math1013 calculus imachiang/1013/notes/1013...math1013 calculus i integration i (chap. 5 (x5.1,...

45
MATH1013 Calculus I Integration I (Chap. 5 (§5.1, 5.2)) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology November 24, 2014 1 Based on Stewart, James, “Single Variable Calculus, Early Transcendentals”, 7th edition, Brooks/Coles, 2012 Briggs, Cochran and Gillett: Calculus for Scientists and Engineers: Early Transcendentals, Pearson 2013

Upload: others

Post on 27-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • MATH1013 Calculus I

    Integration I (Chap. 5 (§5.1, 5.2)) 1

    Edmund Y. M. Chiang

    Department of MathematicsHong Kong University of Science & Technology

    November 24, 2014

    1Based on Stewart, James, “Single Variable Calculus, Early Transcendentals”, 7th edition, Brooks/Coles, 2012

    Briggs, Cochran and Gillett: Calculus for Scientists and Engineers: Early Transcendentals, Pearson 2013

  • Definite integrals Riemann Sums Integrable functions

    Definite integrals

    Riemann Sums

    Integrable functions

  • Definite integrals Riemann Sums Integrable functions

    Area under curve

    We shall consider continuous functions defined on a closed intervalonly. The aim is to develop a theory that can be used to find areaof the region under the given function.

  • Definite integrals Riemann Sums Integrable functions

    Example

    We consider the problem of finding the area under the straight linef (x) = x for the interval 0 ≤ x ≤ 1.

    We divide the interval [0, 1] into five subintervals of equal width.By a partition of [0, 1] with five points: {x0, x1, x2, x3, x4, x5} of[0, 1]. So we have the subintervals:

    [x0, x1] = [0, 1/5]

    [x1, x2] = [1/5, 2/5]

    [x2, x3] = [2/5, 3/5]

    [x3, x4] = [3/5, 4/5]

    [x4, x5] = [4/5, 5/5]

  • Definite integrals Riemann Sums Integrable functions

    Right Riemann sumThe f attains maximum values in each of the above intervals:

    f (x1) = f (1/5) = 1/5,

    f (x2) = f (2/5) = 2/5,

    f (x3) = f (3/5) = 3/5,

    f (x4) = f (4/5) = 4/5,

    f (x5) = f (5/5) = 5/5 = 1.

    Let us sum the areas of the five rectangles with height at theright-end point of [xi−1, xi ] and with base 1/n. Thus we have

    S5 = f

    (1

    5

    )1

    5+ f

    (2

    5

    )1

    5+ f

    (3

    5

    )1

    5+ f

    (4

    5

    )1

    5+ f

    (5

    5

    )1

    5

    =1

    25

    (1 + 2 + 3 + 4 + 5

    )=

    15

    25=

    3

    25,

    is called an right Riemann sum of f over [0, 1] with respect to theabove partition. The approximation 3/25 is larger than the actualarea.

  • Definite integrals Riemann Sums Integrable functions

    Left Riemann sumThe f attains minimum values in each of the above intervals:

    f (x0) = f (0/5) = 0/5,

    f (x1) = f (1/5) = 1/5,

    f (x2) = f (2/5) = 2/5,

    f (x3) = f (3/5) = 3/5,

    f (x4) = f (4/5) = 4/5.

    Let us sum the areas of the five rectangles height at the left-endpoint in [xi−1, xi ] and with base 1/n. Thus we have

    S5 = f

    (0

    5

    )1

    5+ f

    (1

    5

    )1

    5+ f

    (2

    5

    )1

    5+ f

    (3

    5

    )1

    5+ f

    (4

    5

    )1

    5

    =1

    25

    (0 + 1 + 2 + 3 + 4

    )=

    10

    25=

    2

    5,

    is called an left Riemann sum of f over [0, 1] with respect to theabove partition. The approximation 2/25 is smaller than the actualarea.

  • Definite integrals Riemann Sums Integrable functions

    Left and Right Riemann sums figuresSuppose the value of the area that we are to find is A. Then weclearly see from the figure below that the following inequalitiesmust hold:

    2

    5= S5 ≤ A ≤ S5 =

    3

    5.

  • Definite integrals Riemann Sums Integrable functions

    Left and Right Riemann sums: general case

    It is also clear that the above argument that we divide [0, 1] intofive equal intervals is nothing special. Hence the same argumentapplies for any number of intervals. Hence we must have

    Sn ≤ A ≤ Sn, (2)

    where n is any positive integer. We partition [0, 1] into n equalsubintervals:

    {x0, x1, x2, . . . , xn−1, xn} = {0,1

    n,

    2

    n, . . . ,

    n − 1n

    ,n

    n}.

    and the width of each of the subintervals of 1/n.

