũng

cũng có thể không hiệu quả về năng suất và sản lượng. Những sự thiếu hiệu quả này

có thể phải trả giá bằng việc phải sử dụng thêm các nguồn tài nguyên khác, như đất,

nước và chất dinh dưỡng, và các tác động môi trường liên quan, chẳng hạn như phú

dưỡng.

Vì vậy, chỉ số đánh giá hiệu suất tài nguyên hữu ích để tối ưu hóa các quy trình

do con người kiểm soát cần phân biệt giữa sự thiếu hiệu quả tự nhiên vốn có, ví dụ:

vốn có đối với các quá trình sinh học và công nghệ sinh học, và sự thiếu hiệu quả có

thể được giải quyết bằng sự can thiệp của con người.

Những tiêu chí được sử dụng để đánh giá bền vững sinh khối?

Tính bền vững và tiềm năng sinh khối rắn rất cần thiết để đạt được hiệu quả sử

dụng đất. Trọng tâm của việc tạo ra các tiêu chí cho tính bền vững sinh khối rắn là

chất lượng và số lượng của các chỉ số được sử dụng trong nguồn gốc của chúng.

Page 26: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

25

Sáng kiến Báo cáo Toàn cầu (GRI) đã trích dẫn 36 chỉ số có liên quan đến tính bền

vững. Danh sách 24 chỉ số bền vững đã được Hiệp hội Đối tác Sinh khối Toàn cầu

(GBEP) đề xuất. Tuy nhiên, đối với những nỗ lực trong việc duy trì tính hài hòa

quốc tế, chỉ cần một vài chỉ số quan trọng, nếu không thì nhiệm vụ trở nên thật sự

khó khăn.

Tính hài hòa quốc tế không chỉ đòi hỏi sự phân tích mạnh mẽ, mà cả sự đồng

thuận, và sự đồng thuận thì khó đạt được hơn. Kinh nghiệm của van Dam và

Junginger có thể minh họa cho điều này. Dựa trên các câu trả lời cho một bảng hỏi

gửi cho các bên liên quan quốc tế từ 25 nước châu Âu và 9 quốc gia ngoài châu Âu,

những người được hỏi đánh giá ba tiêu chí bền vững sau đây với điểm số cao nhất

về mức độ phù hợp để đưa vào hệ thống chứng nhận sinh khối và năng lượng sinh

học:

1. Giảm thiểu phát thải GHG

2. Tối ưu hóa sự cân bằng năng lượng

3. Bảo vệ chất lượng và khối lượng nước.

Kết quả cho thấy chỉ Giảm thiểu phát thải GHG là tiêu chí duy nhất đạt được

sự thống nhất. Sự thiếu thống nhất này là một trong những yếu tố chính gây ra sự

khác biệt lớn trong đánh giá tiềm năng sinh khối. Trong tương lai lâu dài, việc giám

sát tiềm năng sinh khối sẽ cho phép đánh giá tài nguyên với dữ liệu chất lượng. Cơ

sở dữ liệu này sẽ là công cụ để ra quyết định vì chính sách kinh tế sinh học được xây

dựng theo thời gian.

5.3.2. Công cụ đánh giá

Công cụ phổ biến nhất cho các phép đo này là Phân tích Vòng đời (LCA).

LCA không liên quan đến các tiêu chí tài chính và xã hội, vì thế, chưa tối ưu để đánh

giá tính bền vững sinh khối. Hơn nữa, một số nghiên cứu đã chỉ trích sự thay đổi

trong kết quả được công bố khi LCA được sử dụng để đánh giá chuỗi giá trị sinh

khối và kinh tế sinh học. Cristóbal và cộng sự (2016) đã gán sự thay đổi này cho các

giả định về phương pháp, cụ thể là phân bổ ranh giới hệ thống, đơn vị chức năng,

thu hồi năng lượng, phát thải carbon và phương pháp lưu trữ. Sự khác biệt về thuật

ngữ và các phương pháp trình bày kết quả khác nhau kết hợp các vấn đề dẫn đến sự

thay đổi.

Ngược lại, khi các công cụ khác như Chỉ số hành tinh sống, Chỉ số phát triển

thành phố, Chỉ số phát triển con người và Chỉ số hiệu suất môi trường được áp dụng,

chúng không đáp ứng các yêu cầu khoa học để hình thành chỉ số: chuẩn hóa, trọng

số, tổng hợp. Không có một công cụ đánh giá nào phù hợp với nhu cầu bền vững

Page 27: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

26

sinh khối. Khi kết hợp lại với nhau, tất cả những vấn đề này nói lên sự cần thiết phải

hài hòa về phương pháp và sự gắn kết để đo lường tính bền vững của chuỗi giá trị

sinh khối và kinh tế sinh học.

Tổng hợp các vấn đề tính bền vững thành một phép đo duy nhất đòi hỏi sự

đánh đổi phức tạp giữa, ví dụ, kilôgam khí thải cacbon dioxide và điều kiện lao

động. Sử dụng thông tin về giá được chấp nhận bởi các nhà hoạch định chính sách

và thị trường. Nhưng đặt các giá trị tiền tệ vào chi phí và lợi ích xã hội và đạo đức là

vấn đề gây tranh cãi. Sự khác biệt giữa các nước phát triển và đang phát triển đòi hỏi

phải xem xét và xử lý một cách cẩn trọng.

Hộp 3. Phương pháp tiếp cận Năng suất các nhân tố tổng hợp (TFP) đối với tính

bền vững sinh khối

Đây là một cách tiếp cận chỉ số để đánh giá tính bền vững của các chuỗi sản xuất sinh

khối dựa trên khái niệm TFP đã được sử dụng thường xuyên trong nông nghiệp. Ý tưởng

chung của TFP là nó phản ánh tốc độ chuyển đổi các yếu tố đầu vào (vốn, lao động, vật

liệu, năng lượng và dịch vụ) thành đầu ra (trữ lượng sinh khối), trong đó, các yếu tố xã

hội và sinh thái tiêu cực liên quan đến các vấn đề phát triển bền vững khác nhau được

xếp vào loại đầu ra “xấu”.

Lấy ví dụ, đầu ra của một hệ thống sản xuất đậu nành bao gồm dầu đậu nành và bột đậu

nành; đầu vào của hệ thống đậu nành có thể gồm đất, hạt giống, lực lượng lao động,

thuốc trừ sâu và nhiên liệu hóa thạch. Việc sử dụng nhiên liệu hóa thạch dẫn đến phát

thải một lượng lớn khí GHG độc hại vào bầu khí quyển, góp phần làm nghiêm trọng thêm

tình trạng biến đổi khí hậu toàn cầu (sản phẩm cuối cùng này được coi là đầu ra xấu của

hệ thống sản xuất đậu nành). Việc định lượng đầu ra và đầu vào cần thiết cho chỉ số có

thể thu được một phần từ phân tích LCA. Chỉ số TFP đưa phân tích LCA tiến thêm một

bước, trong đó, nó hợp nhất một số vấn đề bền vững thành một thước đo duy nhất về

tính bền vững. Dựa vào chỉ số TFP, có thể kết hợp và so sánh các vấn đề bền vững ảnh

hưởng đến phúc lợi của con người ở các quy mô không gian và thời gian khác nhau. Do

đó, chuỗi sinh khối có hiệu suất bền vững tốt nhất, tức là điểm TFP cao nhất, là chuỗi tạo

ra tỷ lệ đầu ra cao nhất so với đầu vào, trong đó, đầu ra xấu làm giảm hiệu suất bền

vững. Ngoài ra, có thể so sánh những chuỗi phức tạp với các bộ đầu ra và đầu vào khác

nhau bằng cách sử dụng chỉ số TFP.

Để sử dụng chỉ số TFP, nhiều biến đầu vào - đầu ra phải được thể hiện bằng một mẫu

số chung. Giải pháp được đề ra là sử dụng mức giá phản ánh tầm quan trọng tương đối

của các biến đầu vào và đầu ra đối với tính bền vững.

5.4. Nền kinh tế sinh học hiệu suất tài nguyên: vai trò của việc sử dụng

phân tầng sinh khối

Trong một nền kinh tế tuần hoàn, sử dụng nhiều nguồn tài nguyên tái tạo, với

một số tái sử dụng và chu kỳ tái chế, nên được khuyến khích khi thích hợp. Các vật

liệu dựa trên sinh học, chẳng hạn như gỗ, có thể được sử dụng theo nhiều cách, và

việc tái sử dụng và tái chế có thể diễn ra nhiều lần. Điều này đi cùng với việc áp

dụng hệ thống phân cấp chất thải và, nói chung, các tùy chọn dẫn đến kết quả môi

trường tổng thể tốt nhất... Lĩnh vực dựa trên sinh học cũng cho thấy tiềm năng đổi

mới của nó trong các vật liệu, hóa chất và quy trình mới, có thể là một phần không

Page 28: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

27

thể thiếu của nền kinh tế tuần hoàn. Nhận ra tiềm năng này phụ thuộc vào đầu tư vào

các nhà máy lọc sinh học tích hợp, có khả năng xử lý sinh khối và chất thải sinh học

cho các mục đích sử dụng khác nhau.

