mathematics - perfect 24 u - the best online notes for

25
NAME: __________________________ F.NAME: _________________________ CLASS:___________ SECTION: ________ ROLL #: _____ SUBJECT: ____________ ADDRESS: ___________________________________ __________________________________________ SCHOOL: _____________________________________ MATHEMATICS Class 9th (KPK) https://web.facebook.com/TehkalsDotCom/ https://tehkals.com/ Chapter # 7 Linear Equations & Inequealites

Upload: others

Post on 29-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

NAME: __________________________

F.NAME: _________________________

CLASS:___________ SECTION: ________

ROLL #: _____ SUBJECT: ____________

ADDRESS: ___________________________________

__________________________________________

SCHOOL: _____________________________________

MATHEMATICSClass 9th (KPK)

https://web.facebook.com/TehkalsDotCom/

https://tehkals.com/

Chapter # 7 Linear Equations &Inequealites

Chapter # 7

1

UNIT # 7

LINEAR EQUATIONS AND INEQULITIES

Ex # 7.1 Ex # 7.1

Linear equation 2π‘₯ + 3 = βˆ’6π‘₯ + 7

Subtract 3 from B.S

2π‘₯ + 3 βˆ’ 3 = βˆ’6π‘₯ + 7 βˆ’ 3

2π‘₯ = βˆ’6π‘₯ + 4

𝐴𝑑𝑑 6π‘₯ π‘œπ‘› 𝐡. 𝑆

2π‘₯ + 6π‘₯ = βˆ’6π‘₯ + 6π‘₯ + 4

8π‘₯ = 4

Divide B.S by 8

8π‘₯

8=

4

8

π‘₯ =1

2

Verification

Put π‘₯ =1

2in equ (i)

2 (1

2) + 3 = 1 βˆ’ 6 (

1

2βˆ’ 1)

1 + 3 = 1 βˆ’ 6 (1 βˆ’ 2

2)

4 = 1 βˆ’ 6 (βˆ’1

2)

4 = 1 βˆ’ 3(βˆ’1)

4 = 1 + 3

4 = 4

Thus Solution Set = {1

2}

An equation the highest degree or exponent of a variable is one is called linear equation.

Linear equation in one variable

A linear equation in which one variable is used is called linear equation in one variable.

General form

π‘Žπ‘₯ + 𝑏 = 0

Example:

2π‘₯ + 3 = 0 5

2𝑦 βˆ’ 4 = 0

5π‘₯ βˆ’ 15 = 2π‘₯ + 3

Solution of Linear Equation

To solve the linear equation, follow the following steps.

First solve the brackets if any

Now shift the constant term to other side of equation by adding or subtracting to B.S

Transfer all terms containing variable on one side and simplify them if any.

Divide or multiply both sides of the equation by the co – efficient of the variable.

At last, sing numerical value is obtained.

Verify by putting the value in original equation.

Example # 3

𝑺𝒐𝒍𝒗𝒆 πŸ‘π’™ +𝒙

πŸ“βˆ’ πŸ“ =

𝟏

πŸ“+ πŸ“π’™

Solution:

3π‘₯ +π‘₯

5βˆ’ 5 =

1

5+ 5π‘₯ … … π‘’π‘žπ‘’(𝑖)

Separate the variable and constant

3π‘₯ +π‘₯

5βˆ’ 5π‘₯ =

1

5+ 5

3π‘₯ βˆ’ 5π‘₯ +π‘₯

5=

1

5+ 5

π‘₯

5+ 3π‘₯ βˆ’ 5π‘₯ =

1

5+ 5

π‘₯

5βˆ’ 2π‘₯ =

1

5+ 5

Ϊ©Ψ±ΫŒΪΊΫ” Solveکو Bracketsپہلے

Ϊ©Ψ± Ϊ©Ϋ’ Subtractی Ψ§ Addکریں Shiftکو Ψ―ΩˆΨ³Ψ±Ϋ’ طرف term constantΩΎΪΎΨ±

Variable ΩˆΨ§Ω„Ϋ’Term کو بھی ای طرفShift کریں

Equation Ϊ©Ϋ’ Ψ―ΩˆΩ†ΩˆΪΊ طرفVariable Ϊ©Ϋ’ Co – efficient Ϊ©Ϋ’

کریں Divideی Ψ§ MultiplyΨ³Ψ§ΨͺΪΎ

Example # 2

Solve πŸπ’™ + πŸ‘ = 𝟏 βˆ’ (𝒙 βˆ’ 𝟏)

Solution:

2π‘₯ + 3 = 1 βˆ’ 6(π‘₯ βˆ’ 1) … … π‘’π‘žπ‘’(𝑖)

2π‘₯ + 3 = 1 βˆ’ 6π‘₯ + 6

2π‘₯ + 3 = βˆ’6π‘₯ + 1 + 6

Chapter # 7

2

Ex # 7.1 Ex # 7.1

π‘₯ βˆ’ 10π‘₯

5=

1 + 25

5

βˆ’9π‘₯

5=

26

5

Multiply B.S by 5

5 Γ—βˆ’9π‘₯

5= 5 Γ—

26

5

βˆ’9π‘₯ = 26

Divide B.S by -9

βˆ’9π‘₯

βˆ’9=

26

βˆ’9

π‘₯ = βˆ’26

9

Verification

Put π‘₯ = βˆ’26

9in equ (i)

3 (βˆ’26

9) +

βˆ’269

5βˆ’ 5 =

1

5+ 5 (βˆ’

26

9)

βˆ’26

3+ (βˆ’

26

9) Γ· 5 βˆ’ 5 =

1

5βˆ’

130

9

βˆ’26

3βˆ’

26

9Γ—

1

5βˆ’ 5 =

1

5βˆ’

130

9

βˆ’26

3βˆ’

26

45βˆ’ 5 =

1

5βˆ’

130

9

βˆ’390 βˆ’ 26 βˆ’ 225

45=

9 βˆ’ 650

45

βˆ’641

45=

βˆ’641

45

Thus Solution Set = { βˆ’26

9}

Now shift the variable and constant

13π‘₯ βˆ’ 5π‘₯ = 20 βˆ’ 4

8π‘₯ = 16

Divide B.S by 8

8π‘₯

8=

16

8

π‘₯ = 2

Thus present age of daughter = π‘₯ = 2π‘¦π‘’π‘Žπ‘Ÿπ‘ 

And present age of mother = 13 Γ— 2

= 26π‘¦π‘’π‘Žπ‘Ÿπ‘ 

Example # 5

A number consist of two digits. The sum of

digits is 8. If digits are interchanged, then new

number becomes 36 less than the original

numbers. Find the number.

Solution:

𝐿𝑒𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ π‘œπ‘›π‘’π‘ /𝑒𝑛𝑖𝑑 π‘π‘™π‘Žπ‘π‘’ = π‘₯

𝐴𝑛𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ 𝑑𝑒𝑛𝑠 π‘π‘™π‘Žπ‘π‘’ = 𝑦

π‘†π‘œ π‘‘β„Žπ‘’ π‘œπ‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10 Γ— 𝑦 + 1 Γ— π‘₯

= 10𝑦 + π‘₯

𝐼𝑓 π‘π‘™π‘Žπ‘π‘’ π‘œπ‘“ 𝑑𝑖𝑔𝑖𝑑𝑠 π‘Žπ‘Ÿπ‘’ π‘–π‘›π‘‘π‘’π‘Ÿπ‘β„Žπ‘Žπ‘›π‘”π‘’π‘‘

𝑁𝑒𝑀 π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10 Γ— π‘₯ + 1 Γ— 𝑦

= 10π‘₯ + 𝑦

According to given conditions

Sum of digits is 8

So,

π‘₯ + 𝑦 = 8 … … π‘’π‘žπ‘’(𝑖)

And

𝑁𝑒𝑀 π‘›π‘’π‘šπ‘π‘’π‘Ÿ = π‘‚π‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ βˆ’ 36

10π‘₯ + 𝑦 = 10𝑦 + π‘₯ βˆ’ 36

10π‘₯ βˆ’ π‘₯ = 10𝑦 βˆ’ 𝑦 βˆ’ 36

9π‘₯ = 9𝑦 βˆ’ 36

9π‘₯ = 9(𝑦 βˆ’ 4)

Divide B.S by 9

9π‘₯

9=

9(𝑦 βˆ’ 4)

9

π‘₯ = 𝑦 βˆ’ 4 … … π‘’π‘žπ‘’(𝑖𝑖)

Put π‘₯ = 𝑦 βˆ’ 4in equ (i)

𝑦 βˆ’ 4 + 𝑦 = 8

Add 4 on B.S

𝑦 βˆ’ 4 + 4 + 𝑦 = 8 + 4

𝑦 + 𝑦 = 12

2𝑦 = 12

Example # 4

Age of mother is 13 time the age of her

daughter. It will be only five times after four

years. Find their present ages.

Solution:

Let the present age of daughter = π‘₯ years

So the present age of mother = 13π‘₯ years

After four years

Age of daughter = (π‘₯ + 4)π‘¦π‘’π‘Žπ‘Ÿπ‘ 

and age of mother = (13π‘₯ + 4)π‘¦π‘’π‘Žπ‘Ÿπ‘ 

According to condition

Age of mother = 5(Age of daughter)

13π‘₯ + 4 = 5(π‘₯ + 4)

13π‘₯ + 4 = 5π‘₯ + 20

Chapter # 7

3

Ex # 7.1 Ex # 7.1

Divide B.S by 2

2𝑦

2=

12

2

𝑦 = 6

Put 𝑦 = 6in equ (ii)

π‘₯ = 6 βˆ’ 4

π‘₯ = 2

𝐴𝑠 π‘‘β„Žπ‘’ π‘‚π‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10𝑦 + π‘₯

= 10(6) + 2

= 60 + 2

= 62

Add 10 on B.S

9π‘₯ βˆ’ 10 + 10 = 30 + 10

9π‘₯ = 40

Divide 9 on B.S

9π‘₯

9=

40

9

π‘₯ =40

9

Verification

Put π‘₯ =40

9in equ (i)

3

5Γ—

40

9βˆ’

2

3= 2

1

1Γ—

8

3βˆ’

2

3= 2

8

3βˆ’

2

3= 2

8 βˆ’ 2

3= 2

6

3= 2

2 = 2

Thus Solution Set = {40

9}

Exercise # 7.1

Page # 177

Q1: Find the solution sets of the following equations and verify the answer.