  • Definite integrals Riemann Sums Integrable functions

    Right Riemann sum: general case

    Hence the upper sum is

    Sn = f(1

    n

    ) 1n

    + f(2

    n

    ) 1n

    + · · ·+ f(n − 1

    n

    ) 1n

    + f(n

    n

    )1n

    =1

    n

    1

    n+

    2

    n

    1

    n+ · · ·+ n − 1

    n

    1

    n+

    n

    n

    1

    n

    =1

    n2(1 + 2 + 3 + · · ·+ (n − 1) + n

    )=

    1

    n2n(n + 1)

    2

    =1

    2

    (1 +

    1

    n

    ).

    Note that we have used the fundamental formula that

    1 + 2 + 3 + · · ·+ (n − 1) + n = n(n + 1)2

  • Definite integrals Riemann Sums Integrable functions

    Left Riemann sum: general caseHence the lower sum is

    Sn = f(0

    n

    ) 1n

    + f(1

    n

    ) 1n

    + · · ·+ f(n − 2

    n

    ) 1n

    + f(n − 1

    n

    ) 1n

    =1

    n

    0

    n+

    1

    n

    1

    n+ · · ·+ n − 2

    n

    1

    n+

    n − 1n

    1

    n

    =1

    n2(0 + 1 + 2 + · · ·+ (n − 2) + n − 1

    )=

    1

    n2(n − 1)n

    2=

    1

    2

    (1− 1

    n

    ).

    We deduce that

    1

    2

    (1− 1

    n

    )≤ A ≤ 1

    2

    (1 +

    1

    n

    ), for all n.

    Letting n→ +∞ gives that 12 ≤ A ≤12 . That is A = 1/2 and

    limn→+∞

    Sn = 1/2 = limn→+∞

    Sn.

  • Definite integrals Riemann Sums Integrable functions

    Riemann sums

    We consider a closed interval [a, b] and let

    P = {x0, x1, x2, . . . , xn−1, xn}, ∆xi = xi−xi−1 =b − a

    n, i = 1, · · · , n

    to be any points lying inside [a, b]. Let f (x) be a continuousfunction defined on [a, b]. Then we define a Riemann sum of f (x)over [a, b] with respect to partition P to be the sum

    f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn

    where x∗i is an arbitrary point lying in [xi−1, xi ], i = 1, 2, · · · , n.Depending on the choices of x∗i , we have

    1. Left Riemann sum if x∗i = xi−1;

    2. Right Riemann sum if x∗i = xi ;

    3. Mid-point Riemann sum if x∗i = (xi−1 + xi )/2.

  • Definite integrals Riemann Sums Integrable functions

    Riemann sum figure

    Figure: (Briggs, et al, Figure 5.8)

  • Definite integrals Riemann Sums Integrable functions

    Left Riemann sum figure

    Figure: (Briggs, et al, Figure 5.9)

  • Definite integrals Riemann Sums Integrable functions

    Right Riemann sum figure

    Figure: (Briggs, et al, Figure 5.10)

  • Definite integrals Riemann Sums Integrable functions

    Mid-point Riemann sum figure

    Figure: (Briggs, et al, Figure 5.11)

  • Definite integrals Riemann Sums Integrable functions

    Riemann sum of SineWe compute various Riemann sums under the sine curve fromx = 0 to x = π/2 with six intervals. So we have

    ∆x =b − a

    n=π/2− 0

    6=

    π

    12.

    • Left Riemann sum gives

    f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 0.863

    • Right Riemann sum gives

    f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 1.125

    • Mid-point Riemann sum gives

    f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 1.003

    So we have0.863 ≤ 1.003 ≤ 1.125.

  • Definite integrals Riemann Sums Integrable functions

    Partition of Riemann sum of Sine

    Figure: (Briggs, et al, Figure 5.2)

  • Definite integrals Riemann Sums Integrable functions

    Partition of Riemann sum of Sine

    Figure: (Briggs, et al, Theorem 5.1)

  • Definite integrals Riemann Sums Integrable functions

    Partition 50

    Figure: (Briggs, et al, Figure 5.15)

  • Definite integrals Riemann Sums Integrable functions

    Example (Briggs, et al, p. 372)

    After choosing a partition that divides [0, 2] into 50 subintervals:

    ∆xk = xk − xk−1 =2− 0

    50=

    1

    25= 0.04.

    The Right Riemann Sum is given by

    50∑k=1

    f (x∗k ) ∆xk =50∑k=1

    f (xk) (xk − xk−1)

    =50∑k=1

    f (k

    25) (0.04) =

    50∑k=1

    [( k25

    )3+ 1]

    (0.04)

    =[ 1

    253(50 · 51

    2

    )2+ 50

    ](0.04) = 6.1616.