5.4.1. Khái niệm sử dụng phân tầng sinh khối

Mặc dù chưa có một định nghĩa chính thức được thống nhất bởi cộng đồng

quốc tế, trong khái niệm sử dụng phân tầng sinh khối, sinh khối được khai thác trước

tiên cho các sản phẩm có giá trị gia tăng cao hơn trước khi sử dụng các vật liệu còn

lại làm nguồn năng lượng. Giá trị gia tăng ở đây có thể là tài chính, nhưng cũng có

thể là môi trường và xã hội. Lấy ví dụ, việc sản xuất đồ nội thất từ gỗ cô lập cacbon

trong thời gian dài có thể làm tăng giá trị gia tăng về môi trường của gỗ. Việc này

cũng có giá trị kinh tế cao hơn so với đốt gỗ để sản xuất điện và sản xuất đồ nội thất

cũng sẽ sử dụng nhiều lao động có tay nghề cao hơn. Trong khái niệm sử dụng phân

tầng, mọi sinh khối còn lại sau quá trình sản xuất đồ gỗ nội thất sau đó được sử dụng

cho mục đích năng lượng sinh học, từ đó tối đa hóa hiệu quả sử dụng sinh khối.

Điều này phù hợp với thành phần hiệu suất tài nguyên của khái niệm nền kinh tế

tuần hoàn.

Khía cạnh bổ sung quan trọng của việc sử dụng phân tầng đối với chính sách

trong tương lai là sự tương tác với các chuỗi giá trị khác nhau. Ví dụ, lignocellulose

sử dụng làm vật liệu (như ván sợi), sau đó, sử dụng hóa chất trong ngành công

nghiệp giấy và bột giấy; các sợi còn lại có thể được đốt để lấy năng lượng.

Một tỷ lệ lớn tăng trưởng thương mại toàn cầu viên nén gỗ hiện nay đang dành

cho lĩnh vực sản xuất năng lượng sinh học, tức là đốt viên nén để tạo ra điện và/hoặc

nhiệt. Sử dụng sinh khối theo cách này sẽ bỏ qua giá trị gia tăng có thể thu được từ

sinh khối mà tập trung vào dạng năng lượng. Ngoài ra, tạo việc làm cho các ứng

dụng năng lượng sinh học bị hạn chế so với sản xuất sinh học. Lý do chính cho việc

sử dụng viên nén gỗ trong các ứng dụng năng lượng sinh học là để các quốc gia đáp

ứng các yêu cầu khí hậu. Ở châu Âu, sản xuất năng lượng sinh học đang được triển

khai ở quy mô lớn: đến năm 2020 khoảng 10% nhu cầu năng lượng sơ cấp của EU

có thể đến từ sinh khối. Tuy nhiên, nhiều tranh luận đang diễn ra về việc giảm phát

thải GHG thực tế đạt được theo cách này.

Các mục tiêu của sản xuất năng lượng sinh học ít nhất là gấp đôi so với mức sử

dụng nguyên liệu thực vật của con người trên toàn cầu hiện nay, việc sản xuất này

đã đòi hỏi sự dụng khoảng 75% diện tích đất trồng cây và hơn 70% lượng nước tưới

tiêu. Tuy nhiên, đốt sinh khối để cung cấp năng lượng làm tăng lượng cacbon trong

không khí giống như đốt than, dầu hoặc khí đốt nếu việc thu hoạch sinh khối làm

Page 29: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

28

giảm lượng cacbon lưu trữ trong thực vật và đất, hoặc làm giảm khả năng cô lập

cacbon, thậm chí dẫn đến những hậu quả bất lợi.

Nói cách khác, giả định rằng quá trình đốt sinh khối là trung tính cacbon, bất

kể nguồn cacbon hữu cơ nào, có thể là thiếu sót nếu tính toán bỏ qua CO2 được giải

phóng bằng cách đốt cháy sinh khối.

Trong nền kinh tế tuần hoàn, khái niệm phân tầng thường được nhắc đến và có

thể hiểu là một khái niệm trung tâm của tính tuần hoàn.

5.4.2. Sử dụng phân tầng liên quan đến các mục tiêu chính sách kinh tế tuần

hoàn như thế nào?

Tiềm năng tạo ra giá trị của quy tắc phân tầng được bắt nguồn từ chi phí cận

biên thấp hơn việc tái sử dụng vật liệu theo phân tầng thay thế cho nguồn nguyên

liệu nguyên thủy và chi phí trực tiếp (nhân công, năng lượng, vật liệu). Tuy nhiên,

về mặt kinh tế, điều này không thực sự rõ ràng. Trong thời điểm giá dầu thấp, chi

phí sản xuất nhựa nguyên gốc có thể thấp hơn quy trình tái chế, vì quá trình làm

sạch và chuẩn bị nhựa đã qua sử dụng đòi hỏi thêm đầu vào bao gồm nhân công lao

động, năng lượng và nước. Trong trường hợp không có cải cách trợ cấp nhiên liệu

hóa thạch và định giá cacbon rõ ràng, các yếu tố này có thể ảnh hưởng lớn đến ý

Page 30: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

29

nghĩa kinh tế của việc sử dụng phân tầng một số vật liệu trong từng trường hợp cụ

thể.

Một trường hợp rõ ràng hơn về sử dụng phân tầng là ngành dệt may với các

vật liệu có nguồn gốc hóa thạch hoặc nhiên liệu sinh học. Các vật liệu sử dụng trong

ngành dệt may có thể được tái sử dụng nhiều lần. Tái sử dụng vải trong điều kiện tối

ưu, chi phí thấp và tiết kiệm. Có nhiều mô hình hoạt động, từ quyên góp, trao đổi

quần áo đến các hoạt động bán lại thương mại quy mô nhỏ và quy mô lớn được tổ

chức.

Việc sử dụng phân tầng sinh khối theo thuật ngữ thị trường diễn ra hoàn toàn

khác, vì nó đề cập thường xuyên đến lĩnh vực sơ cấp chứ không phải là lĩnh vực thứ

cấp (sản xuất và công nghiệp).

6. Cân nhắc chính sách

Về mặt chính trị, vai trò của nền kinh tế tuần hoàn đang dần trở nên quan trọng

hơn khi những thách thức lớn cho tương lai gắn liền với xã hội. Liên quan đến việc

tái sử dụng, tái sản xuất và tái chế, các khía cạnh chính sách của tính tuần hoàn vượt

qua nhiều ranh giới - chẳng hạn như thương mại, thuế, chính sách môi trường, công

nghiệp, chính sách đổi mới. Kinh tế sinh học là một vấn đề chính sách như vậy, bao

gồm các bên liên quan khác như nông dân và người trồng rừng. Vì vậy, khái niệm

kinh tế sinh học tuần hoàn trở nên phức tạp hơn đối với các nhà hoạch định chính

sách. Chú trọng vào chất thải làm nguyên liệu, và ý tưởng nâng cao giá trị gia tăng là

ưu tiên cao cho khát vọng của nền kinh tế sinh học.

Xử lý sinh học chất thải là sự kết hợp của quá trình ủ và phân hủy kỵ khí

truyền thống với xử lý sinh học xenlulo hiện đại. Điều này khiến cho việc tìm ra một

cơ chế chính sách duy nhất phù hợp để bao quát toàn bộ chủ đề là rất khó, mặc dù,

các thuật ngữ về tuần hoàn và tính bền vững rõ ràng là các chủ đề phổ biến. Ví dụ,

nhu cầu về R&D thượng nguồn đối với sản xuất phân bón ít hơn so với xử lý sinh

học xenlulo. Tương tự, quan hệ đối tác công - tư đối với ủ phân công nghiệp ít liên

quan hơn vì những rủi ro liên quan đến đầu tư tư nhân thấp hơn, với kinh nghiệm

hàng thế kỷ trong kỹ thuật ủ phân.

Tuy nhiên, một số “công cụ” có thể được áp dụng cho các công nghệ truyền

thống có khả năng giúp cải thiện khả năng dự đoán và hiệu suất. Đặc biệt, những

tiến bộ gần đây trong hệ gen học và ngành học mới về sinh học kỹ thuật có thể mở

ra con đường mới về nghiên cứu và khám phá.

Page 31: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

30

Các cân nhắc chính sách ở đây là sự kết hợp giữa xem xét chung và cụ thể.

Xem xét chung có xu hướng nhắm vào những tác động lớn hơn xung quanh tính bền

vững và tạo ra quan điểm và tương lai tuần hoàn cho xã hội. Đối với các vấn đề cụ

thể, người ta sẽ xem xét cụ thể hơn, ví dụ: nhu cầu tiếp tục thực hiện R&D trong xử

lý sinh học hợp nhất.