(i) πŸ“π’™ + πŸ– = πŸπŸ‘

Solution:

5π‘₯ + 8 = 23 … … π‘’π‘žπ‘’(𝑖)

Subtract 8 from B.S

5π‘₯ + 8 βˆ’ 8 = 23 βˆ’ 8

5π‘₯ = 15

Divide 5 on B.S

5π‘₯

5=

15

5

π‘₯ = 3

Verification

Put π‘₯ = 3 in equ (i)

5(3) + 8 = 23

15 + 8 = 23

23 = 23

Thus Solution Set = { 3 }

(iii) πŸ”π’™ βˆ’ πŸ“ = πŸπ’™ + πŸ—

Solution:

6π‘₯ βˆ’ 5 = 2π‘₯ + 9 … … π‘’π‘žπ‘’(𝑖)

Add 5 on B.S

6π‘₯ βˆ’ 5 + 5 = 2π‘₯ + 9 + 5

6π‘₯ = 2π‘₯ + 14

Subtract 2π‘₯ from B.S

6π‘₯ βˆ’ 2π‘₯ = 2π‘₯ βˆ’ 2π‘₯ + 14

4π‘₯ = 14

Divide B.S by 4

4π‘₯

4=

14

4

π‘₯ =7

2

Verification

Put π‘₯ =7

2 in equ (i)

6 (7

2) βˆ’ 5 = 2 (

7

2) + 9

3(7) βˆ’ 5 = 7 + 9

21 βˆ’ 5 = 16

16 = 16

(ii) πŸ‘

πŸ“π’™ βˆ’

𝟐

πŸ‘= 𝟐

Solution:

3

5π‘₯ βˆ’

2

3= 2 … … π‘’π‘žπ‘’(𝑖)

9π‘₯ βˆ’ 10

15= 2

Multiply 15 on B.S

9π‘₯ βˆ’ 10

15Γ— 15 = 2 Γ— 15

9π‘₯ βˆ’ 10 = 30

Chapter # 7

4

Ex # 7.1 Ex # 7.1

Thus Solution Set = {

7

2}

Put π‘₯ =

βˆ’17

14 in equ (i)

1

7 (βˆ’1714

) + 13=

2

9

1

βˆ’172

+ 13=

2

9

1

βˆ’17 + 262

=2

9

1

92

=2

9

1 Γ·9

2=

2

9

1 Γ—2

9=

2

9

2

9=

2

9

Solution Set = {βˆ’17

14}

(iv) 𝟐

𝒙 βˆ’ 𝟏=

𝟏

𝒙 βˆ’ 𝟐

Solution:

2

π‘₯ βˆ’ 1=

1

π‘₯ βˆ’ 2… … π‘’π‘žπ‘’(𝑖)

By Cross Multiplication

2(π‘₯ βˆ’ 2) = 1(π‘₯ βˆ’ 1)

2π‘₯ βˆ’ 4 = π‘₯ βˆ’ 1

Add 4 on B.S

2π‘₯ βˆ’ 4 + 4 = π‘₯ βˆ’ 1 + 4

2π‘₯ = π‘₯ + 3

Subtract π‘₯ from B.S

2π‘₯ βˆ’ π‘₯ = π‘₯ βˆ’ π‘₯ + 3

π‘₯ = 3

Verification

Put π‘₯ = 3 in equ (i) 2

3 βˆ’ 1=

1

3 βˆ’ 2

2

2=

1

1

1 = 1

Solution Set = {3}

(vi) 𝟏𝟎(𝒙 βˆ’ πŸ’) = πŸ’(πŸπ’™ βˆ’ 𝟏) + πŸ“

Solution:

10(π‘₯ βˆ’ 4) = 4(2π‘₯ βˆ’ 1) + 5 … … π‘’π‘žπ‘’(𝑖)

10π‘₯ βˆ’ 40 = 8π‘₯ βˆ’ 4 + 5

10π‘₯ βˆ’ 40 = 8π‘₯ + 1

10π‘₯ βˆ’ 40 = 8π‘₯ + 1

Add 40 on B.S

10π‘₯ βˆ’ 40 + 40 = 8π‘₯ + 1 + 40

10π‘₯ = 8π‘₯ + 41

Subtract 8π‘₯ from B.S

10π‘₯ βˆ’ 8π‘₯ = 8π‘₯ βˆ’ 8π‘₯ + 41

2π‘₯ = 41

Divide B.S by 2

2π‘₯

2=

41

2

π‘₯ = {41

2}

Verification

Put π‘₯ =41

2 in equ (i)

10 (41

2βˆ’ 4) = 4 (2 Γ—

41

2βˆ’ 1) + 5

10 (41 βˆ’ 8

2) = 4(41 βˆ’ 1) + 5

10 (33

2) = 4(40) + 5

(v) 𝟏

πŸ•π’™ + πŸπŸ‘=

𝟐

πŸ—

Solution:

1

7π‘₯ + 13=

2

9… … π‘’π‘žπ‘’(𝑖)

By Cross Multiplication

1 Γ— 9 = 2(7π‘₯ + 13)

9 = 14π‘₯ + 26

Subtract 26 from B.S

9 βˆ’ 26 = 14π‘₯ βˆ’ 26

βˆ’17 = 14π‘₯

Divide B.S by 14

βˆ’17

14=

14π‘₯

14

βˆ’17

14= π‘₯

π‘₯ =βˆ’17

14

Verification

Chapter # 7

5

Ex # 7.1 Ex # 7.1

5(33) = 160 + 5

165 = 165

Solution Set =41

2

Subtract 1 from B.S

1 βˆ’ 1 + 𝑦 = βˆ’4 βˆ’ 1

𝑦 = βˆ’5

π‘‡β„Žπ‘’π‘  π‘‘β„Žπ‘’ π‘‘π‘€π‘œ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ 1 π‘Žπ‘›π‘‘ βˆ’ 5

Q2: Awais thought of a number, add 3 with it. Then

he doubled the sum. He got 40. What was the

original number?

Solution:

Let the number = π‘₯

As the given condition is defined as

Add 3 and double the sum got 40

So, we get

2(π‘₯ + 3) = 40

Divide B.S by 2

2(π‘₯ + 3)

2=

40

2

π‘₯ + 3 = 20

Subtract 3 from B.S

π‘₯ + 3 βˆ’ 3 = 20 βˆ’ 3

π‘₯ = 17

Thus, the original number = 17

Q4: The sum of three consecutive odd integers is

81. Find the numbers.

Solution:

As the difference is 2 between two consecutive

odd integers

𝐿𝑒𝑑 π‘“π‘–π‘Ÿπ‘ π‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯

π‘†π‘’π‘π‘œπ‘›π‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯ + 2

𝐴𝑛𝑑 π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯ + 4

According to given condition

The sum of three consecutive odd integers is 81

So,

π‘₯ + π‘₯ + 2 + π‘₯ + 4 = 81

π‘₯ + π‘₯ + π‘₯ + 2 + 4 = 81

3π‘₯ + 6 = 81

Subtract 6 from B.S

3π‘₯ + 6 βˆ’ 6 = 81 βˆ’ 6

3π‘₯ = 75

Divide B.S by 3

3π‘₯

3=

75

3

π‘₯ = 25

𝐿𝑒𝑑 π‘“π‘–π‘Ÿπ‘ π‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯ = 25

π‘†π‘’π‘π‘œπ‘›π‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯ + 2

= 25 + 2

= 27

𝐴𝑛𝑑 π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ = π‘₯ + 4

= 25 + 4

= 29

So the consecutive odd integers are 25, 27 and 29

Q3: The sum of two numbers is -4 and their difference is 6. What are the numbers? Solution: 𝐿𝑒𝑑 π‘‘β„Žπ‘’ π‘‘π‘€π‘œ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘₯ π‘Žπ‘›π‘‘ 𝑦 According to first condition The sum of two numbers is βˆ’4 So, π‘₯ + 𝑦 = βˆ’4 … … π‘’π‘žπ‘’(𝑖) According to second condition The difference of two numbers is 6 So, π‘₯ βˆ’ 𝑦 = 6 … … π‘’π‘žπ‘’(𝑖𝑖)

Now add equ(i) and equ (ii)

π‘₯ + 𝑦 + π‘₯ βˆ’ 𝑦 = βˆ’4 + 6

π‘₯ + π‘₯ + 𝑦 βˆ’ 𝑦 = 2

2π‘₯ = 2

Divide B.S by 2

2π‘₯

2=

2

2

π‘₯ = 1

Put π‘₯ = 1 in equ (i)

1 + 𝑦 = βˆ’4

Chapter # 7

6

Ex # 7.1 Ex # 7.1

Q5: A man is 41 year old and his son is 9 year old. In

how many years will the father be three times

as old as the son?

Solution:

𝑙𝑒𝑑 π‘“π‘Žπ‘‘β„Žπ‘’π‘Ÿβ€™π‘  π‘Žπ‘”π‘’ = 41 π‘¦π‘’π‘Žπ‘Ÿπ‘ 

π‘Žπ‘›π‘‘ π‘ π‘œπ‘›β€²π‘ π‘Žπ‘”π‘’ = 9 π‘¦π‘’π‘Žπ‘Ÿπ‘ 

𝐿𝑒𝑑 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘¦π‘’π‘Žπ‘Ÿπ‘  = π‘₯

π‘†π‘œ π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘₯ π‘¦π‘’π‘Žπ‘Ÿπ‘ 

πΉπ‘Žπ‘‘β„Žπ‘’π‘Ÿβ€²π‘  π‘Žπ‘”π‘’ = 41 + π‘₯

π‘†π‘œπ‘›β€²π‘  π‘Žπ‘”π‘’ = 9 + π‘₯

According to given condition

𝐴𝑔𝑒 π‘œπ‘“ π‘“π‘Žπ‘‘β„Žπ‘’π‘Ÿ = 3(𝐴𝑔𝑒 π‘œπ‘“ π‘ π‘œπ‘›)

41 + π‘₯ = 3(9 + π‘₯)

41 + π‘₯ = 27 + 3π‘₯

41 βˆ’ 27 = 3π‘₯ βˆ’ π‘₯

14 = 2π‘₯

2π‘₯ = 14

Divide B.S by 2

2π‘₯

2=

14

2

π‘₯ = 7

So the required number of years=7

Thus after 7 years father’s age will be three

times as his son

Compare equ (i) and (ii), we get

π‘₯ + 4 = 2π‘₯ βˆ’ 1

4 + 1 = 2π‘₯ βˆ’ π‘₯

5 = π‘₯

π‘₯ = 5

Put π‘₯ = 5in equ (i)

𝑦 = 5 + 4

𝑦 = 9

π‘‡β„Žπ‘’π‘  π‘‘β„Žπ‘’ π‘‘π‘€π‘œ 𝑑𝑖𝑔𝑖𝑑 = 10𝑦 + π‘₯

= 10(9) + 5

= 90 + 5

= 95

Q7: The sum of two digits is 10. It the place of digits

are changed then the new number is decreased

by 18. Find the numbers.