  • Definite integrals Riemann Sums Integrable functions

    Example (Briggs, et al, p. 372) II

    The Left Riemann Sum is given by

    49∑k=0

    f (x∗k ) ∆xk+1 =49∑k=0

    f (xk) (xk+1 − xk)

    =49∑k=0

    f (k

    25) (0.04) =

    49∑k=0

    [( k25

    )3+ 1]

    (0.04)

    =[ 1

    253(49 · 50

    2

    )2+ 50

    ](0.04) = 5.8416.

  • Definite integrals Riemann Sums Integrable functions

    Example (Briggs, et al, p. 388) III

    After choosing a partition that divides [0, 2] into n subintervals:

    ∆xk = xk − xk−1 =2− 0

    n=

    2

    n.

    The Right Riemann Sum is given by

    n∑k=1

    f (x∗k ) ∆xk =n∑

    k=1

    f (xk)2

    n

    =2

    n

    n∑k=1

    [(2kn

    )3+ 1]

    =2

    n

    (23n3

    n∑k=1

    k3 +n∑

    k=1

    1)

    =2

    n

    (23n3· n

    2(n + 1)2

    4+ n)

    = 2[2(

    1 +1

    n

    )2+ 1]→ 6,

    as n→∞.

  • Definite integrals Riemann Sums Integrable functions

    Example (Briggs, et al, p. 389) III

    The Left Riemann Sum is given by

    n−1∑k=0

    f (x∗k ) ∆xk+1 =n−1∑k=0

    f (xk) ·2

    n

    =2

    n

    n−1∑k=0

    [(2kn

    )3+ 1]

    =2

    n

    (23n3

    n−1∑k=0

    k3 +n−1∑k=0

    1)

    =2

    n

    (23n3· n

    2(n − 1)2

    4+ n)

    = 2[2(

    1− 1n

    )2+ 1]→ 6,

    In fact, we have

    4(

    1− 1n

    )2+ 2 ≤ A ≤ 4

    (1 +

    1

    n

    )2+ 2

    to hold for every integer n. So A = 6.

  • Definite integrals Riemann Sums Integrable functions

    Example (Stewart, p. 362)

    • Let f (x) = x2 and find the area A under f over the interval[0, 1].

    • Choose the partition

    P = {0, 1n,

    2

    n, · · · , n − 1

    n,

    n

    n= 1}.

    • Show that the following inequalities

    1

    3

    (1− 1

    n

    )(1− 1

    2n

    )≤ A ≤ 1

    3

    (1 +

    1

    n

    )(1 +

    1

    2n

    ).

    by computing the left Riemann sum and right Riemann sum.

    • Then show that the area is A = 13 .• We omit the details.

  • Definite integrals Riemann Sums Integrable functions

    Some left/right Riemann sums

    Figure: (Stewart, Figures 5.1.8-9)

  • Definite integrals Riemann Sums Integrable functions

    Exercises

    • (Briggs, et al: p. 376) Write the following sum in summationnotation:

    4 + 9 + 14 + · · ·+ 44.

    • (Stewart: p. 369, Q. 4) Estimate the area under f (x) =√

    xover [0, 4] using four approximating rectangles.

    • (Briggs, et al, p. 377) Given that4∑

    k=1

    f (1 + k) · 1 is a

    Riemann sum of a certain function f over an interval [a, b]with a partition of n subdivisions. Identify the f , [a, b] and n.

  • Definite integrals Riemann Sums Integrable functions

    Upper/Lower Riemann sumsRiemann originally considered for a partition Pn = {x0, · · · , xn}

    Area = limn→∞

    Rn = [f (x1)∆x + f (x2)∆x · · ·+ f (xn)∆x ]

    Area = limn→∞

    Ln = [f (x0)∆x + f (x1)∆x · · ·+ f (xn−1)∆x ]

    and more generally, the upper and lower sums defined respectivelyby

    Area = limn→∞

    Un = limn→∞

    [f (x∗1 )∆x + f (x∗2 )∆x · · ·+ f (x∗n )∆x ]

    where f (x∗k ) attains the largest value in the k−th interval[xk−1, xk ];

    Area = limn→∞

    Ln = limn→∞

    [f (x1∗)∆x + f (x2∗)∆x · · ·+ f (xn∗)∆x ]

    where f (x∗k ) attains the smallest value in the k−th interval[xk−1, xk ]

  • Definite integrals Riemann Sums Integrable functions

    Upper Riemann sum figure

    Figure: (Stewart, Figures 5.1.13)

  • Definite integrals Riemann Sums Integrable functions

    Upper/lower Riemann figures

    Figure: (Stewart, Figures 5.1.14)