6.1. Làm rõ các định nghĩa và thuật ngữ

Sự phát triển của các định nghĩa chung sẽ cho phép thu thập dữ liệu hiệu quả

hơn. Điều này sẽ giúp giải quyết vấn đề so sánh giữa các nguồn dữ liệu khác nhau

được đề cập ở trên.

Nhà máy sinh học: Cơ quan Năng lượng Quốc tế mô tả nhà máy xử lý sinh học

là “quá trình xử lý sinh khối bền vững thành một loạt các sản phẩm có thể bán được

(thực phẩm, thức ăn gia súc, nguyên liệu, hóa chất) và năng lượng (nhiên liệu, điện,

nhiệt)”. Định nghĩa này gợi ý rằng các nhà máy xử lý sinh học nên sản xuất cả các

sản phẩm năng lượng và phi năng lượng. Cả các sản phẩm sơ cấpvà các quy trình

dựa trên năng lượng đều được coi là phương pháp tiếp cận xử lý sinh học thực sự

với mục tiêu cuối cùng là xử lý sinh khối bền vững.

Kinh tế sinh học: việc chưa có một định nghĩa thống nhất là một trở ngại. Nó

phủ nhận đầu vào khoa học, khiến việc xây dựng các cơ sở dữ liệu quốc tế trở nên

phức tạp và có thể tạo ra các rào cản thương mại. Khái niệm của OECD đưa ra năm

2009 đã dần trở nên phổ biến. Theo đó, kinh tế sinh học được định nghĩa là “tập hợp

các hoạt động kinh tế trong đó công nghệ sinh học đóng góp chủ yếu vào sản xuất

và công nghiệp sơ cấp, đặc biệt là khoa học sự sống tiên tiến được áp dụng để

chuyển đổi sinh khối thành vật liệu, hóa chất và nhiên liệu”. Chính ý nghĩa của việc

sử dụng sinh khối, từ khu vực đến toàn cầu, đã mở rộng lĩnh vực kinh tế sinh học

vượt ra ngoài những đóng góp của khoa học sự sống.

Chất thải sinh học: hầu hết các số liệu thống kê không phân biệt trọng lượng

ướt và khô, do đó việc so sánh là không thể. Điều quan trọng là phải làm rõ định

nghĩa chất thải sinh học. Theo Ủy ban Châu Âu: “Chất thải sinh học được định

nghĩa là chất thải trong vườn và công viên có thể phân hủy sinh học, chất thải thực

phẩm và chất thải từ nhà bếp của các hộ gia đình, nhà hàng, nhà cung cấp thực

phẩm, và chất thải tương tự từ các nhà máy chế biến thực phẩm. Chất thải sinh học

không bao gồm dư lượng lâm nghiệp hoặc nông nghiệp, phân chuồng, bùn thải hoặc

chất thải phân hủy sinh học khác như vải dệt tự nhiên, giấy hoặc gỗ chế biến. Nó

cũng không bao gồm những sản phẩm phụ của quá trình sản xuất thực phẩm vốn

không bao giờ được coi là chất thải”. Loại bỏ các dư lượng lâm nghiệp và nông

nghiệp, khối lượng chất thải sinh học được tạo ra sẽ rất khác.

Page 32: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

31

Xử lý chất thải: có thể được thay đổi để cho phép thực hiện việc thu gom, vận

chuyển, phân loại theo phương thức chuyển hóa trong các nhà máy sinh học. Nếu

một vật liệu được xử lý chuyển hóa trong nhà máy sinh học thì nó không còn được

coi là chất thải mà là tài nguyên. Nếu việc này chính thức được thực hiện, sẽ giúp

giải quyết được các vấn đề xung quanh quá trình thu gom và vận chuyển chất thải.

Định nghĩa về “sản phẩm dựa trên sinh học” và khuôn khổ hài hòa cho các sản

phẩm dựa trên sinh học cũng rất cần thiết để làm tiêu chuẩn cho mua sắm công và

phát triển kinh doanh. Ủy ban Tiêu chuẩn Châu Âu đã đạt được tiến bộ trong việc

xây dựng khung tiêu chuẩn hóa mạch lạc và hài hòa đối với các sản phẩm dựa trên

sinh học, tuy nhiên, bên cạnh đó vẫn cần thực hiện truyền bá việc sử dụng các tiêu

chuẩn đã được xây dựng nhằm tận dụng tiềm năng thị trường. Quan hệ hợp tác quốc

tế này có thể được thiết lập bằng cách trao đổi các Thực tiễn và Kinh nghiệm Tốt

nhất để đạt được cách tiếp cận chặt chẽ hơn với các sản phẩm dựa trên sinh học trên

toàn cầu. Nếu không, chắc chắn sẽ hình thành những rào cản thương mại.

Việc đánh giá về tiềm năng cạnh tranh của công nghệ sinh học, trong đó, đòi

hỏi mô hình kinh tế của các công nghệ cạnh tranh là rất cần thiết. Tương lai của giao

thông phi cacbon phụ thuộc vào việc sản xuất liệu nhiên liệu sinh học ethanol

xenlulo có hiệu quả kinh tế ở quy mô lớn hay không và liệu điều đó có giúp cạnh

tranh với xe điện hay không.

Vì nhiều lý do khác nhau, cần có thuật ngữ được tiêu chuẩn hóa trong công

nghệ sinh học. Ủy ban Kỹ thuật ISO TC ISO/TC 276 đang xây dựng một kho lưu trữ

các thuật ngữ liên quan đến công nghệ sinh học. ASTM đã có tiêu chuẩn về thuật

ngữ trong công nghệ sinh học công nghiệp.

Cuối cùng, sự kết hợp của các tác nhân giữa các ngành và từ đó tạo ra các

chuỗi giá trị mới bị hạn chế bởi sự khác biêt và thiếu các thuật ngữ và tiêu chuẩn

chung. Nói tóm lại, những gì cần là từ vựng thông thường được thống nhất trong các

chuỗi giá trị, từ các nhà cung cấp nguyên liệu đến công nghệ xử lý sinh học đến các

chủ thể cuối nguồn trong các lĩnh vực áp dụng.

6.2. Các công cụ quan trọng nhất trong xử lý sinh học chất thải

Công cụ quốc gia/khu vực quan trọng nhất trong xử lý chất thải sinh học là gì?

Quy trình dẫn đến chiến lược cho quốc gia/vùng đặt ra các nguyên liệu có thể, số

lượng, tính bền vững của việc sử dụng, nhu cầu cơ sở hạ tầng và thời gian biểu đến

thời điểm quyết định cần phải tạo ra sự rõ ràng cho các nhà hoạch định chính sách

và khu vực tư nhân. Trên thực tế, điều này dẫn đến một chiến lược hai hướng: trước

hết là một lộ trình nhà máy xử lý sinh học (định hướng quyết định), phải được nối

Page 33: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

32

theo bởi một kế hoạch hành động định hướng hỗ trợ. Việc thực hiện từng nội dung

liên quan đến việc thiết lập một hội đồng lãnh đạo quốc gia/ khu vực gồm các chủ

thể công và tư nhằm đảm bảo đáp ứng được các mốc thời gian.

Trên hết, khu vực tư nhân đang tìm kiếm sự chắc chắn về chính sách. Các công

ty có thể đầu tư vào nhiều quốc gia, sự thiếu chắc chắn về triển vọng chính sách ở

bất kỳ một quốc gia nào cũng có thể cản trở đầu tư vàoquốc gia đó. Một khung thời

gian 15-25 năm là cần thiết để phát triển ngành công nghiệp dựa trên nền tảng sinh

học và thiết lập lợi thế cạnh tranh so với sản xuất dựa trên nhiên liệu hóa thạch.

Nhiên liệu hóa thạch vẫn được hưởng các khoản trợ cấp lớn, ngành công nghiệp này

đã có hàng thập kỉ để hoàn thiện các quy trình, chuỗi cung ứng và giá trị, và nhìn

chung các nhà máy đang hoạt động được khấu hao hoàn toàn.

Nếu xã hội cần một sự thay đổi trong sản xuất, sản xuất sinh học được đánh

giá là có đủ đặc tính chung tốt, thì cần có những thay đổi lớn trong xã hội. Đó không

chỉ là lợi ích của khu vực tư nhân “đơn thương độc mã”, và trong nhiều thập kỷ tới,

cần có đầu tư công để hình thành cuộc cách mạng sản xuất này.

6.3. Điều chỉnh chính sách xử lý chất thải sinh học với mục tiêu bền

vững

Quá trình sản xuất sinh học liên quan trực tiếp đến một số thách thức lớn của

xã hội và các mục tiêu chính sách, trong đó, chủ yếu là các mục tiêu giảm thiểu biến

đổi khí hậu, an ninh năng lượng và cạn kiệt tài nguyên. Sản xuất sinh học cũng có

thể gián tiếp liên quan đến vấn đề an ninh lương thực (vì sử dụng sinh khối công

nghiệp có khả năng tác động đến an ninh lương thực), phá hủy đất đai và an ninh

nước. Vì thế, sản xuất sinh học là yếu tố liên quan đến những thách thức quan trọng

nhất trong cuộc sống con người ở thời điểm hiện tại và trong tương lai, có thể gọi

chung là “phát triển bền vững”, và do đó, liên quan trực tiếp đến các mục tiêu trong

Chương trình nghị sự 2030 của Liên Hợp Quốc về Phát triển bền vững.