Solution:

𝐿𝑒𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ π‘œπ‘›π‘’π‘ /𝑒𝑛𝑖𝑑 π‘π‘™π‘Žπ‘π‘’ = π‘₯

𝐴𝑛𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ 𝑑𝑒𝑛𝑠 π‘π‘™π‘Žπ‘π‘’ = 𝑦

π‘†π‘œ π‘‘β„Žπ‘’ π‘œπ‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10 Γ— 𝑦 + 1 Γ— π‘₯

= 10𝑦 + π‘₯

If place of digits are interchanged

New number = 10 Γ— π‘₯ + 1 Γ— 𝑦

= 10π‘₯ + 𝑦

According to given conditions

Sum of digits is 10

So,

π‘₯ + 𝑦 = 10 … … π‘’π‘žπ‘’(𝑖)

And

𝑁𝑒𝑀 π‘›π‘’π‘šπ‘π‘’π‘Ÿ = π‘‚π‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ βˆ’ 18

10π‘₯ + 𝑦 = 10𝑦 + π‘₯ βˆ’ 18

10π‘₯ βˆ’ π‘₯ = 10𝑦 βˆ’ 𝑦 βˆ’ 18

9π‘₯ = 9𝑦 βˆ’ 18

9π‘₯ = 9(𝑦 βˆ’ 2)

Divide B.S by 9

9π‘₯

9=

9(𝑦 βˆ’ 2)

9

π‘₯ = 𝑦 βˆ’ 2 … … π‘’π‘žπ‘’(𝑖𝑖)

Put π‘₯ = 𝑦 βˆ’ 2in equ (i)

𝑦 βˆ’ 2 + 𝑦 = 10

Add 2 on B.S 𝑦 βˆ’ 2 + 2 + 𝑦 = 10 + 2 𝑦 + 𝑦 = 12 2𝑦 = 12

Q6: The tens digit of a certain two – digitnumber

exceeds the unit digit by 4 and is 1 less than

twice the ones digit. Find the number.

Solution:

𝐿𝑒𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ π‘œπ‘›π‘’π‘ /𝑒𝑛𝑖𝑑 π‘π‘™π‘Žπ‘π‘’ = π‘₯

𝐴𝑛𝑑 𝑑𝑖𝑔𝑖𝑑 π‘Žπ‘‘ 𝑑𝑒𝑛𝑠 π‘π‘™π‘Žπ‘π‘’ = 𝑦

π‘†π‘œ π‘‘π‘€π‘œ 𝑑𝑖𝑔𝑖𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10 Γ— 𝑦 + 1 Γ— π‘₯

= 10𝑦 + π‘₯

According to given conditions

Tens digit exceeds the unit digit by 1

So,

𝑇𝑒𝑛𝑠 𝑑𝑖𝑔𝑖𝑑 = 𝑂𝑛𝑒𝑠 𝑑𝑖𝑔𝑖𝑑 + 4

𝑦 = π‘₯ + 4 … … π‘’π‘žπ‘’(𝑖)

And

Tens digit is 1 less than twice the ones digits

So,

𝑇𝑒𝑛𝑠 𝑑𝑖𝑔𝑖𝑑 = 𝑑𝑀𝑖𝑐𝑒 π‘‘β„Žπ‘’ π‘œπ‘›π‘’ 𝑑𝑖𝑔𝑖𝑑 βˆ’ 1

𝑦 = 2π‘₯ βˆ’ 1 … … π‘’π‘žπ‘’(𝑖𝑖)

Chapter # 7

7

Ex # 7.1 Ex # 7.2

Divide B.S by 2

2𝑦

2=

12

2

𝑦 = 6

Put 𝑦 = 6 in equ (ii)

π‘₯ = 6 βˆ’ 2

π‘₯ = 4

𝐴𝑠 π‘‘β„Žπ‘’ π‘‚π‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ = 10𝑦 + π‘₯

= 10(6) + 4

= 60 + 4

= 64

Radical equation

An equation in which the variable occurs under a radical is called radical equation.

Note:

The radicand should be a variable (unknown).

√π‘₯ + 5 = 9 is a radical equation but 2π‘₯ + √5 = 9 is not a radical equation.

The radical equation will be considered as positive numbers.

√π‘₯ + 6 = βˆ’11 has no real solution and is not true for any value of π‘₯.

Q8: It the breadth of the room is one fourth of its

length and the perimeter of the room is 20m.

Find length and breadth of the room.

Solution:

𝐿𝑒𝑑 π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘œπ‘œπ‘š = π‘₯ π‘š

As breadth is one fourth of its length

π‘‡β„Žπ‘’π‘› π‘π‘Ÿπ‘’π‘Žπ‘‘π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘œπ‘œπ‘š =π‘₯

4 π‘š

As Perimeter of room=20 m

As we know that

𝑃 = 2(𝑙 + 2)

Put the values

20 = 2 (π‘₯ +π‘₯

4)

20 = 2 (4π‘₯ + π‘₯

4)

20 =5π‘₯

2

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦 𝐡. 𝑆 𝑏𝑦 2

5

20 Γ—2

5=

5π‘₯

2Γ—

2

5

4 Γ— 2 = π‘₯

8 = π‘₯

π‘₯ = 8

Thus

𝐿𝑒𝑑 π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘œπ‘œπ‘š = π‘₯ π‘š = 8π‘š

π‘π‘Ÿπ‘’π‘Žπ‘‘π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘œπ‘œπ‘š =π‘₯

4 π‘š

=8

4 π‘š

= 2 π‘š

Example # 5

𝑺𝒐𝒍𝒗𝒆 βˆšπŸπ’™ + πŸ“ = πŸ—

Solution:

√2π‘₯ + 5 = 9 … … π‘’π‘žπ‘’(𝑖)

Subtract 5 from B.S

√2π‘₯ + 5 βˆ’ 5 = 9 βˆ’ 5

√2π‘₯ = 4

Taking square on B.S

(√2π‘₯)2

= (4)2

2π‘₯ = 16

Divide B.S by 2

2π‘₯

2=

16

2

π‘₯ = 8

Verification

Put π‘₯ = 8 in equ (i)

√2(8) + 5 = 9

√16 + 5 = 9

4 + 5 = 9

9 = 9

Thus Solution Set = {8}

Example # 7

βˆšπŸ‘π’™ βˆ’ 𝟐 = βˆšπŸ“π’™ + πŸ’

Solution:

√3π‘₯ βˆ’ 2 = √5π‘₯ + 4

√3π‘₯ βˆ’ 2 = √5π‘₯ + 4 … … π‘’π‘žπ‘’(𝑖)

Take square root on B.S

(√3π‘₯ βˆ’ 2 )2

= (√5π‘₯ + 4 )2

3π‘₯ βˆ’ 2 = 5π‘₯ + 4

Chapter # 7

8

Ex # 7.2 Ex # 7.2

Subtract 5π‘₯ from B.S

3π‘₯ βˆ’ 5π‘₯ βˆ’ 2 = 5π‘₯ βˆ’ 5π‘₯ + 4

βˆ’2π‘₯ βˆ’ 2 = 4

Add 2 on B.S

βˆ’2π‘₯ βˆ’ 2 + 2 = 4 + 2

βˆ’2π‘₯ = 6

Divide B.S by βˆ’2

βˆ’2π‘₯

βˆ’2=

6

βˆ’2

π‘₯ = βˆ’3

Verification

Put π‘₯ = βˆ’3 in equ (i)

√3(βˆ’3) βˆ’ 2 = √5(βˆ’3) + 4

βˆšβˆ’9 βˆ’ 2 = βˆšβˆ’15 + 4

βˆšβˆ’11 = βˆšβˆ’11

Thus Solution Set = {βˆ’3}

√16 + 6 = 2

4 + 6 = 2

10 = 2

Hence

10 β‰  2

Thus the given equation has no solution.

Solution Set = { }

Exercise # 7.2

Page # 180

Q: Solve the following radical equation.

1. πŸβˆšπ’‚ βˆ’ πŸ‘ = πŸ•

Solution:

2βˆšπ‘Ž βˆ’ 3 = 7 … … π‘’π‘žπ‘’(𝑖)

Add 3 on B.S

2βˆšπ‘Ž βˆ’ 3 + 3 = 7 + 3

2βˆšπ‘Ž = 10

Divide B.S by 2

2βˆšπ‘Ž

2=

10

2

βˆšπ‘Ž = 5

Taking square on B.S

(βˆšπ‘Ž)2

= (5)2

π‘Ž = 25

Verification

Put π‘Ž = 25 in equ (i)

2√25 βˆ’ 3 = 7

2(5) βˆ’ 3 = 7

10 βˆ’ 3 = 7

7 = 7

Thus Solution Set = {25}

Example # 8

βˆšπŸ‘π’™ + 𝟐 + πŸ” = 𝟐

Solution:

√3π‘₯ + 2 + 6 = 2 … … π‘’π‘žπ‘’(𝑖)

Subtract 6 from B.S

√3π‘₯ + 2 + 6 βˆ’ 6 = 2 βˆ’ 6

√3π‘₯ + 2 = βˆ’4

Taking square on B.S

(√3π‘₯ + 2)2

= (βˆ’4)2

3π‘₯ + 2 = 16

Subtract 2 from B.S

3π‘₯ + 2 βˆ’ 2 = 16 βˆ’ 2

3π‘₯ = 14

Divide B.S by 3

3π‘₯

3=

14

3

π‘₯ =14

3

Solution Set = { }

Verification

Put π‘₯ =14

3 in equ (i)

√3 (14

3) + 2 + 6 = 2

√14 + 2 + 6 = 2

2. πŸ– + πŸ‘βˆšπ’ƒ = 𝟐𝟎

Solution:

8 + 3βˆšπ‘ = 20 … … π‘’π‘žπ‘’(𝑖)

Subtract 8 from B.S

8 βˆ’ 8 + 3βˆšπ‘ = 20 βˆ’ 8

3βˆšπ‘ = 12

Divide B.S by 3

3βˆšπ‘

3=

12

3

βˆšπ‘ = 4

Chapter # 7

9

Ex # 7.2 Ex # 7.2

Taking square on B.S

(βˆšπ‘)2

= (4)2

𝑏 = 16

Verification

Put 𝑏 = 16 in equ (i)

8 + 3√16 = 20

8 + 3(4) = 20

8 + 12 = 20

20 = 20

Thus Solution Set = {16}

Divide B.S by 7

7βˆšπ‘Ÿ

7=

14

7

βˆšπ‘Ÿ = 2

Taking square on B.S

(βˆšπ‘Ÿ)2

= (2)2

π‘Ÿ = 4

Verification

Put r = 4 in equ (i)