  • Definite integrals Riemann Sums Integrable functions

    Definite Integrals definition

    Figure: (Stewart Figure p. 372)

  • Definite integrals Riemann Sums Integrable functions

    Definite Integral notation

    Figure: (Publisher Figure 5.21)

  • Definite integrals Riemann Sums Integrable functions

    Integrable functions

    Theorem (Compare Stewart p. 373) Let f be a continuousfunction except on a finite number of discontinuities over theinterval [a, b]. Then f is integrable on [a, b]. That is,

    limδx→0

    n∑k=1

    f (x∗k ) ∆xk =

    ∫ ba

    f (x) dx ,

    exists irrespective to the x∗k and the partition [xk−1, xk ] chosen.So

    • Since f (x) = x2 is continuous over [0, 1] so it is integrable

    and

    ∫ 10

    x2 dx =1

    2according to a previous calculation.

    • Since f (x) = x3 is continuous over [0, 1] so it is integrable

    and

    ∫ 10

    x3 dx =1

    3according to a previous calculation.

  • Definite integrals Riemann Sums Integrable functions

    Special partition and sample points

    Figure: (Stewart p. 374)

  • Definite integrals Riemann Sums Integrable functions

    Piecewise continuous functionsThe following function has a finite number of discontinuities and sois integrable. However, we note that part 2 of the area is negative:

    Figure: (Briggs, et al, Figure 5.23)

  • Definite integrals Riemann Sums Integrable functions

    Negative area

    Figure: (Briggs, et al, Figure 5.18)

  • Definite integrals Riemann Sums Integrable functions

    Negative area

    Figure: (Briggs, et al, Figure 5.17)

  • Definite integrals Riemann Sums Integrable functions

    Net area

    Figure: (Briggs, et al, Figure 5.20)

  • Definite integrals Riemann Sums Integrable functions

    Recognizing integral

    Figure: (Briggs, et al, Figure 5.24)

  • Definite integrals Riemann Sums Integrable functions

    Computing net area

    Figure: (Briggs, et al, Figure 5.31)

  • Definite integrals Riemann Sums Integrable functions

    Exercises

    1. Write down the right Riemann sum for

    ∫ 20

    √4− x2 dx ;

    2. Interpret the sum limn→∞

    n∑k=1

    3

    n(1 + 3kn )as a certain Riemann

    integral.

    3. Let

    f (x) =

    {2x − 2, if x ≤ 2;−x + 4, if x > 2.

    Compute both the net area and actual area of

    ∫ 50

    f (t) dt.

  • Definite integrals Riemann Sums Integrable functions

    Hints to Exercises

    One can analyze the the sum as

    n∑k=1

    3

    n(1 + 3kn )=

    n∑k=1

    1

    (1 + 3kn )× 3

    n

    =n∑

    k=1

    1

    (1 + k 3n )× 3

    n=

    n∑k=1

    f (k × 3n

    )× 3n

    which represents a right Riemann sum for f (x) =1

    1 + x, and for

    the integration range from a = 0 and b = 3. But then

    lim∆→0

    n∑k=1

    3

    n(1 + 3kn )=

    ∫ 30

    1

    1 + xdx

    = ln |1 + x |∣∣∣30

    = (ln 4− ln 1) = ln 4.

  • Definite integrals Riemann Sums Integrable functions

    Hints to Exercises

    The net area of the last example is given by∫ 20

    (2x − 2) dx +∫ 5

    2(−x + 4) dx = (x2 − 2x)

    ∣∣20

    + (−x2/2 + 4x)∣∣52

    = (22 − 2 · 2) + 12

    (22 − 52) + (20− 8) = 0 +−12· 21 + 12 = 3

    2.

    The actual area is given by∫ 10

    (2x − 2) dx +∣∣∣∣∫ 2

    1(2x − 2) dx

    ∣∣∣∣+ ∫ 42

    (−x + 4) dx +∣∣∣∣∫ 5

    4(−x + 4) dx

    ∣∣∣∣=∣∣∣(x2 − 2x)∣∣10∣∣∣+ (x2 − 2x)∣∣21 + (−x2/2 + 4x)∣∣42 + ∣∣∣(−x2/2 + 4x)∣∣54∣∣∣

    = | − 1|+ 1 + 2 + | − 12| = 9

    2.

  • Definite integrals Riemann Sums Integrable functions

    Properties of Definite Integral

    Figure: (Briggs, et al, Table 5.4)

  • Definite integrals Riemann Sums Integrable functions

    Sum of integrals

    Figure: (Briggs, et al, Figure 5.29)

  • Definite integrals Riemann Sums Integrable functions

    Comparison properties of Definite Integral

    Figure: (Stewart, p. 381)

    Definite integralsRiemann SumsIntegrable functions