Xử lý chất thải sinh học giải quyết một số mục tiêu chính sách lớn

Việc sử dụng vật liệu phế thải trong xử lý sinh học đáp ứng một số mục tiêu và

thách thức chính sách như sau:

• Làm giảm áp lực đối với đất đai, do đó tăng cường tính bền vững

• Tránh các vấn đề xung quanh thay đổi mục đích sử dụng đất gián tiếp (ILUC)

• Tránh các vấn đề như tranh cãi về thực phẩm và nhiên liệu

• Cải thiện dư luận thông qua ba vấn đề trên

Page 34: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

33

• Đối với khí thải công nghiệp, đặc biệt là khí CO và CO2, cũng như bốn ưu

điểm trên, sử dụng GHG sẽ thay vì phát thải, tức là có đóng góp vào các mục tiêu

chính sách và khoa học về giảm phát thải trong chính sách khí hậu

• Đối với MSW (chất thải rắn đô thị), tất cả các trường hợp trên đều được áp

dụng (vì MSW được chuyển đổi thành khí metan tại các bãi chôn lấp và khí mê-tan

tác động GHG mạnh hơn nhiều so với CO2), và cũng giải quyết được một thách

thức chính sách bổ sung - việc giảm dần việc cung cấp các vị trí phù hợp cho bãi

chôn lấp rác mới, vốn được coi là một vấn đề đối với nhiều quốc gia.

Các vấn đề cốt lõi xung quanh quá trình xử lý sinh học và sử dụng chất thải

Quyết định về địa điểm đặt nhà máy xử lý sinh học chất thải không phải là một

việc đơn giản, mặc dù có nhiều ý kiến về việc đưa các địa điểm này về vùng nông

thôn. Có nhiều yếu tố cần được xem xét. Trong đó,yếu tố mang tính quyết định có

thể là quyết định đưa chất thải rắn đô thị (MSW) làm nguyên liệu. Chính quyền quốc

gia hoặc khu vực nếu muốn xem xét xử lý sinh học chất thải cần phải có đủ kiến

thức về các vấn đề được miêu tả trong Bảng 4.

Bảng 4. Các vấn đề sử dụng chất thải và xử lý sinh học chung trong quá trình ra quyết

định cho các nhà hoạch định chính sách.

Chính quyền quốc gia hoặc khu vực muốn xem xét xử lý chất thải sinh học, cần phải có

đủ kiến thức về những lĩnh vực sau:

Loại và số lượng chất thải có sẵn trong phạm vi của nhà máy được đề xuất đảm bảo

tính bền vững.Hạn chế chủ yếu của việc sử dụng nguyên liệu thô từ nông nghiệp có liên

quan đến giá trị kinh tế và mật độ năng lượng thấp điển hình. Vận chuyển đường dài là

một yếu tố hạn chế.

Loại chất thải có thể cần phải được nhập khẩu (ví dụ, để duy trì hoạt động quanh năm).

Vị trí của cảng gần nhất có thể là một yếu tố quyết định.

Loại hình nhà máy xử lý sinh học sẽ được xây dựng (càng sử dụng nhiều nguyên liệu,

khả năng thành công càng cao).

Những hình thức tiền xử lý sẽ được sử dụng (quá trình khí hóa mở rộng đáng kể phạm

vi sử dụng các nguyên liệu tiềm năng);

Vị trí vật lý khả thi (tiếp cận với các loại sinh khối khác nhau, bao gồm cả MSW, sự

chấp thuận của công chúng

Những cơ quan có thể được kêu gọi để thu thập dữ liệu.

Xây dựng cơ sở hạ tầng mới (ví dụ: đường bộ, đường sắt, điện).

Vai trò ban đầu của khu vực công (ví dụ: bảo đảm tiền vay cho đầu tư tư nhân có rủi

ro).

Các quy định cấp phép xử lý chất thải tại địa phương (ví dụ: các lệnh cấm cụ thể liên

quan đến hình thức vận chuyển vật liệu thải).

Rủi ro trong quá trình xử lý rác thải (ví dụ như các yếu tố: mùi hôi, kinh tế, sức khỏe,

môi trường).

Page 35: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

34

Ý nghĩa đối với các thị trường hiện tại, đặc biệt là phương pháp tái chế, đốt và ủ phân

công nghiệp.

Nhận thức cộng đồng (về chất thải, nhà máy công nghiệp, chính sách cácnh đồngnâu/

cánh đồng xanh (brownfield/ greenfield), chất sinh học biến đổi gen, ảnh hưởng đến

tính tiện nghi tại địa phương, ảnh hưởng đến giá nhà).

Làm thế nào để có một khung pháp lý đủ linh hoạt.

Lực lượng lao động có trình độ với các kỹ năng kỹ thuật cần thiết.

Vai trò cần thiết của việc tái sử dụng và xử lý nước thải và nội dung hữu ích hoặc bị

cấm của chính sách hiện nay.

Các thành phố kém phát triển có thể dễ dàng đầu tư xây dựng một nhà máy sinh học

nếu nó mang lại lợi ích cũng như tạo việc làm cho chính người dân trong thành phố.

Các nhà đầu tư khác nhau sẽ có các chương trình nghị sự chính trị khác nhau và cần

được quản lý chặt chẽ.

Những khoảng cách giữa R&D, trình diễn và nhà máy sản xuất nguyên mẫu (phổ biến ở

nhiều quốc gia).

Các sản phẩm dựa trên nhiên liệu sinh học thường không cạnh tranh với các sản phẩm

hóa dầu (điều này không đáng ngạc nhiên vì ngành công nghiệp hóa dầu đã có nhiều

thập kỷ để hoàn thiện các quy trình và sản phẩm của mình và ngành công nghiệp sinh

học non trẻ cần được hỗ trợ chính sách để nâng cao tính cạnh tranh hơn).

Thiếu sự lãnh đạo chính trị nhất quán.

Thay thế tài nguyên hóa thạch và giảm thiểu biến đổi khí hậu

Chiến lược kinh tế sinh học đòi hỏi thay thế đáng kể tài nguyên dựa trên nền

tảng hóa thạch bằng tài nguyên tái tạo. Nhiều chính phủ đã đặt mục tiêu giảm phát

thải để đáp ứng các nghĩa vụ quốc tế, và kết quả là nỗ lực hướng tới sử dụng sinh

khối trong sản xuất điện, nhiên liệu lỏng và khí đã được thực hiện. Theo Cơ quan

Năng lượng Tái tạo Quốc tế, ít nhất 154 quốc gia đã đặt mục tiêu phát triển năng

lượng tái tạo vào giữa năm 2015. Tuy nhiên, chính sách đối với các vật liệu và hóa

chất nền tảng sinh học ít được quan tâm hơn.

Vào tháng 6 năm 2015, G7 vạch ra kế hoạch loại bỏ nhiên liệu hóa thạch vào

cuối thế kỉ này, kêu gọi càng sớm càng tốt giảm được 70% lượng phát thải năm

2010 trước năm 2050, phù hợp với các mục tiêu chung của Thỏa thuận Paris từ

COP21. Sự thay đổi lớn này kêu gọi hành động chính sách trên nhiều mặt, ví dụ:

thuế, năng lượng, nông nghiệp, quản trị, đầu tư. Khoa học và công nghệ nắm giữ các

câu trả lời cho các vấn đề liên quan đến tương lai năng lượng ít carbon, phi hóa

thạch, bằng chứng là sự phát triển của công nghệ năng lượng mặt trời và gió.

Thoái hóa đất đai là nhiệm vụ trọng tâm đối với các nhà hoạch định chính

sách

Page 36: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

35

Ở cấp độ chính trị, những tác động của việc phá hủy và suy thoái đất đai đang

được hiện thực hóa. Cuối năm 2017, Bộ trưởng Môi trường Vương quốc Anh

Michael Gove đã đưa ra lời cảnh báo rằng, chỉ sau 30-40 năm, sẽ “xóa sổ cơ bản độ

phì nhiêu của đất đai” các khu vực trên toàn nước Anh. Chính phủ cần khuyến khích

nông dân giải quyết cùng lúc tình trạng đất bạc màu và suy giảm đa dạng sinh học.

Thực tiễn cần thúc đẩy chất lượng của đất đai để phục vụ sản xuất thực phẩm, đồng

thời cung cấp các dịch vụ hệ sinh thái quan trọng khác.