7√4 βˆ’ 5 = √4 + 9

7(2) βˆ’ 5 = 2 + 9

14 βˆ’ 5 = 11

11 = 11

Thus Solution Set = {4}

3. πŸ• βˆ’ βˆšπŸπ’ƒ = πŸ‘

Solution:

7 βˆ’ √2𝑏 = 3 … … π‘’π‘žπ‘’(𝑖)

Subtract 7 from B.S

7 βˆ’ 7 βˆ’ √2𝑏 = 3 βˆ’ 7

βˆ’βˆš2𝑏 = βˆ’4

√2𝑏 = 4

Taking square on B.S

(√2𝑏)2

= (4)2

2𝑏 = 16

Divide B.S by 2

2𝑏

2=

16

2

𝑏 = 8

Verification

Put 𝑏 = 8 in equ (i)

7 βˆ’ √2(8) = 3

7 βˆ’ √16 = 3

7 βˆ’ 4 = 3

3 = 3

Thus Solution Set = {8}

5. 𝟐𝟎 βˆ’ πŸ‘βˆšπ’• = βˆšπ’• βˆ’ πŸ’

Solution:

20 βˆ’ 3βˆšπ‘‘ = βˆšπ‘‘ βˆ’ 4 … … π‘’π‘žπ‘’(𝑖)

Subtract 20 from B.S

20 βˆ’ 20 βˆ’ 3βˆšπ‘‘ = βˆšπ‘‘ βˆ’ 4 βˆ’ 20

βˆ’3βˆšπ‘‘ = βˆšπ‘‘ βˆ’ 24

Subtract βˆšπ‘‘ from B.S

βˆ’3βˆšπ‘‘ βˆ’ βˆšπ‘‘ = βˆšπ‘‘ βˆ’ βˆšπ‘‘ βˆ’ 24

βˆ’4βˆšπ‘‘ = βˆ’24

4βˆšπ‘‘ = 24

Divide B.S by 4

4βˆšπ‘‘

4=

24

4

βˆšπ‘‘ = 6

Taking square on B.S

(βˆšπ‘‘)2

= (6)2

𝑑 = 36

Verification

Put 𝑑 = 36 in equ (i)

20 βˆ’ 3√36 = √36 βˆ’ 4

20 βˆ’ 3(6) = 6 βˆ’ 4

20 βˆ’ 18 = 2

2 = 2

Thus Solution Set = {36}

4. βˆšπ’“ βˆ’ πŸ“ = βˆšπ’“ + πŸ—

Solution:

8βˆšπ‘Ÿ βˆ’ 5 = βˆšπ‘Ÿ + 9 … … π‘’π‘žπ‘’(𝑖)

Add 5 on B.S

8βˆšπ‘Ÿ βˆ’ 5 + 5 = βˆšπ‘Ÿ + 9 + 5

8βˆšπ‘Ÿ = βˆšπ‘Ÿ + 14

Subtract βˆšπ‘Ÿ from B.S

8βˆšπ‘Ÿ βˆ’ βˆšπ‘Ÿ = βˆšπ‘Ÿ βˆ’ βˆšπ‘Ÿ + 14

7βˆšπ‘Ÿ = 14

Chapter # 7

10

Ex # 7.2 Ex # 7.2

6. πŸβˆšπŸ“π’™ βˆ’ πŸ‘ = πŸ•

Solution:

2√5π‘₯ βˆ’ 3 = 7 … … π‘’π‘žπ‘’(𝑖)

Add 3 on B.S

2√5π‘₯ βˆ’ 3 + 3 = 7 + 3

2√5π‘₯ = 10

Divide B.S by 2

2√5π‘₯

2=

10

2

√5π‘₯ = 5

Taking square on B.S

(√5π‘₯)2

= (5)2

5π‘₯ = 25

Divide B.S by 5

5π‘₯

5=

25

5

π‘₯ = 5

Verification

Put π‘₯ = 5 in equ (i)

2√5(5) βˆ’ 3 = 7

2√25 βˆ’ 3 = 7

2(5) βˆ’ 3 = 7

10 βˆ’ 3 = 7

7 = 7

Thus Solution Set = {5}

Verification

Put π‘₯ = 8 in equ (i)

√2(8) βˆ’ 7 + 8 = 11

√16 βˆ’ 7 + 8 = 11

√9 + 8 = 11

3 + 8 = 11

11 = 11

Thus Solution Set = {8}

8. 𝟐𝟐 = πŸπŸ• + βˆšπŸ’πŸŽ βˆ’ πŸ‘π’š

Solution:

22 = 17 + √40 βˆ’ 3𝑦 … … π‘’π‘žπ‘’(𝑖)

Subtract 17 from B.S

22 βˆ’ 17 = 17 βˆ’ 17 + √40 βˆ’ 3𝑦

5 = √40 βˆ’ 3𝑦

√40 βˆ’ 3𝑦 = 5

Taking square on B.S

(√40 βˆ’ 3𝑦)2

= (5)2

40 βˆ’ 3𝑦 = 25

Subtract 40 from B.S

40 βˆ’ 40 βˆ’ 3𝑦 = 25 βˆ’ 40

βˆ’3𝑦 = βˆ’15

3𝑦 = 15

Divide B.S by 3

3𝑦

3=

15

3

𝑦 = 5

Verification

Put π‘₯ = 5 in equ (i)

22 = 17 + √40 βˆ’ 3(5)

22 = 17 + √40 βˆ’ 15

22 = 17 + √25

22 = 17 + 5

22 = 22

Thus Solution Set = {5}

7. βˆšπŸπ’™ βˆ’ πŸ• + πŸ– = 𝟏𝟏

Solution:

√2π‘₯ βˆ’ 7 + 8 = 11 … … π‘’π‘žπ‘’(𝑖)

Subtract 8 from B.S

√2π‘₯ βˆ’ 7 + 8 βˆ’ 8 = 11 βˆ’ 8

√2π‘₯ βˆ’ 7 = 3

Taking square on B.S

(√2π‘₯ βˆ’ 7)2

= (3)2

2π‘₯ βˆ’ 7 = 9

Add 7 on B.S

2π‘₯ βˆ’ 7 + 7 = 9 + 7

2π‘₯ = 16

Divide B.S by 2

2π‘₯

2=

16

2

π‘₯ = 8

Chapter # 7

11

Ex # 7.3 Ex # 7.3

Absolute value Example # 10

|πŸ‘π’™ βˆ’ πŸ“| + πŸ• = 𝟏𝟏

Solution:

|3π‘₯ βˆ’ 5| + 7 = 11

Subtract 7 from B.S

|3π‘₯ βˆ’ 5| + 7 βˆ’ 7 = 11 βˆ’ 7

|3π‘₯ βˆ’ 5| = 4

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

3π‘₯ βˆ’ 5 = 4 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

3π‘₯ βˆ’ 5 = βˆ’4 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

3π‘₯ βˆ’ 5 = 4

Add 5 on B.S

3π‘₯ βˆ’ 5 + 5 = 4 + 5

3π‘₯ = 9

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 3 3π‘₯

3=

9

3

π‘₯ = 3

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

3π‘₯ βˆ’ 5 = βˆ’4

Add 5 on B.S

3π‘₯ βˆ’ 5 + 5 = βˆ’4 + 5

3π‘₯ = 1

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 3 3π‘₯

3=

1

3

π‘₯ =1

3

Solution Set = {3,1

3}

The absolute value of a number is always be non–negative.

Example

|5| = 5

And also

|βˆ’5| = 5

Note: It should be noted that |π‘₯| can never be negative, that is |π‘₯| β‰₯ 0

|0| = 0

Solution of Absolute value equation

To solve equations involving absolute value in one variable, we have to consider both the possible values of the variable.

Example

|π‘₯| = 2

Then there is two possibilities

π‘₯ = 2

Or

π‘₯ = βˆ’2

Example # 9

|𝒙 βˆ’ 𝟏| = πŸ•

Solution:

|π‘₯ βˆ’ 1| = 7

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

π‘₯ βˆ’ 1 = 7 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

π‘₯ βˆ’ 1 = βˆ’7 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

π‘₯ βˆ’ 1 = 7

Add 1 on B.S

π‘₯ βˆ’ 1 + 1 = 7 + 1

π‘₯ = 8

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

π‘₯ βˆ’ 1 = βˆ’7

Add 1 on B.S

π‘₯ βˆ’ 1 + 1 = βˆ’7 + 1

π‘₯ = βˆ’6

Solution Set = {8, βˆ’6}

Exercise # 7.3

Page # 182

Q: Solve for 𝒙

|𝒙 + πŸ‘| = πŸ“ Solution: |π‘₯ + 3| = 5 π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘  πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ π‘₯ + 3 = 5 … … π‘’π‘žπ‘’(𝑖) π‘œπ‘Ÿ π‘₯ + 3 = βˆ’5 … … π‘’π‘žπ‘’(𝑖𝑖)

1.

Chapter # 7

12

Ex # 7.3 Ex # 7.3

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

π‘₯ + 3 = 5

Subtract 3 from B.S

π‘₯ + 3 βˆ’ 3βˆ’= 5 βˆ’ 3

π‘₯ = 2

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

π‘₯ + 3 = βˆ’5

Subtract 3 from B.S

π‘₯ + 3 βˆ’ 3βˆ’= βˆ’5 βˆ’ 3

π‘₯ = βˆ’8

Solution Set = {2, βˆ’8}

3. |πŸ‘

πŸ’π’™ βˆ’ πŸ–| = 𝟏

Solution:

|3

4π‘₯ βˆ’ 8| = 1

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ 3

4π‘₯ βˆ’ 8 = 1 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ 3

4π‘₯ βˆ’ 8 = βˆ’16 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹ 3

4π‘₯ βˆ’ 8 = 1

Add 8 on B.S

3

4π‘₯ βˆ’ 8 + 8 = 1 + 8

3

4π‘₯ = 9

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦 𝐡. 𝑆 𝑏𝑦 4

3

4

3Γ—

3

4π‘₯ =

4

3Γ— 9

π‘₯ = 4 Γ— 3

π‘₯ = 12

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹ 3

4π‘₯ βˆ’ 8 = βˆ’1

Add 8 on B.S

3

4π‘₯ βˆ’ 8 + 8 = βˆ’1 + 8

3

4π‘₯ = 7

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦 𝐡. 𝑆 𝑏𝑦 4

3

4

3Γ—

3

4π‘₯ =

4

3Γ— 7

π‘₯ =28

3

Solution Set = {12,28

3}

2. |βˆ’πŸ“π’™ + 𝟏| = πŸ”