Tình hình ở Anh hoàn toàn không phải là ngoại lệ. Đúng hơn, đây là một vấn

đề mang tầm quan trọng gần như toàn cầu. Khoảng một phần ba đất đai trên thế giới

đã bị suy thoái. Mỗi năm ước tính khoảng 12 triệu ha đất nông nghiệp được sử dụng

để sản xuất 20 triệu tấn ngũ cốc bị thất thoát do ảnh hưởng của tình trạng suy thoái

đất. Khoảng 2,5% diện tích đất trồng trọt ở Trung Quốc bị ô nhiễm trầm trọng nên

không thể sử dụng cho mục đích trồng trọt.

Ước tính toàn cầu về diện tích đất bị suy thoái dao động từ dưới 1 tỷ đến hơn 6

tỷ hecta, với sự khác biệt đáng kể trong phân bố theo không gian. Nguy cơ đánh giá

quá cao tính sẵn có và tiềm năng sản xuất của các khu vực đất đai này là vô cùng

nghiêm trọng, vì nó có thể chuyển hướng sự chú ý ra khỏi những nỗ lực giảm thiểu

chất thải thực phẩm và nông nghiệp.

Tăng trưởng xanh

Các mục tiêu chính sách của xử lý sinh học chất thải cũng phù hợp với khái

niệm Tăng trưởng xanh. Tăng trưởng xanh được định nghĩa như sau: “Nội dung của

tăng trưởng xanh là thúc đẩy tăng trưởng và phát triển kinh tế trong khi đảm bảo

rằng những tài sản tự nhiên tiếp tục cung cấp các tài nguyên và dịch vụ môi trường

vốn đóng vai trò đặc biệt quan trọng đối với phúc lợi của con người. Để làm được

điều này, cần phải xúc tiến đầu tư và đổi mới, điều này sẽ củng cố tăng trưởng bền

vững và tạo ra các cơ hội kinh tế mới”.

Quốc gia đầu tiên kết hợp Tăng trưởng xanh vào mục tiêu chính sách lớn là

Hàn Quốc, với Chiến lược Thực hiện Tăng trưởng Xanh Quốc gia, bao gồm 3 mục

tiêu chính và 10 định hướng chính sách phù hợp với mục tiêu giảm thiểu biến đổi

khí hậu.

Quy định về quản lý chất thải thực phẩm

Thời điểm để điều chỉnh xử lý sinh học chất thải phù hợp với quy định mới về

quản lý chất thải thực phẩm mới là rất lý tưởng ở nhiều quốc gia. Ví dụ, vào năm

2013, Hội đồng Bắc Ireland đã đưa ra các quy định về quản lý quá trình xử lý chất

thải thực phẩm đặt ra trách nhiệm đối với các doanh nghiệp thực phẩm trong việc

Page 37: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

36

thực hiện thu gom riêng lẻ chất thải thực phẩm và nghiêm cấm hình thức chôn lấp

chất thải thực phẩm tách khỏi nguồn. Bên cạnh đó, các công cụ theo luật định đặt ra

một nghĩa vụ đối với các hội đồng, đó là cung cấp các thùng chứa để thực hiện thu

gom chất thải thực phẩm riêng lẻ từ các hộ gia đình. Điểm cuối cùng này giúp phá

bỏ một trong những rào cản đối với việc xử lý chất thải sinh học.

Điều này đã tạo ra một động lực mạnh mẽ cho các dự án hỗ trợ phát triển các

chính sách và nghiên cứu kinh tế sinh học/tuần hoàn. Một ví dụ là dự án ReNEW đã

chứng minh rằng có thể tạo ra hơn 13.000 việc làm nếu Bắc Ireland chuyển sang nền

kinh tế tuần hoàn, xác định “các cơ hội đặc biệt trong quản lý quá trình xử lý chất

thải từ thức ăn và thức uống, xử lý sinh học và kinh tế sinh học”.

6.4. Tài trợ cho công nghệ xử lý sinh học chất thải

Hình thức tài trợ phổ biến nhất cho các công nghệ xử lý sinh học ở Mỹ là sự

kết hợp giữa vốn chủ sở hữu, được kết hợp với các khoản tài trợ của liên bang hoặc

bảo lãnh cho vay được liên bang hỗ trợ. Khoản trợ cấp này không cần phải hoàn trả,

nhưng sẽ phải chấp nhận một loạt các yêu cầu kỹ thuật. Để xây dựng các nhà máy

xử lý sinh học, cả USDA và USDOE đều ủng hộ bảo lãnh khoản vay 20 năm.

Với sự bảo lãnh cho vay của chính phủ, chính phủ (người bảo lãnh) hứa sẽ

đảm nhận nghĩa vụ trả của người vay tiền nếu người vay đó không trả được nợ. Bảo

đảm khoản vay có vai trò tương tự như cung cấp tài chính dự án thông thường,

nhưng chính phủ chấp nhận rủi ro công nghệ và hỗ trợ vay. Điều này hợp lý hóa các

bước phê duyệt và kiểm soát.

Ở Châu Âu, cơ chế chính là quan hệ đối tác công - tư liên quan đến tài trợ đối

ứng. Cơ chế bảo đảm tiền vay, phần lớn không được áp dụng trong xây dựng nhà

máy xử lý sinh học ở châu Âu, nhưng được áp dụng thường xuyên ở Mỹ, giúp quản

lý các khoản nợ. Tại thời điểm xây dựng Nhà máy xử lý sinh học Crescentino ở Ý,

tài trợ bằng nợ được coi là khó khăn lớn trong tài chính tổng thể của việc xây dựng.

Các nhà hoạch định chính sách cần đảm bảo rằng chiến lược tài trợ bằng nợ là hợp

lý trước khi cam kết các quỹ công. Các công cụ tài chính để xây dựng quan hệ đối

tác công - tư phải hấp dẫn và không quá quan liêu. Hãy chắc chắn việc thực hiện

quản lý theo giai đoạn (gate-staging) để đảm bảo rằng việcn cấp tài chính công theo

từng giai đoạn phụ thuộc vào kết quả thực hiện các mục tiêu.

Với sự xuất hiện của InnovFin ở châu Âu, việc tài trợ cho các nhà máy xử lý

sinh học thông qua bảo lãnh cho vay trở nên dễ dàng hơn. Việc cung cấp tài chính

cho các nhà đổi mới của InnovFin-EU đã được đưa ra bởi Cộng đồng châu Âu và

Tập đoàn ngân hàng đầu tư châu Âu trong khuôn khổ Horizon 2020. Nó cung cấp

các khoản bảo lãnh hoặc cho vay trực tiếp (24 tỷ EUR) cho các dự án nghiên cứu và

đổi mới. InnovFin hướng tới mục tiêu cải thiện khả năng tiếp cận tài chính rủi ro cho

Page 38: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

37

các dự án nghiên cứu và đổi mới; cơ sở hạ tầng nghiên cứu; quan hệ đối tác công tư;

và các dự án đặc biệt thúc đẩy các dự án mẫu công nghiệp đầu tiên. Đây là một bước

tiến lớn ở châu Âu vì các khoản bảo lãnh cho vay trước đây không xuất hiện trong

danh mục các cơ chế tài trợ cho các dự án kinh tế sinh học.

Các công cụ sáng tạo đang được xây dựng và phát triển để tài trợ cho việc xây

dựng nhà máy xử lý sinh học, chẳng hạn như các ngân hàng xanh được thành lập

bằng tiền đóng thuế nhưng hoạt động theo hình thức một ngân hàng thương mại.

Khái niệm về ngân hàng đầu tư xanh, trong đó, các quyết định đầu tư dựa trên đánh

giá đúng đắn về kế hoạch kinh doanh, đang ngày càng trở nên phổ biến. Các dự án

ngân hàng xanh điển hình bao gồm năng lượng tái tạo ngoài khơi và trên bờ, năng

lượng gió và năng lượng mặt trời ngoài khơi. Việc mở rộng các dự án xây dựng nhà

máy xử lý sinh học dường như là một lựa chọn dễ dàng, nhưng cũng đầy rủi ro trong

thời điểm hiện tại. Việc xem xét các mô hình khác là rất cần thiết, các mô hình lai có

thể mang lại hiệu quả hơn bất kỳ mô hình nào hiện có.

6.5. Trợ cấp NC&PT

Một thách thức lớn trong sản xuất dựa trên nền tảng sinh học, cụ thể là trong

xử lý sinh học chất thải, là tính chất đa ngành của đối tượng. Trợ cấp nghiên cứu sẽ

phải tạo ra không chỉ những kiến thức mới cần thiết, mà còn đào tạo ra cán bộ

chuyên môn. Hệ thống giáo dục hiện không phù hợp với thách thức đa ngành và liên

ngành này.

Các chương trình nghiên cứu về xử lý sinh học cần phải được thiết kế cẩn

thận. Sự cân bằng giữa R&D thượng nguồn dựa trên quy mô phòng thí nghiệm cần

được củng cố nhiều hơn và các hoạt động nghiên cứu hạ nguồn gần với thị trường

hơn, ví dụ: thỏa mãn nhu cầu tạo ra một hệ sinh thái công nghiệp. Hình thức đồng tài

trợ cho các chương trình nghiên cứu giữa các hội đồng nghiên cứu khác nhau ví dụ:

công nghệ sinh học, khoa học tự nhiên, kỹ thuật là một nhu cầu rõ ràng, để ngăn

chặn sự chồng chéo và trùng lặp. Các chương trình như BBI JU bao gồm một số loại

hình dự án, từ nghiên cứu cơ bản đến các cơ sở xử lý sinh học hàng đầu, mỗi loại

hình sẽ có một cấu trúc tài trợ khác nhau.

Mô hình R&D phù hợp

Cam kết về tiêu chuẩn kỹ thuật lớn nhất cho việc huy động giải pháp công

nghệ sinh học trong tương lai có thể là việc thực hiện tiêu chuẩn hóa sinh học kỹ

thuật, giúp thực hành nhanh chóng và ít tốn kém hơn. Tuy nhiên, hàng thập kỷ của

kỹ thuật trao đổi chất đối với các hóa chất và vật liệu dựa trên sinh học đã mang lại

nhiều thành công nghiên cứu nhưng ít sản phẩm có quy mô thương mại. Để thu hẹp

Page 39: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

38

khoảng cách giữa phòng thí nghiệm và thị trường, cần có các mô hình R&D&I mới

để tăng tốc quá trình này. Các mô hình khác nhau, bao gồm cả tổ chức nghiên cứu

trung gian công tư (IRO) cũng đã được thảo luận.

Xây dựng các doanh nghiệp vừa và nhỏ để đáp ứng những thách thức

Để giải quyết sự thiếu thành công mang tính thương mại này, các nhà nghiên

cứu tại Viện Khoa học và Công nghệ tiên tiến Hàn Quốc (KAIST) đã đề xuất 10

chiến lược chung về kỹ thuật trao đổi chất hệ thống để phát triển thành công các

chủng vi sinh vật công nghiệp. Kỹ thuật trao đổi chất hệ thống khác với kỹ thuật

thông thường ở hình thức kết hợp các phương pháp kỹ thuật trao đổi chất truyền

thống cùng với các công cụ của các lĩnh vực khác, như sinh học hệ thống, sinh học

tổng hợp và tiến hóa phân tử.

Số lượng công ty có khả năng sản xuất một hoặc nhiều chuyên ngành có thể rất

nhiều, tuy nhiên, chỉ số ít có khả năng kết hợp các chuyên ngành đó vào một quy

trình sản xuất. Trong một lĩnh vực công nghệ sinh học cụ thể và các lĩnh vực công

nghệ sinh học khác, cần có sự hợp tác hiệu quả hơn giữa các học viện và các công ty

công nghệ sinh học công nghiệp, và chuyển giao kiến thức nhanh hơn giữa khu vực

công và tư.

Xử lý sinh học hợp nhất: nhu cầu tiếp tục tài trợ cho R&D công

Trong phương pháp xử lý sinh học hợp nhất (CBP), các hoạt động thủy phân

(ligno) cellulose của enzyme được thực hiện dựa trên kết hợp với máy móc để tạo ra

các sản phẩm nền tảng sinh học nhờ một chất xúc tác sinh học vi khuẩn duy nhất. Bộ

Năng lượng Hoa Kỳ tán thành quan điểm rằng công nghệ CBP được coi là cấu hình

chi phí thấp cuối cùng cho quá trình thủy phân và lên men cellulose. Áp dụng hiệu

quả CBP trong thực tế là một nỗ lực của sinh học kỹ thuật để tạo ra chức năng chính

xác nhưng cũng để cải thiện chức năng của chất xúc tác sinh học để sử dụng trong

quy trình công nghiệp. Trong số các công nghệ xử lý sinh học khác nhau, CBP được

đánh giá là phương pháp kinh tế nhất về lâu dài, nhưng năng suất vẫn chưa đủ và

cần phải tiếp tục nhận được tài trợ nghiên cứu để đưa vào hoạt động.

Độ tin cậy, khả năng tái sản xuất và tiêu chuẩn hóa

Các khái niệm như khả năng tương tác, tách thiết kế khỏi sản xuất, tiêu chuẩn

hóa các bộ phận và hệ thống, tất cả đều được coi là nội dung trung tâm của các

ngành kỹ thuật, phần lớn không xuất hiện trong lĩnh vực công nghệ sinh học. Các

tiêu chuẩn cho phép tách rời thiết kế khỏi sản xuất, tách khỏi lắp ráp, triển khai là

một khái niệm thiết yếu trong kỹ thuật, giúp hạn chế khả năng không thể tái lập các

kết quả, điều luôn tồn tại trong sinh học và công nghệ sinh học. Tóm lại, việc áp

dụng các tiêu chuẩn tạo điều kiện cho khả năng mở rộng, tái lập và khả năng dự

Page 40: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

39

đoán của một lĩnh vực kỹ thuật mà sinh học kỹ thuật đang cần. Để vượt qua những

rào cản lớn như vậy đòi hỏi sự hợp tác công và tư, có thể được tạo điều kiện bởi các

chương trình R&D chung.

Tự động hóa nghiên cứu công nghệ sinh học và thư viện ADN công

Để đạt được các mục tiêu về độ tin cậy, khả năng tái lập, tiêu chuẩn hóa ngày

càng đòi hỏi tự động hóa các giao thức và luồng công việc trong nghiên cứu công

nghệ sinh học nếu sinh học kỹ thuật bước vào kỷ nguyên định lượng. Thiết kế hỗ trợ

máy tính với tính năng tự động hóa sẽ dẫn đến khả năng đạt được quy mô chưa từng

có. Hình thức tự động hóa sẽ cho phép các nhà nghiên cứu dành nhiều thời gian hơn

cho thiết kế thử nghiệm thay vì thực hiện thử nghiệm.

Hoạt động phòng thí nghiệm bổ sung là việc tiếp cận dữ liệu và ADN thông

qua các thư viện ADN tập trung có thể được truy cập bằng các ứng dụng nền tảng

điện toán đám mây. Khái niệm này có nghĩa là cho phép nhiều tế bào hoạt động độc

lập với chi phí thấp trong nhiều tổ chức, nhưng với quyền truy cập đám mây vào các

thư viện ADN để thực hiện các quy trình thử nghiệm phức tạp vượt quá khả năng

của hầu hết các tổ chức.

6.6. Một sân chơi bình đẳng

Những phản đối trợ cấp đối với bất kỳ loại hình công nghệ non trẻ nào nhằm

mục tiêu giảm thiểu tác động của biến đổi khí hậu có thể dựa trên sự bóp méothị

trường do trợ cấp gây ra. Tuy nhiên, không có thứ gọi là “sân chơi bình đẳng” giữa

các ngành công nghiệp nhiên liệu hóa thạch và bất kỳ ngành công nghiệp xanh nào.

Ngành công nghiệp nhiên liệu hóa thạch đã tồn tại trong suốt hơn một thế kỷ và trợ

cấp cho nhiên liệu hóa thạch vẫn còn ở mức khá cao. Hằng năm, những khoản trợ

cấp này liên tục tăng lên tới hàng trăm tỷ đô la.

Việc áp dụng giá cacbon và thuế cacbon có vẻ như là những giải pháp hợp lý

để tăng số tiền tài trợ cần thiết cho các đóng góp công của các dự án đó. Mục đích

của khung chính sách định giá cacbon sẽ là gửi đi các tín hiệu giá rõ ràng và đáng tin

cậy thúc đẩy quá trình chuyển đổi cacbon thấp trong trung hạn và dài hạn. Giá

cacbon rõ ràng có thể được định giá thông qua thuế cacbon, được biểu thị bằng giá

cố định cho mỗi tấn khí thải, hoặc thông qua các hệ thống mua bán phát thải, trong

đó, mục tiêu giảm phát thải được đặt ra thông qua việc cấp một số giấy phép cố

định, giá được thiết lập trên thị trường thông qua cung và cầu. Định giá khí thải

cacbon thông qua thuế cacbon sẽ là một động lực mạnh mẽ để đầu tư vào các công

nghệ sạch hơn và áp dụng các quy trình công nghiệp xanh hơn như mục tiêu lĩnh

vực sinh học kỹ thuật đã cam kết. Phát thải nên được tính ở mức giá bằng với giá trị

Page 41: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

40

tiền tệ của thiệt hại do khí thải gây ra. Điều này sẽ dẫn đến lượng phát thải CO2 tối

ưu (hiệu quả) về mặt kinh tế. Tuy nhiên, thỏa thuận về mức giá của thiệt hại vẫn khó

nắm bắt.

Loại bỏ trợ cấp nhiên liệu hóa thạch và định giá thiệt hại môi trường của các

ngành công nghiệp đó sẽ tạo ra một cục diện hoàn toàn khác về kinh tế học, và sẽ

khiến cho lập luận chống lại các ngành công nghiệp sinh học xanh, bền vững trở nên

ít thuyết phục hơn.