Solution:

|βˆ’5π‘₯ + 1| = 6

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

βˆ’5π‘₯ + 1 = 6 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

βˆ’5π‘₯ + 1 = βˆ’6 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

βˆ’5π‘₯ + 1 = 6

Subtract 1 from B.S

βˆ’5π‘₯ + 1 βˆ’ 1 = 6 βˆ’ 1

βˆ’5π‘₯ = 5

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 βˆ’ 5 βˆ’5π‘₯

βˆ’5=

5

βˆ’5

π‘₯ = βˆ’1

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

βˆ’5π‘₯ + 1 = βˆ’6

Subtract 1 from B.S

βˆ’5π‘₯ + 1 βˆ’ 1 = βˆ’6 βˆ’ 1

βˆ’5π‘₯ = βˆ’7

5π‘₯ = 7

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 5 5π‘₯

5=

7

5

π‘₯ =7

5

Solution Set = {βˆ’1,7

5}

Chapter # 7

13

Ex # 7.3 Ex # 7.3

4. |𝒙 βˆ’ πŸ’| = πŸ‘

Solution:

|π‘₯ βˆ’ 4| = 3

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

π‘₯ βˆ’ 4 = 3 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

π‘₯ βˆ’ 4 = βˆ’3 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

π‘₯ βˆ’ 4 = 3

Add 4 on B.S

π‘₯ βˆ’ 4 + 4 = 3 + 4

π‘₯ = 7

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

π‘₯ βˆ’ 4 = βˆ’3

Add 4 on B.S

π‘₯ βˆ’ 4 + 4 = βˆ’3 + 4

π‘₯ = 1

Solution Set = {7, 1}

7. |πŸ‘π’™ βˆ’ 𝟐

πŸ“| = πŸ•

Solution:

|3π‘₯ βˆ’ 2

5| = 7

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ 3π‘₯ βˆ’ 2

5= 7 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ 3π‘₯ βˆ’ 2

5= βˆ’7 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹ 3π‘₯ βˆ’ 2

5= 7

Multiply B.S by 5

5 Γ—3π‘₯ βˆ’ 2

5= 5 Γ— 7

3π‘₯ βˆ’ 2 = 35

Add 2 on B.S

3π‘₯ βˆ’ 2 + 2 = 35 + 2

3π‘₯ = 37

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 3 3π‘₯

3=

37

3

π‘₯ =37

3

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹ 3π‘₯ βˆ’ 2

5= βˆ’7

Multiply B.S by 5

5 Γ—3π‘₯ βˆ’ 2

5= βˆ’7 Γ— 5

3π‘₯ βˆ’ 2 = βˆ’35

Add 2 on B.S

3π‘₯ βˆ’ 2 + 2 = βˆ’35 + 2

3π‘₯ = βˆ’33

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 3 3π‘₯

3=

βˆ’33

3

π‘₯ = βˆ’11

Solution Set = {37

3, βˆ’11}

5. |πŸ‘π’™ + πŸ’| = βˆ’πŸ

Solution:

|3π‘₯ + 4| = βˆ’2

As there is no such a number whose absolute

value is negative

Thus Solution Set = { }

6. |πŸπ’™ βˆ’ πŸ—| = 𝟎

Solution:

|2π‘₯ βˆ’ 9| = 0

|π‘₯| = 0 ⟹ π‘₯ = 0

So

2π‘₯ βˆ’ 9 = 0

Add 9 on B.S

2π‘₯ βˆ’ 9 + 9 = 0 + 9

2π‘₯ = 9

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 2 2π‘₯

2=

9

2

π‘₯ =9

2

Solution Set = {9

2}

Chapter # 7

14

Ex # 7.3 Ex # 7.3

8. πŸ’|πŸ“π’™ βˆ’ 𝟐| + πŸ‘ = 𝟏𝟏

Solution:

4|5π‘₯ βˆ’ 2| + 3 = 11

Subtract 3 from B.S

4|5π‘₯ βˆ’ 2| + 3 βˆ’ 3 = 11 βˆ’ 3

4|5π‘₯ βˆ’ 2| = 8

Divide B.S by 4

4|5π‘₯ βˆ’ 2|

4=

8

4

|5π‘₯ βˆ’ 2| = 2

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

5π‘₯ βˆ’ 2 = 2 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

5π‘₯ βˆ’ 2 = βˆ’2 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

5π‘₯ βˆ’ 2 = 2

Add 2 on B.S

5π‘₯ βˆ’ 2 + 2 = 2 + 2

5π‘₯ = 4

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 5 5π‘₯

5=

4

5

π‘₯ =4

5

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

5π‘₯ βˆ’ 2 = 2

Add 2 on B.S

5π‘₯ βˆ’ 2 + 2 = βˆ’2 + 2

5π‘₯ = 0

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 5 5π‘₯

5=

0

5

π‘₯ = 0

Solution Set = {4

5, 0}

2

5|4π‘₯ βˆ’ 3| = 8

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦 𝐡. 𝑆 𝑏𝑦 5

2

5

2Γ—

2

5|4π‘₯ βˆ’ 3| =

5

2Γ— 8

|4π‘₯ βˆ’ 3| = 5 Γ— 4

|4π‘₯ βˆ’ 3| = 20

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

4π‘₯ βˆ’ 3 = 20 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

4π‘₯ βˆ’ 3 = βˆ’20 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

4π‘₯ βˆ’ 3 = 20

Add 3 on B.S

4π‘₯ βˆ’ 3 + 3 = 20 + 3

4π‘₯ = 23

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 4 4π‘₯

4=

23

4

π‘₯ =23

4

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

4π‘₯ βˆ’ 3 = βˆ’20

Add 3 on B.S

4π‘₯ βˆ’ 3 + 3 = βˆ’20 + 3

4π‘₯ = βˆ’17

𝐷𝑖𝑣𝑖𝑑𝑒 𝐡. 𝑆 𝑏𝑦 4 4π‘₯

4=

βˆ’17

4

π‘₯ =βˆ’17

4

Solution Set = {23

4,βˆ’17

4}

9. 𝟐

πŸ“|πŸ’π’™ βˆ’ πŸ‘| βˆ’ πŸ— = βˆ’πŸ

Solution:

2

5|4π‘₯ βˆ’ 3| βˆ’ 9 = βˆ’1

Add 9 on B.S

2

5|4π‘₯ βˆ’ 3| βˆ’ 9 + 9 = βˆ’1 + 9

Chapter # 7

15

Ex # 7.4 Ex # 7.4

Example # 11

Linear Inequality Show βˆ’πŸ < 𝒙 < πŸ“ on a number line.

Solution: βˆ’2 < π‘₯ < 5

Inequality

The relation which compares two real numbers e.g. π‘₯ and 𝑦 but π‘₯ β‰  𝑦.

βˆ’2 < π‘₯ < 5 means the set of real numbers which

are greater than βˆ’2 but less than 5. Following symbols of inequality as under:

< less than βˆ’2 < π‘₯ < 5 means the set of real numbers which

are between βˆ’2 and 5 > greater than

≀ less than or equal to Geometrical βˆ’2 < π‘₯ < 5 means the set of real

numbers lying to the right of βˆ’2 and left to 5. β‰₯ greater than or equal to

We have the following possibilities Note:

Here βˆ’2 and 5 are not included. π‘₯ < 𝑦 π‘šπ‘’π‘Žπ‘›π‘  π‘‘β„Žπ‘Žπ‘‘ π‘₯ 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 𝑦

π‘₯ > 𝑦 π‘šπ‘’π‘Žπ‘›π‘  π‘‘β„Žπ‘Žπ‘‘ π‘₯ π‘”π‘Ÿπ‘’π‘Žπ‘‘π‘’π‘Ÿ π‘‘β„Žπ‘Žπ‘› 𝑦

π‘₯ ≀ 𝑦 π‘šπ‘’π‘Žπ‘›π‘  π‘‘β„Žπ‘Žπ‘‘ π‘₯ 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› π‘œπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 𝑦

π‘₯ β‰₯ 𝑦 π‘šπ‘’π‘Žπ‘›π‘  π‘‘β„Žπ‘Žπ‘‘ π‘₯ 𝑖𝑠 π‘”π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿ π‘‘β„Žπ‘Žπ‘› π‘œπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 𝑦

Solution of Linear Inequalities

The set of all possible values of the variable which

makes the inequality a true statement is called

solution set of the inequality.

It is simple to represent the solution of an

inequality with the help on real number line.

Properties of Inequality of Real Numbers

Trichotomy Property

Trichotomy property means when comparing two

numbers, one of the following must be true:

(a) π‘Ž = 𝑏

π‘Ž < 𝑏

π‘Ž > 𝑏

Examples:

5 = 5

3 < 5

3 > 5

(b)

Real Number Line

A line whose points are represented by real

number is called real number line.

(c)

(i)

Geometrical representation with examples (ii)

Example: 𝒙 < πŸ’ (iii)

π‘₯ < 4, it means that all real numbers less than 4.

Geometrically all real numbers lying to the left of

4 but 4 is not included.

This is represented by using hollow circle around

4.

Transitive Property

(a) If π‘Ž > 𝑏 and 𝑏 > 𝑐 then π‘Ž > 𝑐

Example:

If 7 > 5 and 5 > 3 thenπŸ• > 3

(b) If π‘Ž < 𝑏 and 𝑏 < 𝑐 then π‘Ž < 𝑐

Example:

If 3 < 5 and 5 < 7 thenπŸ‘ < 7

Additive Property

Example: 𝒙 ≀ πŸ’

π‘₯ ≀ 4, it means that all real numbers less than or

equal to 4. Geometrically all real numbers lying

to the left of 4 and also including 4.

This is represented by using thick, filled or solid

circle around 4.