6.7. Các quy định, tiêu chuẩn và nhãn cho các sản phẩm dựa trên sinh

học liên quan đến hiệu quả tài nguyên

Cách tiếp cận các quy định và tiêu chuẩn cũng có thể là một công cụ để tạo ra

thị trường, ví dụ như thông qua đăng ký sản phẩm và đánh giá vòng đời. Một giải

pháp để xử lý sinh học chất thải để thu được kết quả ở đây là áp dụng chứng nhận

bền vững hợp lý, hài hòa, trong đó, hiện tại khu vực này là một sự kết nối của các dự

án tự nguyện khó hiểu và thiếu độ tin cậy của khả năng thực thi.

Các quy định điều chỉnh việc sử dụng sinh khối, đặc biệt là sử dụng phân tầng,

trong các lĩnh vực ứng dụng khác nhau giữa các ngành và ở cấp độ quốc gia và quốc

tế. Điều này có thể cản trở đầu tư vào các cơ sở mới và R&D vào các sản phẩm và

ứng dụng mới. Thách thức cụ thể trở nên tăng gấp đôi.

Đầu tiên, cần tăng cường sử dụng các công cụ, đặc biệt là các tiêu chuẩn

chung, hạn chế sự hình thành của các rào cản thương mại đối với các sản phẩm nền

tảng sinh học giữa các chuỗi giá trị và mở rộng tiềm năng thị trường.

Thứ hai, các rào cản quy định cản trở đầu tư vào các chuỗi giá trị, sản phẩm và

ứng dụng hiện có trong các lĩnh vực, phải được loại bỏ và ưu tiên thiết lập một sân

chơi bình đẳng cho các sản phẩm nền tảng sinh học.

Tiêu chuẩn cho các sản phẩm sinh học ở cấp quốc tế (ví dụ: về hàm lượng nền

tảng sinh học, khả năng phân hủy sinh học, tính bền vững và chức năng) sẽ đảm bảo

tính nhất quán giữa các ngành. Các tiêu chuẩn đóng vai trò trung tâm để phát triển

nhãn hiệu cho các sản phẩm nền tảng sinh học. Để trở nên dễ so sánh và củng cố

mức độ tin cậy, các đánh giá bền vững cho các sản phẩm sinh học cần phải được

chuẩn hóa và chứng nhận. Các tiêu chí bền vững cho các sản phẩm sinh học và

nhiên liệu sinh học phải tương đương và tính đến các yếu tố như tính toán phát thải

GHG và các tiêu chí để sản xuất sinh khối bền vững.

Theo cách tương tự mà Chương trình Tiêu chuẩn Nhiên liệu Tái tạo (RFS) đặt

ra các tiêu chuẩn tiết giảm phát thải GHG cùng với các quy định về thể tích đối với

nhiên liệu sinh học, các mục tiêu môi trường đối với các vật liệu sinh học trở nên

khả quan. Điều này có thể hiệu quả trong việc không chỉ khuyến khích sự phát triển

Page 42: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

41

của nhựa sinh học hiệu quả nhất mà còn ngăn cản sự đầu tư sớm vào nhựa sinh học

với hiệu suất môi trường kém hơn. Narayan và Patel (2003) đã nỗ lực xác định các

mục tiêu như vậy: họ khuyến nghị rằng, so với các lĩnh vực thông thường,

biopolyme và vật liệu tổng hợp sợi tự nhiên sẽ:

• Tiết kiệm ít nhất 20 năng lượng MJ (không tái tạo) mỗi kg polymer;

• Tránh ít nhất 1 kg CO2 mỗi kg polymer;

• Giảm hầu hết các tác động môi trường khác ít nhất 20%.

Việc ghi nhãn có thể đóng một vai trò quan trọng trong việc thương mại hóa

các sản phẩm sinh học, cung cấp cho người tiêu dùng thông tin rõ ràng về hiệu suất

môi trường của sản phẩm và hướng dẫn hành vi mua hàng đối với các lựa chọn bền

vững. Nhãn có thể rất quan trọng cho sự thu hút của các sản phẩm sinh học bằng

hình thức mua sắm công xanh. Theo quan điểm về sự phổ biến của các chương trình

ghi nhãn quốc gia và quốc tế, có thể đạt được những lợi ích bằng cách kết hợp các

sản phẩm sinh học với một chương trình hiện có thành công mà có cách tiếp cận hài

hòa và chuẩn hóa.

Xem xét nhựa sinh học trong chiến lược tương lai xử lý chất thải nhựa

Nhựa sinh học mở ra con đường phát triển nền kinh tế nhựa tuần hoàn, bền

vững bằng cách sử dụng các nguyên liệu thay thế và cung cấp phạm vi rộng hơn về

các lựa chọn cuối đời cho các sản phẩm nhựa. Tuy nhiên, đề xuất Chiến lược Nhựa

của EU không đưa ra các biện pháp lập pháp cụ thể để tận dụng lợi ích của nhựa

sinh học. Hiệp hội Nhựa sinh học châu Âu đã phác thảo một loạt các biện pháp và

hành động lập pháp tiềm năng cho phép nhựa sinh học thực hiện tiềm năng của

chúng trong nền kinh tế nhựa đang phát triển phải giải quyết các vấn đề nghiêm

trọng mà rác thải nhựa đang tạo ra. Mặc dù các biện pháp này liên quan đến EU,

nhưng chúng có thể có giá trị như nhau ở các quốc gia đang ở trong thế tiến thoái

lưỡng nan về quản lý xử lý chất thải nhựa (thực tế là tất cả các quốc gia thành viên

OECD và nhiều quốc gia khác).

- Xác định tiêu chí áp dụng, trong đó, nhựa phân hủy sinh học phù hợp hơn

nhựa thông thường

- Thúc đẩy việc sử dụng các vật liệu phân hủy sinh học, dựa trên sinh học để

sản xuất bao bì

- Xác định tiêu chí bền vững nguyên liệu cho nhựa sinh học

- Đảm bảo tiêu chí bền vững cho nguyên liệu nhựa dựa trên sân chơi bình đẳng

với nhựa dựa trên hóa thạch

Page 43: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

42

- Tuân theo các quy tắc mới, hài hòa để đảm bảo rằng, 10% tất cả các vật liệu

bao bì nhựa được đưa vào thị trường EU là vật liệu dựa trên sinh học

- Tuân theo các quy tắc mới, hài hòa để đảm bảo rằng, một loạt các bao bì

nhựa có tiếp xúc với thực phẩm (đặc biệt là thực phẩm dễ hỏng) hoặc được sử dụng

để thu gom chất thải sinh học có thể được tái chế hữu cơ

- Hạn chế sử dụng nhựa “tự phân hủy oxo”

- Xem xét việc thực hiện các quy tắc, định nghĩa và nhãn hài hòa hiện có đối

với nhựa có thể phân hủy công nghiệp.

Nhựa sinh học bền thay thế nên được xử lý theo chính sách giống như đối với

nhựa hóa thạch miễn là chúng đáp ứng các tiêu chí bền vững, bao gồm giảm phát

thải và giảm năng lượng hóa thạch chính.

Cải thiện hiệu quả tài nguyên là điều cần thiết để đáp ứng SDGs

Trong số 17 mục tiêu phát triển bền vững (SDGs), 12 mục tiêu phụ thuộc trực

tiếp vào việc quản lý toàn diện nền kinh tế bền vững của toàn bộ các nguồn tài

nguyên thiên nhiên. Ít nhất một nửa số mục tiêu phát triển bền vững có thể được giải

quyết bằng cách sử dụng công nghệ sinh học và kinh tế sinh học. Có thể lập luận

rằng hiệu suất tài nguyên và kinh tế sinh học có chung ít nhất là 9 trong số 17 các

mục tiêu phát triển bền vững này (2,3,6,7,9,12,13,14,15). Nói cách khác, công nghệ

sinh học cực kỳ hiệu quả về tài nguyên có thể giải quyết 9 mục tiêu này. Chỉ trong

CBE, lợi ích do hiệu suất tài nguyên sinh học mang lại mới đạt mức cao nhất.

Cải thiện hiệu suất tài nguyên là không thể thiếu để đáp ứng các mục tiêu biến

đổi khí hậu

Có những ưu điểm và nhược điểm của việc áp dụng công nghệ sinh học vào

giảm thiểu biến đổi khí hậu. Nhiều bằng chứng cho thấy rằng sản xuất dựa trên sinh

học để thay thế sản xuất dựa trên hóa thạch có thể tiết giảm phát thải. Tuy nhiên,

việc điều chỉnh chính sách nên được xem xét vì nội dung chính sách quan trọng

trong lĩnh vực này hướng vào năng lượng, vì lý do hợp lý rằng nhiên liệu lỏng góp

phần nhiều cho sự gia tăng phát thải, đốt than để lấy năng lượng cũng vậy. Việc góp

phần vào phát thải của ngành công nghiệp hóa chất và vật liệu là không đáng kể, và

ở đây sản xuất dựa trên sinh học không chỉ giúp tiết giảm phát thải mà còn có đóng

góp lớn hơn vào giá trị gia tăng và tạo việc làm.