(a) If π‘Ž < 𝑏 then π‘Ž + 𝑐 < 𝑏 + 𝑐

(b) If π‘Ž < 𝑏 then π‘Ž βˆ’ 𝑐 < 𝑏 βˆ’ 𝑐

Examples:

(i) 3 < 5 then 3 + 2 < 5 + 2

(ii) 3 < 5 then 3 βˆ’ 2 < 5 βˆ’ 2

(iii) 𝒙 βˆ’ πŸ‘ > πŸ“

Add 3 on B.S

π‘₯ βˆ’ 3 + 3 = 5 + 3

π‘₯ = 8

Chapter # 7

16

Ex # 7.4 Ex # 7.4

(c) If π‘Ž > 𝑏 then π‘Ž + 𝑐 > 𝑏 + 𝑐 πŸπŸ“ > πŸ– ⟹ 𝟐𝟐 > πŸπŸ“

Solution:

15 > 8 ⟹ 15 + 7 > 8 + 7

Hence 15 > 8 ⟹ 22 > 15

Additive Property

(d) If π‘Ž > 𝑏 then π‘Ž βˆ’ 𝑐 > 𝑏 βˆ’ 𝑐

Example:

(i) 5 > 3 then 5 + 2 > 3 + 2

(ii) 5 > 3 then 5 βˆ’ 7 > 3 βˆ’ 7 So βˆ’2 > βˆ’4

(iii) 𝒙 + πŸ‘ > πŸ“ 𝟏𝟎 < 𝟐𝟎 ⟹ πŸ‘πŸŽ < πŸ”πŸŽ

Solution:

10 < 20 ⟹ 10 Γ— 3 < 20 Γ— 3

Hence 10 < 20 ⟹ 30 < 60

Multiplicative Property

Subtract 3 from B.S

π‘₯ + 3 βˆ’ 3 = 5 βˆ’ 3

π‘₯ = 2

Multiplicative Property

1. When 𝒄 > 𝟎: βˆ’πŸπŸ > βˆ’πŸπŸ“ ⟹ πŸπŸ’ < πŸ‘πŸŽ

Solution:

βˆ’12 > βˆ’15 ⟹ βˆ’12 Γ— βˆ’2 < βˆ’15 Γ— βˆ’2

Hence βˆ’ 12 > βˆ’15 ⟹ 24 < 30

Multiplicative Property

(a) If π‘Ž < 𝑏 then π‘Žπ‘ < 𝑏𝑐

(b) If π‘Ž > 𝑏 then π‘Žπ‘ > 𝑏𝑐

Example:

(i) 5 > 3 then 5 Γ— 2 > 3 Γ— 2

(ii) 𝒙

πŸ‘> πŸ“

𝐈𝐟 𝒙 > πŸ’ 𝐚𝐧𝐝 πŸ’ > 𝒛 𝐭𝐑𝐞𝐧 𝒙 > 𝒛

Solution:

π‘₯ > 4 and 4 > 𝑧 ⟹ π‘₯ > 𝑧

Transitive Property

Multiply B.S by 3 π‘₯

3Γ— 3 > 5 Γ— 3

π‘₯ > 15

Solution of Linear Inequalities

Linear inequalities are solved in almost the same

way as linear equations.

(iii) πŸπ’™ > πŸπŸ’

2π‘₯

2>

24

2

Divide B.S by 2

π‘₯ > 12

Principles in Inequalities

(i) If π‘Ž > 𝑏, then

π‘Ž + 𝑐 > 𝑏 + 𝑐 , π‘Ž βˆ’ 𝑐 > 𝑏 βˆ’ 𝑐 , π‘Ž βˆ’ 𝑏 > 0

(ii) If π‘Ž > 𝑏 and π‘˜ > 0, then

2. When 𝒄 < 𝟎: π‘˜π‘Ž > π‘˜π‘ π‘Žπ‘›π‘‘

π‘Ž

π‘˜>

𝑏

π‘˜

(a) If π‘Ž < 𝑏 then π‘Žπ‘ > 𝑏𝑐

(b) If π‘Ž > 𝑏 then π‘Žπ‘ < 𝑏𝑐 (iii) If π‘Ž > 𝑏 and π‘˜ < 0, then

Example: π‘˜π‘Ž < π‘˜π‘ π‘Žπ‘›π‘‘

π‘Ž

π‘˜<

𝑏

π‘˜

(i) 5 > 3 then 5 Γ— βˆ’2 < 3 Γ— βˆ’2 So βˆ’10 < βˆ’6

(ii) π‘₯

βˆ’3< 5

Example # 13

You are checking a bag at an airport. Bags can

weigh no more than 50 Kgs. Your bag weighs

16.8 kg. Find the possible weight w (in Kg) that

you can add to the bag.

Multiply B.S by βˆ’3 π‘₯

βˆ’3Γ— βˆ’3 > 5 Γ— βˆ’3

π‘₯ > βˆ’15

Solution:

π΅π‘Žπ‘”β€™π‘  π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘¦π‘œπ‘’ π‘π‘Žπ‘› π‘Žπ‘‘π‘‘ ≀ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘™π‘–π‘šπ‘–π‘‘

16.8 + π‘Š ≀ 50

Subtract 16.8 from B.S

16.8 βˆ’ 16.8 + π‘Š ≀ 50 βˆ’ 16.8

π‘Š ≀ 33.2

So we can add upto 33.2 Kg

Example # 12

Write the names of properties used in the

following statements.

21 < 31 ⟹ 31 < 41

21 < 31 ⟹ 21 + 10 < 31 + 10

Hence 21 < 31 ⟹ 31 < 41

Additive Property

Chapter # 7

17

Ex # 7.4 Ex # 7.4

Example # 14 (i)

𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 π’Šπ’π’†π’’π’–π’‚π’π’Šπ’•π’š 𝟐 (𝒙

πŸ’+ 𝟏) <

πŸ‘

𝟐

π’˜π’‰π’†π’“π’† 𝒙 π’Šπ’” 𝒂 𝒏𝒂𝒕𝒖𝒓𝒂𝒍 π’π’–π’Žπ’ƒπ’†π’“

Solution:

2 (π‘₯

4+ 1) <

3

2

2 (π‘₯ + 4

4) <

3

2

π‘₯ + 4

2<

3

2

Multiply B.S by 2

2 Γ—π‘₯ + 4

2< 2 Γ—

3

2

π‘₯ + 4 < 3

Subtract 4 from B.S

π‘₯ + 4 βˆ’ 4 < 3 βˆ’ 4

π‘₯ < βˆ’1

𝐴𝑠 π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘π‘Žπ‘›π‘›π‘œπ‘‘ 𝑏𝑒 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› βˆ’ 1,

π‘‘β„Žπ‘’π‘› 𝑖𝑑 β„Žπ‘Žπ‘  π‘›π‘œ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›

Thus, Solution Set = { }

Example # 15 (i)

𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 π’Šπ’π’†π’’π’–π’‚π’π’Šπ’•π’š 𝒙 βˆ’πŸ“

πŸ•β‰€

πŸπŸ“ + πŸπ’™

πŸ•

π’˜π’‰π’†π’“π’† 𝒙 π’Šπ’” 𝒂 𝒏𝒂𝒕𝒖𝒓𝒂𝒍 π’π’–π’Žπ’ƒπ’†π’“

Solution:

π‘₯ βˆ’5

7≀

15 + 2π‘₯

7

7π‘₯ βˆ’ 5

7≀

15 + 2π‘₯

7

Multiply B.S by 7

7 Γ—7π‘₯ βˆ’ 5

7≀ 7 Γ—

15 + 2π‘₯

7

7π‘₯ βˆ’ 5 ≀ 15 + 2π‘₯

Add 5 on B.S

7π‘₯ βˆ’ 5 + 5 ≀ 15 + 5 + 2π‘₯

7π‘₯ ≀ 20 + 2π‘₯

Subtract 2π‘₯ from B.S

7π‘₯ βˆ’ 2π‘₯ ≀ 20 + 2π‘₯ βˆ’ 2π‘₯

5π‘₯ ≀ 20

Divide B.S by 5

5π‘₯

5≀

20

5

π‘₯ ≀ 4

𝐴𝑠 π‘₯ 𝑖𝑠 π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘Žπ‘›π‘‘ 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› π‘œπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 4

Thus Solution Set = {1, 2, 3, 4}

Example # 14 (ii)

𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 π’Šπ’π’†π’’π’–π’‚π’π’Šπ’•π’š 𝟐 (𝒙

πŸ’+ 𝟏) <

πŸ‘

𝟐

π’˜π’‰π’†π’“π’† 𝒙 π’Šπ’” 𝒂 𝒓𝒆𝒂𝒍 π’π’–π’Žπ’ƒπ’†π’“

Solution:

2 (π‘₯

4+ 1) <

3

2

2 (π‘₯ + 4

4) <

3

2

π‘₯ + 4

2<

3

2

Multiply B.S by 2

2 Γ—π‘₯ + 4

2< 2 Γ—

3

2

π‘₯ + 4 < 3

Subtract 4 from B.S

π‘₯ + 4 βˆ’ 4 < 3 βˆ’ 4

π‘₯ < βˆ’1

Thus it consists of all real numbers less than βˆ’ 1

Thus Solution Set = {π‘₯ ∢ π‘₯ πœ– 𝑅 Ι… π‘₯ < βˆ’1}

Example # 15 (ii)

𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 π’Šπ’π’†π’’π’–π’‚π’π’Šπ’•π’š 𝒙 βˆ’πŸ“

πŸ•β‰€

πŸπŸ“ + πŸπ’™

πŸ•

π’˜π’‰π’†π’“π’† 𝒙 π’Šπ’” 𝒂 𝒓𝒆𝒂𝒍 π’π’–π’Žπ’ƒπ’†π’“

Solution:

π‘₯ βˆ’5

7≀

15 + 2π‘₯

7

7π‘₯ βˆ’ 5

7≀

15 + 2π‘₯

7

Multiply B.S by 7

7 Γ—7π‘₯ βˆ’ 5

7≀ 7 Γ—

15 + 2π‘₯

7

7π‘₯ βˆ’ 5 ≀ 15 + 2π‘₯ Add 5 on B.S

7π‘₯ βˆ’ 5 + 5 ≀ 15 + 5 + 2π‘₯ 7π‘₯ ≀ 20 + 2π‘₯

Chapter # 7

18

Ex # 7.4 Exercise # 7.4 Subtract 2π‘₯ from B.S

7π‘₯ βˆ’ 2π‘₯ ≀ 20 + 2π‘₯ βˆ’ 2π‘₯

5π‘₯ ≀ 20

Divide B.S by 5

5π‘₯

5≀

20

5

π‘₯ ≀ 4

π‘‡β„Žπ‘’π‘  𝑖𝑑 π‘π‘œπ‘›π‘ π‘–π‘ π‘‘π‘  π‘œπ‘“ π‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  𝑙𝑒𝑠𝑠

π‘‘β„Žπ‘Žπ‘› π‘œπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 4

Thus Solution Set = {π‘₯ ∢ π‘₯ πœ– 𝑅 Ι… π‘₯ ≀ 4}

Page # 188

Q1: Show the following inequalities on number line.