Những công nghệ sinh học này có thể được coi là công nghệ sinh học môi

trường, tuy mang lại lợi ích thiết yếu, nhưng cũng góp phần gia tăng phát thải. Xử lý

nước thải sinh học hiếu khí tuy tạo ra GHG nhưng cũng thực hiện nhiệm vụ lọc

nước thải thiết yếu, và nghiên cứu đang hướng tới giảm lượng phát thải này. Xử lý

Page 44: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

43

nước thải đô thị chiếm khoảng 3% lượng điện tiêu thụ toàn cầu và 5% lượng khí thải

GHG không CO2, chủ yếu là khí mêtan từ quá trình phân hủy kỵ khí. Tương tự phân

hủy chất thải hữu cơ rắn là công nghệ sinh học tuần hoàn đã tồn tại trong một thời

gian dài nhưng tạo ra lượng phát thải, có phạm vi để cải thiện.

Các công nghệ sinh học môi trường này thiếu các biện pháp kiểm soát quá

trình, mặc dù được áp dụng ở quy mô rất lớn (triển khai quy mô lớn nhất trong tất cả

các công nghệ sinh học). Chính sách trợ cấp R&D có thể tập trung vào việc cung

cấp hệ gen/công cụ kỹ thuật số giúp các công nghệ này trở nên dễ đoán hơn. Xử lý ô

nhiễm môi trường bằng phương pháp sinh học là một ví dụ điển hình của công nghệ

sinh học môi trường toàn diện, chưa được tận dụng vì thiếu biện pháp kiểm soát quá

trình, mặc dù được coi là công nghệ khắc phục bền vững. Yêu cầu cấp thiết là phải

trang bị cho các học viên chuyên ngành xử lý sinh học một bộ các kỹ thuật tổng hợp

(omics) để chứng minh cơ sở khoa học chân chính giúp củng cố quá trình và cải

thiện khả năng dự đoán.

Mặc dù vẫn dựa trên nghiên cứu, bằng chứng đối với các hệ thống và phương

pháp sinh học tổng hợp phi tế bào để xử lý sinh học các chất ô nhiễm tái sinh từ đất

vẫn đang được tìm kiếm và chứng minh một cách cụ thể. Cách tiếp cận này có lẽ chỉ

hợp lý trong trường hợp đối với các chất ô nhiễm bền vững, cùng với đó là những

quan ngại về vấn đề an toàn liên quan đến việc giải phóng các sinh vật biến đổi gen

vào môi trường. Phương pháp sinh học tổng hợp phi tế bào có thể giúp giải quyết

được vấn đề này bằng cách cho phép triển khai mạng lưới gen và quá trình trao đổi

chất mà không gây nguy cơ sao chép và lan truyền các chủng vi khuẩn mới trong tự

nhiên. Đánh giá rủi ro dựa trên cơ sở khoa học đang diễn ra nên là một ưu tiên chính

sách.

Giải pháp sử dụng tài nguyên hiệu quả

Mô hình được thực hiện cho UNEP nhận thấy rằng hiệu suất tài nguyên kết

hợp với chính sách khí hậu có thể giảm 28% mức sử dụng tài nguyên toàn cầu so với

các xu hướng hiện tại, đồng thời, giảm phát thải nhà kính và tăng thu nhập và thúc

đẩy tăng trưởng kinh tế. Kinh tế sinh học cung cấp các cơ hội như vậy cần được xem

xét kỹ lưỡng từng trường hợp thông qua sử dụng phương pháp tiêu chuẩn hóa. Dữ

liệu cho CBE hiệu suất tài nguyên vẫn cần phải được thu thập.

Cân bằng giữa chính sách đầu vào và đầu ra

Một chiến lược chính sách chủ yếu dựa vào phía đầu ra của chu trình vật liệu

và năng lượng có thể sẽ thất bại trong việc mang lại những thay đổi môi trường cần

thiết và đáp ứng mong muốn. Hệ quả là sự giảm đáng kể ở phía đầu vào thông qua

Page 45: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

44

sự gia tăng đáng kể hiệu suất năng lượng và tài nguyên có thể là cần thiết để hạn chế

ảnh hưởng nghiêm trọng của các vấn đề môi trường do ngưỡng hệ sinh thái.

Kết luận

Việc sử dụng sinh khối làm tài nguyên là một giao điểm quan trọng giữa nền

kinh tế sinh học và nền kinh tế tuần hoàn. Trước những lo ngại về việc sử dụng các

nguồn thực phẩm, đã có một sự thúc đẩy mang tính toàn cầu đối với các nguồn sinh

khối phi thực phẩm, tạo thành nhiều nguồn 'chất thải', ' sản phẩm phụ', 'sản phẩm

phụ dư thừa', 'dư lượng', như dư lượng nông nghiệp hoặc lâm nghiệp và chất thải rắn

đô thị (MSW). Điều này cộng hưởng với khái niệm nền kinh tế tuần hoàn theo nhiều

cách:

- Nó giữ nguồn nguyên liệu trong nền kinh tế lâu hơn

- Nó khép kín các vòng chu trình nguyên liệu

- Nó làm tăng năng suất tài nguyên.

Một số tác động phù hợp với nền kinh tế tuần hoàn là giảm sự phụ thuộc vào

nguyên liệu thô và các sản phẩm mới và thay thế nguyên liệu thô thứ cấp trong sản

xuất. Đồng thời, giảm phát thải khí nhà kính (GHG) thông qua sản xuất kinh tế sinh

học (bằng cách sử dụng nguyên liệu tái tạo thay vì hóa thạch).

Tuy nhiên, có thể thấy trước một số khó khăn trong kinh tế sinh học tuần hoàn

là:

- Ở một số quốc gia, chất lượng của vật liệu là "phế thải" chứ không phải là

"nguyên liệu thứ cấp" không thể sử dụng làm nguyên liệu cho các nhà máy sinh học

- Một khó khăn được mô tả cụ thể giữa sinh khối với vai trò là nguyên liệu cho

các hóa chất và vật liệu dựa trên nền tảng sinh học và việc sử dụng nó trong các ứng

dụng năng lượng sinh học. Điều này, theo nghĩa rộng hơn, mô tả mâu thuẫn chính

sách giữa chính sách công nghiệp và môi trường

- Thị trường chất thải có thể bị phá vỡ vì một số vật liệu thải hiện đang được

tái chế, chôn lấp hoặc đốt trong tương lai có thể bị ràng buộc đối với các nhà máy

sinh học. Điều này có thể có tác động sâu sắc đến thị trường quản lý chất thải và cơ

sở hạ tầng công cộng (bởi một khoản tiền công lớn được đầu tư vào các cơ sở quản

lý chất thải).

Khái niệm cho thấy điểm cốt lõi của vấn đề là việc sử dụng sinh khối theo

tầng, ở một số quốc gia, như Đức, có mối liên hệ chiến lược chặt chẽ với các mục

tiêu của nền kinh tế tuần hoàn.

Page 46: MỤC LỤC · 2020. 4. 29. · HIỆN THỰC HÓA NỀN KINH TẾ SINH HỌC TUẦN HOÀN ... Vai trò của vật liệu thải trong nền kinh tế tuần hoàn.....5 2.1. Công

45

Sự kết năng giữa các khái niệm kinh tế sinh học và kinh tế tuần hoàn sẽ được

khai thác. Điều này sẽ cần sự kết hợp của các sáng kiến của khu vực công và tư

nhân. Tuy nhiên, vẫn còn tồn tại nhiều thách thức và mục tiêu chính sách để khu vực

công hành động trước, vì phần lớn những gì đã được mô tả được đánh giá là có nguy

cơ rủi ro cao đối với khu vực tư nhân thực hiện một mình.

Không thể kết luận rằng điều này thể hiện một quá trình chuyển đổi lịch sử

khác biệt với các quá trình chuyển đổi trước đó như từ sử dụng vật liệu gỗ sang than

hay than sang dầu, trong đó cần phải hành động quyết liệt và táo bạo để có thể tránh

được tác động nghiêm trọng nhất của biến đổi khí hậu, lương thực, năng lượng, an

ninh nguồn nước và cạn kiệt tài nguyên. Những chuyển đổi này đòi hỏi phải quản lý

quá trình chuyển đổi, cần đầu vào chính sách công rất rộng trong thời gian dài,

nhưng với sự hợp tác chặt chẽ của khu vực tư nhân và các bên liên quan khác cần

được khuyến khích bởi tính lâu dài của các chính sách đang được áp dụng.

Trong kế hoạch lớn của chính sách kinh tế sinh học, vai trò của đổi mới và

công nghệ sinh học thường bị bỏ qua. Nhiều mục tiêu ở nhiều cấp độ, từ phòng thí

nghiệm đến việc triên khai toàn diện, bao gồm cả thử nghiệm và trình diễn, tập trung

vào các vấn đề chính sách nghiên cứu và đổi mới (R&I).