(i) 𝒙 > 𝟎

Solution:

π‘₯ > 0

(ii) 𝒙 < 𝟎 Solution: π‘₯ < 0

Example # 16

𝑺𝒐𝒍𝒗𝒆 𝒕𝒉𝒆 π’Šπ’π’†π’’π’–π’‚π’π’Šπ’•π’š 𝒙 + πŸ‘

πŸβ‰€

𝒙 βˆ’ πŸ“

πŸ‘

π’˜π’‰π’†π’“π’† 𝒙 ∈ 𝑹

Solution:

π‘₯ + 3

2≀

π‘₯ βˆ’ 5

3

Multiply B.S by 6

6 Γ—π‘₯ + 3

2≀ 6 Γ—

π‘₯ βˆ’ 5

3

3(π‘₯ + 3) ≀ 2(π‘₯ βˆ’ 5)

3π‘₯ + 9 ≀ 2π‘₯ βˆ’ 10

Subtract 9 from B.S

3π‘₯ + 9 βˆ’ 9 ≀ 2π‘₯ βˆ’ 10 βˆ’ 9

3π‘₯ ≀ 2π‘₯ βˆ’ 19

Subtract 2π‘₯ from B.S

3π‘₯ βˆ’ 2π‘₯ ≀ 2π‘₯ βˆ’ 2π‘₯ βˆ’ 19

π‘₯ ≀ βˆ’19

π‘‡β„Žπ‘’π‘  𝑖𝑑 π‘π‘œπ‘›π‘ π‘–π‘ π‘‘π‘  π‘œπ‘“ π‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  𝑙𝑒𝑠𝑠

π‘‘β„Žπ‘Žπ‘› π‘œπ‘Ÿ π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ βˆ’ 19

Thus Solution Set = {π‘₯ ∢ π‘₯ πœ– 𝑅 Ι… π‘₯ ≀ βˆ’19}

(iii)

𝒙 βˆ’ πŸ‘

πŸβ‰€ βˆ’πŸ

Solution: π‘₯ βˆ’ 3

2≀ βˆ’1

Multiply B.S by 2

2 Γ—π‘₯ βˆ’ 3

2≀ βˆ’1 Γ— 2

π‘₯ βˆ’ 3 ≀ βˆ’2

Add 3 on B.S

π‘₯ βˆ’ 3 + 3 ≀ βˆ’2 + 3

π‘₯ ≀ 1

(v) 𝒙 ≀ βˆ’πŸ“ Solution: π‘₯ ≀ βˆ’5

𝒙 β‰₯ βˆ’πŸ‘ Solution: π‘₯ β‰₯ βˆ’3

Chapter # 7

19

Ex # 7.4 Ex # 7.4

(vi) πŸ‘π’™ βˆ’ 𝟐

πŸ”>

πŸ“

𝟐

Solution: 3π‘₯ βˆ’ 2

6>

5

2

Multiply B.S by 6

6 Γ—3π‘₯ βˆ’ 2

6> 6 Γ—

5

2

3π‘₯ βˆ’ 2 > 3 Γ— 5

3π‘₯ βˆ’ 2 > 15

Add 2 on B.S

3π‘₯ βˆ’ 2 + 2 > 15 + 2

3π‘₯ > 17

Divide B.S by 3

3π‘₯

3>

17

3

π‘₯ > 5.67

Add 4

0 + 4 < π‘₯ βˆ’ 4 + 4 < 2 + 4

4 < π‘₯ < 6

(x) 𝟎 <

𝒙 + πŸ‘

𝟐<

πŸ‘

𝟐

Solution:

0 <π‘₯ + 3

2<

3

2

Multiply by 2

2 Γ— 0 < 2 Γ—π‘₯ + 3

2< 2 Γ—

3

2

0 < π‘₯ + 3 < 3

Subtract 3

0 βˆ’ 3 < π‘₯ + 3 βˆ’ 3 < 3 βˆ’ 3

βˆ’3 < π‘₯ < 0

(vii) βˆ’πŸ“ ≀ 𝒙 ≀ πŸ” Solution:

βˆ’5 ≀ π‘₯ ≀ 6

Q2: Find the solution set of the following inequalities.

(i) πŸ• βˆ’ πŸπ’™ β‰₯ 𝟏 , 𝒙 𝝐 𝑡

Solution:

7 βˆ’ 2π‘₯ β‰₯ 1 , π‘₯ πœ– 𝑁

Now

7 βˆ’ 2π‘₯ β‰₯ 1

Subtract 7 from B.S

7 βˆ’ 7 βˆ’ 2π‘₯ β‰₯ 1 βˆ’ 7

βˆ’2π‘₯ β‰₯ βˆ’6

Divide B.S by βˆ’2

βˆ’2π‘₯

βˆ’2≀

βˆ’6

βˆ’2

π‘₯ ≀ 3

𝐴𝑠 π‘₯ πœ– 𝑁 π‘Žπ‘›π‘‘ π‘₯ ≀ 3

Thus Solution Set = {1, 2, 3}

(viii) πŸ‘ β‰₯ 𝒙 β‰₯ βˆ’πŸ Solution:

3 β‰₯ π‘₯ β‰₯ βˆ’2

(ix) 𝟎 <𝒙

πŸ’βˆ’ 𝟏 <

𝟏

𝟐

Solution:

0 <π‘₯

4βˆ’ 1 <

1

2

Multiply by 4

4 Γ— 0 < 4 (π‘₯

4βˆ’ 1) < 4 Γ—

1

2

0 < 4 Γ—π‘₯

4βˆ’ 4 Γ— 1 < 2 Γ— 1

0 < π‘₯ βˆ’ 4 < 2

(ii) πŸ“π’™ + πŸ’ < 34 , π‘₯ πœ– 𝑁

Solution:

5π‘₯ + 4 < 34 , π‘₯ πœ– 𝑁

Now

5π‘₯ + 4 < 34

Subtract 4 from B.S

5π‘₯ + 4 βˆ’ 4 < 34 βˆ’ 4

5π‘₯ < 30

Chapter # 7

20

Ex # 7.4 Ex # 7.4

Divide B.S by 5

5π‘₯

5<

30

5

π‘₯ < 6

𝐴𝑠 π‘₯ πœ– 𝑁 π‘Žπ‘›π‘‘ π‘₯ < 6

Thus Solution Set = {1, 2, 3, 4, 5}

(v) πŸ“π’™ + 𝟏

β‰₯ πŸπŸ‘ βˆ’ 𝒙 , 𝒙 𝝐 {βˆ’πŸ, βˆ’πŸ, 𝟎, 𝟏, 𝟐, πŸ‘, πŸ’, πŸ“}

Solution:

5π‘₯ + 1 β‰₯ 13 βˆ’ π‘₯ , π‘₯ πœ– {βˆ’2, βˆ’1, 0, 1, 2, 3, 4, 5}

Now

5π‘₯ + 1 β‰₯ 13 βˆ’ π‘₯

Now

5π‘₯ + π‘₯ β‰₯ 13 βˆ’ 1

6π‘₯ β‰₯ 12

Divide B.S by 6

6π‘₯

6β‰₯

12

6

π‘₯ β‰₯ 2

𝐴𝑠 π‘₯ πœ– {βˆ’2, βˆ’1, 0, 1, 2, 3, 4, 5} π‘Žπ‘›π‘‘ π‘₯ β‰₯ 2

Thus Solution Set = {2, 3, 4, 5}

(iii) πŸ–π’™ + 𝟏

𝟐< 2𝒙 βˆ’ 𝟏. πŸ“ , 𝒙 𝝐 𝑹

Solution: 8π‘₯ + 1

2< 2π‘₯ βˆ’ 1.5 , π‘₯ πœ– 𝑅

Now

8π‘₯ + 1

2< 2π‘₯ βˆ’ 1.5

Multiply B.S by 2

2 Γ—8π‘₯ + 1

2< 2(2π‘₯ βˆ’ 1.5)

8π‘₯ + 1 < 4π‘₯ βˆ’ 3

Now

8π‘₯ βˆ’ 4π‘₯ < βˆ’3 βˆ’ 1

4π‘₯ < βˆ’4

Divide B.S by 4

4π‘₯

4<

βˆ’4

4

π‘₯ < βˆ’1

𝐴𝑠 π‘₯ πœ– 𝑅 π‘Žπ‘›π‘‘ π‘₯ < βˆ’1

Thus Solution Set = {π‘₯ ∢ π‘₯ πœ– 𝑅 Ι… π‘₯ < βˆ’1}

(vi)

πŸπ’™ + πŸ”

πŸβ‰€

𝒙 βˆ’ πŸ—

πŸ‘ , 𝒙 𝝐 𝑹

Solution: 2π‘₯ + 6

2≀

π‘₯ βˆ’ 9

3 , π‘₯ πœ– 𝑅

Now

2π‘₯ + 6

2≀

π‘₯ βˆ’ 9

3

Multiply B.S by 6

6 Γ—2π‘₯ + 6

2≀ 6 Γ—

π‘₯ βˆ’ 9

3

3(2π‘₯ + 6) ≀ 2(π‘₯ βˆ’ 9)

6π‘₯ + 18 ≀ 2π‘₯ βˆ’ 18

Now

6π‘₯ βˆ’ 2π‘₯ ≀ βˆ’18 βˆ’ 18

4π‘₯ ≀ βˆ’36

Divide B.S by 4

4π‘₯

4≀

βˆ’36

4

π‘₯ ≀ βˆ’9

𝐴𝑠 π‘₯ πœ– 𝑅 π‘Žπ‘›π‘‘ π‘₯ ≀ βˆ’9

Thus Solution Set = {π‘₯ ∢ π‘₯ πœ– 𝑅 Ι… π‘₯ ≀ βˆ’9}

(iv) (πŸ’π’™ + πŸ‘) β‰₯ πŸπŸ‘ , 𝒙 𝝐 {𝟏, 𝟐, πŸ‘, πŸ’, πŸ“, πŸ”}

Solution:

(4π‘₯ + 3) β‰₯ 23 , π‘₯ πœ– {1, 2, 3, 4, 5, 6}

Now

4π‘₯ + 3 β‰₯ 23

Subtract 3 from B.S

4π‘₯ + 3 βˆ’ 3 β‰₯ 23 βˆ’ 3

4π‘₯ β‰₯ 20

Divide B.S by 4

4π‘₯

4β‰₯

20

4

π‘₯ β‰₯ 5

𝐴𝑠 π‘₯ πœ– {1, 2, 3, 4, 5, 6} π‘Žπ‘›π‘‘ π‘₯ β‰₯ 5

Thus Solution Set = {5, 6}

(vii)

𝒙 βˆ’ 𝟏

πŸ‘β‰€

𝟏 βˆ’ 𝒙

𝟐 , 𝒙 𝝐 𝒁

Solution: π‘₯ βˆ’ 1

3≀

1 βˆ’ π‘₯

2 , π‘₯ πœ– 𝑍

Now

π‘₯ βˆ’ 1

3≀

1 βˆ’ π‘₯

2

Chapter # 7

21

Ex # 7.4 Ex # 7.4

Multiply B.S by 6

6 Γ—π‘₯ βˆ’ 1

3≀ 6 Γ—

1 βˆ’ π‘₯

2

2(π‘₯ βˆ’ 1) ≀ 3(1 βˆ’ π‘₯)

2π‘₯ βˆ’ 2 ≀ 3 βˆ’ 3π‘₯

Now

2π‘₯ + 3π‘₯ ≀ 3 + 2

5π‘₯ ≀ 5

Divide B.S by 5

5π‘₯

5≀

5

5

π‘₯ ≀ 1

𝐴𝑠 π‘₯ πœ– 𝑍 π‘Žπ‘›π‘‘ π‘₯ ≀ 1

Thus Solution Set = {1, 0, βˆ’1, βˆ’2, βˆ’3 … … }

(iii) πŸ‘(𝒙 βˆ’ 𝟐) > 15

Solution:

3(π‘₯ βˆ’ 2) > 15

3π‘₯ βˆ’ 6 > 15

Add 6 on B.S

3π‘₯ βˆ’ 6 + 6 > 15 + 6

3π‘₯ > 21

Divide B.S by 3

3π‘₯

3>

21

3

π‘₯ > 7

Q3: Solve the following inequalities and plot the solution on the number line.

(iv) 𝟏

𝟐>

𝒙

πŸ’> βˆ’2

Solution: 1

2>

π‘₯

4> βˆ’2

Multiply by 4

4 Γ—1

2> 4 Γ—

π‘₯

4> βˆ’2 Γ— 4

2 Γ— 1 > π‘₯ > βˆ’8

2 > π‘₯ > βˆ’8

(i) 𝒙

πŸπŸβ‰€

𝟏

πŸ’

Solution: π‘₯

12≀

1

4

Multiply B.S by 12

12 Γ—π‘₯

12≀ 12 Γ—

1

4

π‘₯ ≀ 3 Γ— 1

π‘₯ ≀ 3

(v) 𝟐. πŸ“ ≀

𝒙

𝟐+ 𝟏 ≀ πŸ’. πŸ“

Solution:

2.5 ≀π‘₯

2+ 1 ≀ 4.5

Multiply B.S by 2

2 Γ— 2.5 ≀ 2 (π‘₯

2+ 1) ≀ 2 Γ— 4.5

5 ≀ π‘₯ + 2 ≀ 9

Subtract 2 from them

5 βˆ’ 2 ≀ π‘₯ + 2 βˆ’ 2 ≀ 9 βˆ’ 2

3 ≀ π‘₯ ≀ 7

(ii) 𝒙 + πŸ• β‰₯ 𝟐

Solution:

π‘₯ + 7 β‰₯ 2

Subtract 7 from B.S

π‘₯ + 7 βˆ’ 7 β‰₯ 2 βˆ’ 7

π‘₯ β‰₯ βˆ’5

Chapter # 7

22

Ex # 7.4 Review Ex # 7

(vi) βˆ’πŸ ≀ 𝒙 < 𝟐

Solution:

βˆ’2 ≀ π‘₯ < 2

5π‘₯ βˆ’ 25 + 25 = 0 + 25 5π‘₯ = 25 Divide B.S by 5 5π‘₯

5=

25

5

π‘₯ = 5

Verification

Put π‘₯ = 5 in equ (i) 5 βˆ’ 8

3+

5 βˆ’ 3

2= 0

βˆ’3

3+

2

2= 0

βˆ’1 + 1 = 0

0 = 0

Solution Set = {5}

Review Ex # 7

Page # 190

Q2: Solve the following equation for 𝒙

(i) πŸ“(πŸ‘π’™ + 𝟏) = 𝟐(𝒙 βˆ’ πŸ’)

Solution:

5(3π‘₯ + 1) = 2(π‘₯ βˆ’ 4) … … π‘’π‘žπ‘’(𝑖)

15π‘₯ + 5 = 2π‘₯ βˆ’ 8

Subtract 5 from B.S

15π‘₯ + 5 βˆ’ 5 = 2π‘₯ βˆ’ 8 βˆ’ 5

15π‘₯ = 2π‘₯ βˆ’ 13

Subtract 2π‘₯ from B.S

15π‘₯ βˆ’ 2π‘₯ = 2π‘₯ βˆ’ 2π‘₯ βˆ’ 13

13π‘₯ = βˆ’13

Divide B.S by 13

13π‘₯

13=

βˆ’13

13

π‘₯ = βˆ’1

Verification

Put π‘₯ = βˆ’1 in equ (i)

5(3(βˆ’1) + 1) = 2(βˆ’1 βˆ’ 4)

5(βˆ’3 + 1) = 2(βˆ’5)

5(βˆ’2) = βˆ’10

βˆ’10 = βˆ’10

Solution Set = {βˆ’1}

(iii) √𝟐(πŸ“π’™ βˆ’ 𝟏) = βˆšπŸπ’™ + πŸπŸ’

Solution:

√2(5π‘₯ βˆ’ 1) = √2π‘₯ + 14

√2(5π‘₯ βˆ’ 1) = √2π‘₯ + 14 … … π‘’π‘žπ‘’(𝑖)

Take square root on B.S

(√2(5π‘₯ βˆ’ 1))2

= (√2π‘₯ + 14)2

2(5π‘₯ βˆ’ 1) = 2π‘₯ + 14

10π‘₯ βˆ’ 2 = 2π‘₯ + 14

Now

10π‘₯ βˆ’ 2π‘₯ = 14 + 2

8π‘₯ = 16

Divide B.S by 4

8√π‘₯

8=

16

8

√π‘₯ = 2

Taking square on B.S

(√π‘₯)2

= (2)2

π‘₯ = 4

Verification

Put π‘₯ = 2 in equ (i)

√2(5(2) βˆ’ 1) = √2(2) + 14

√2(10 βˆ’ 1) = √4 + 14

√2(9) = √18

√18 = √18

√9 Γ— 2 = √9 Γ— 2

3√2 = 3√2

Solution Set = {36}

(ii) 𝒙 βˆ’ πŸ–

πŸ‘+

𝒙 βˆ’ πŸ‘

𝟐= 𝟎

Solution:

π‘₯ βˆ’ 8

3+

π‘₯ βˆ’ 3

2= 0 … … π‘’π‘žπ‘’(𝑖)

Multiply all terms by 6

6 Γ—π‘₯ βˆ’ 8

3+ 6 Γ—

π‘₯ βˆ’ 3

2= 6 Γ— 0

2(π‘₯ βˆ’ 8) + 3(π‘₯ βˆ’ 3) = 0

2π‘₯ βˆ’ 16 + 3π‘₯ βˆ’ 9 = 0

2π‘₯ + 3π‘₯ βˆ’ 16 βˆ’ 9 = 0

5π‘₯ βˆ’ 25 = 0

Add 25 on B.S

Chapter # 7

23

Review Ex # 7 Review Ex # 7

(iv) |πŸπ’™ + πŸ•| = πŸ—

Solution:

|2π‘₯ + 7| = 9

π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘π‘œπ‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘–π‘’π‘ 

πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ

2π‘₯ + 7 = 9 … … π‘’π‘žπ‘’(𝑖)

π‘œπ‘Ÿ

2π‘₯ + 7 = βˆ’9 … … π‘’π‘žπ‘’(𝑖𝑖)

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖) ⟹

2π‘₯ + 7 = 9

Subtract 7 from B.S

2π‘₯ + 7 βˆ’ 7 = 9 βˆ’ 7

2π‘₯ = 2

Divide B.S by 2

2π‘₯

2=

2

2

π‘₯ = 1

π‘π‘œπ‘€ π‘’π‘žπ‘’(𝑖𝑖) ⟹

2π‘₯ + 7 = βˆ’9

Subtract 7 from B.S

2π‘₯ + 7 βˆ’ 7 = βˆ’9 βˆ’ 7

2π‘₯ = βˆ’16

Divide B.S by 2

2π‘₯

2=

βˆ’16

2

π‘₯ = βˆ’8

Solution Set = {1, βˆ’8}

(ii) βˆ’πŸ <𝒙 βˆ’ πŸ’

πŸ“< 𝟎

Solution:

βˆ’1 <π‘₯ βˆ’ 4

5< 0

Multiply by 5

βˆ’1 Γ— 5 < 5 Γ—π‘₯ βˆ’ 4

5< 5 Γ— 0

βˆ’5 < π‘₯ βˆ’ 4 < 0

Add 4

βˆ’5 + 4 < π‘₯ βˆ’ 4 + 4 < 0 + 4

βˆ’1 < π‘₯ < 4

(iii) πŸ• < βˆ’πŸ‘π’™ + 𝟏 ≀ πŸπŸ‘

Solution:

7 < βˆ’3π‘₯ + 1 ≀ 13

Subtract 1

7 βˆ’ 1 < βˆ’3π‘₯ + 1 βˆ’ 1 ≀ 13 βˆ’ 1

6 < βˆ’3π‘₯ ≀ 12

Divide B.S by 3

6

βˆ’3>

βˆ’3π‘₯

βˆ’3β‰₯

12

βˆ’3

βˆ’2 > π‘₯ ≀ βˆ’4

Q3: Solve the following inequalities and graph the solution on the number line.

(i) βˆ’πŸ <𝒙 βˆ’ πŸ‘

𝟐< 𝟎

Solution:

βˆ’1 <π‘₯ βˆ’ 3

2< 0

Multiply by 2

βˆ’1 Γ— 2 < 2 Γ—π‘₯ βˆ’ 3

2< 2 Γ— 0

βˆ’2 < π‘₯ βˆ’ 3 < 0

Add 3

βˆ’2 + 3 < π‘₯ βˆ’ 3 + 3 < 0 + 3

1 < π‘₯ < 3

Chapter # 7

24

Review Ex # 7

Q4: A father is 4 times older than his son. In 20 years,

he will be twice as old as his son. What ages

have they now?

Solution:

Let the present age of son = π‘₯ years

So the present age of father = 4π‘₯ years

After twenty years

Age of son = (π‘₯ + 20)π‘¦π‘’π‘Žπ‘Ÿπ‘ 

and age of son = (4π‘₯ + 20)π‘¦π‘’π‘Žπ‘Ÿπ‘ 

According to condition

Age of father = 2(Age of son)

4π‘₯ + 20 = 2(π‘₯ + 20)

4π‘₯ + 20 = 2π‘₯ + 40

Now shift the variable and constant

4π‘₯ βˆ’ 2π‘₯ = 40 βˆ’ 20

2π‘₯ = 20

Divide B.S by 2

2π‘₯

2=

20

2

π‘₯ = 10

Thus present age of son = π‘₯ = 10 π‘¦π‘’π‘Žπ‘Ÿπ‘ 

And present age of father = 4π‘₯ π‘¦π‘’π‘Žπ‘Ÿπ‘ 

= 4 Γ— 10 π‘¦π‘’π‘Žπ‘Ÿπ‘ 

= 40 π‘¦π‘’π‘Žπ‘Ÿπ‘